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Abstract

Computer-assisted image segmentation techniques could help clinicians to perform the border 

delineation task faster with lower inter-observer variability. Recently, convolutional neural 

networks (CNNs) are widely used for automatic image segmentation. In this study, we used a 

technique to involve observer inputs for supervising CNNs to improve the accuracy of the 

segmentation performance. We added a set of sparse surface points as an additional input to 

supervise the CNNs for more accurate image segmentation. We tested our technique by applying 

minimal interactions to supervise the networks for segmentation of the prostate on magnetic 

resonance images. We used U-Net and a new network architecture that was based on U-Net (dual-

input path [DIP] U-Net), and showed that our supervising technique could significantly increase 

the segmentation accuracy of both networks as compared to fully automatic segmentation using U-

Net. We also showed DIP U-Net outperformed U-Net for supervised image segmentation. We 

compared our results to the measured inter-expert observer difference in manual segmentation. 

This comparison suggests that applying about 15 to 20 selected surface points can achieve a 

performance comparable to manual segmentation.
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1. INTRODUCTION

Recently, fully-automatic deep learning approaches are widely used for medical image 

analysis such as image segmentation1–5. Although deep learning demonstrated a very high 

capability in fast and accurate segmentation of medical images, there are still segmentation 

challenges that have not been well addressed yet. One of the main challenges in using 
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convolutional neural networks (CNNs) in medical imaging is the lack of a sufficiently large 

dataset to train the network1,2. The small sample size of the training data could have a 

negative impact on the network accuracy and reliability. Data augmentation is an approach 

for addressing the data size issue by increasing the size of the training dataset. However, data 

augmentation is not always helpful to reach a clinically accepted accuracy6. More 

specifically, in medical imaging, some simple augmentation techniques such as, rotation, 

translation, and reflections are not always valid. Therefore, in some studies more 

complicated data augmentation approaches such as using generative adversarial networks 

(GANs) to generate synthetic data have been used7,8.

Another way to address the accuracy issue is to supervise the CNN by incorporating an 

expert operator interaction. However, it is not straightforward to supervise a deep learning 

algorithm with user inputs during evaluation and testing, and to the best of our knowledge, 

there are no studies in the literature on semiautomatic CNN-based techniques. In this paper, 

our goal is to direct a fully convolutional neural network with minimal manual initialization 

to improve the three-dimensional (3D) image segmentation accuracy and reliability. We 

tested our method for segmentation of the prostate in magnetic resonance imaging (MRI) 

and compared the results to fully automatic deep learning-based segmentation results. We 

used manual segmentation performance as the reference for evaluation of the algorithm.

2. METHODS

2.1 Data

In this work, we used a set of 43 T2-weighted pelvic MRI from 43 prostate cancer patients. 

The MRI dataset contains 1.5 T and 3.0 T T2-weighted magnetic resonance (MR) images 

with the original size of 256 × 256 to 320 × 320 voxels. The slice thickness ranged from 

0.625 mm to 1.0 mm, and the slice spacing ranged from 1.0 mm to 6.0 mm. All the MR 

images were resampled to make the voxel size isotropic to the in-plane image resolution. For 

each MR image, two manual segmentation labels were provided by two expert radiologists.

In this work, we used one set of manual labels as the segmentation reference for training, 

validation, and testing purposes, and the second set is used for inter-observer difference 

measurements. From the first observer, we randomly selected 75% of the images (32 

images) for training purposes (i.e., 60% for training [26 images] and 15% for validation [6 

images]). The remaining 25% of the images (11 images) were reserved for final testing of 

the method.

2.2 Preprocessing

To minimize the data load on the graphics processing unit (GPU) and speed up the training 

process, we cropped the MR images to a bounding box of 128×128×70 voxels. We scaled 

the image intensity dynamic range to the range of zero to one. We doubled the number of 

training samples by using horizontal reflection of the images to exploit the left-right 

symmetry of the images.
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2.3 Operator manual interaction:

To supervise the network for more accurate segmentation of the prostate we involved a set of 

sparse boundary landmarks as one input of the CNN along with the input image. In this 

study, we select a set of N randomly distributed points on the shape surface:

p1, p2, …, pN ,

where pn = (xn, yn, zn) is the nth selected surface point. We restricted the distance between 

each point pair based on the size of the 3D shape to have the points uniformly distributed on 

the surface. We repeat the randomized point selection process five times per image for data 

augmentation purposes. For each set of selected points, we made a binary image the same 

size as the actual MR image with all voxels equal to zero except at the point locations (P(x,y, 
z)):

P (x, y, z) =
1, (x, y, z) ∈ p1, p2, …, pN
0, otℎerwise

We used this binary mask as the basis for one input of our algorithm. To allow the CNN to 

extract useful features from the binary point mask, we made an intensity gradient around the 

points by measuring the Euclidean distance function of the point mask:

DP (x, y, z) = min d1, d2, …, dN ,

where dn is the Euclidean distance between (x,y, z) and pn. We then scale the distance values 

to range between zero and one by dividing the distance values by half of the 3D image 

diagonal length:

DP (x, y, z) =
DP (x, y, z)

1
4 Dx2 + Dy2 + Dz2

,

where Dx, Dy, and Dz are the dimensions of the image along x, y, and z axes.

To provide the points’ information to the network we used two different schemes:

Two input channels: We used the distance function of the points mask DP  along with 

the MR image (I) as the two channels of the CNN input (Figure 1a).

Two input paths: We used a CNN architecture with two input paths (as seen in Figure 

1b), one for I and the other for DP .

2.4 Fully convolutional neural network architectures

In this work, we used two different network architectures based on a U-Net architecture2 

customized for 3D images. Figure 1 shows these architectures. We trained two CNN models 

using these two architectures:
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Model I (U-Net with two input channels): For training this model, we used U-Net 

architecture shown in Figure 1a with / and DP  as the two input channels of the network.

Model II (U-Net with two contraction paths): In this model, we used the dual-

contraction path U-Net shown in Figure 1b. Hereafter, we call this model dual-input path 

(DIP) U-Net.

For both networks, we used the Adadelta optimizer with “soft Dice” similarity coefficient-

based loss function defined as follows:

L = 1 −
2 ∑x, y, z ℎ I(x, y, z), DP (x, y, z) . G(x, y, z)

∑x, y, zℎ I(x, y, z), DP (x, y, z) + ∑x, y, zG(x, y, z)

where ℎ I(x, y, z), DP(x, y, z)  is the probability value of the output probability map at (x,y,z) 

and G(x,y,z) is the value of the reference binary mask at (x, y, z).

2.5 Post-processing

To reduce the output noise and smoothen the segmentation label, we used a morphological 

filtering technique composed of a closing filter followed by an opening filter. We applied the 

morphological filtering to each axial slice using a two-dimensional (2D) structural element 

of size 3×3. We kept the largest 3D objects in the segmentation label and removed all the 

other objects, considering them as false positive regions.

2.6 Implementation details

We used TensorFlow9 to implement the CNN models in a Python platform. We used a 

computer with Intel Xeon Processor E5–2623 v4 (2.60 GHz), 512 GB DDR4 2400 MHz 

RAM, and NVIDIA TITAN Xp GPU.

2.7 Evaluation

To quantify the impact of our method on segmentation performance, we trained the U-Net 

architecture with image-only input and optimized it separately. We compare the results 

based on image and points to the results based on image-only input.

We compared the algorithm segmentation results against manual segmentation using Dice 

similarity coefficient10 (DSC), sensitivity (or recall) rate11 (SR), and precision rate11 (PR). 

DSC is the volume of the overlap between reference shape and segmentation shape divided 

by the average volume of the shapes. SR is the volume of the overlap divided by the 

reference volume, and PR is the volume of the overlap divided by the segmentation volume.

3. RESULTS

3.1 Training

We train each CNN model in five different conditions based on the number of boundary 

points used for guiding the segmentation algorithm. In this study, we used 5, 10, 15, 20, and 

30 boundary landmark points yielding five trained models for each architecture. We trained 
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each model for up to 1000 epochs and used the highest validation DSC to choose the best 

trained model. Table I shows the highest validation DSC for each model.

3.2 Testing results

Table I shows the results of testing each trained model on our test set based on the three 

error metrics. The results illustrate a higher segmentation accuracy for points involved 

segmentations compare to image-only approach. Including more selected surface points 

yielded better segmentation performance from both models. Using two-tailed, 

heteroscedastic student’s t-test12 for inter-model comparison in each of the five test groups 

indicates no statistically significant difference between the results of the two models (α = 

0.05). The one-tailed t-test was used to compare the results of each model in each of the five 

groups to automatic segmentation. The null hypothesis was that the mean DSC value for 

automatic segmentation (DSCa) is equal to the mean DSC value for the tested model (DSCt), 

and the alternative hypothesis is that DSCt is greater than DSCa. The asterisk symbols on 

Figure 2 indicate where the null hypothesis was rejected (α = 0.05). For our proposed model 

(DIP U-Net), using 15 or more points improved the segmentation accuracy significantly 

compared to fully automatic segmentation. For U-Net we detected significant improvement 

over automatic segmentation when we involved 30 selected surface points.

On the test images, both models approach the inter-expert observer difference level when at 

least 15 surface points has been involved. These results suggest that the use of 15–20 sparse 

manually selected surface points achieves a segmentation performance close to manual 

segmentation. According to our previous studies13, 14, manual selection of 12 prostate 

surface points on both MRI and CT images could be done within 20 seconds, which is 

considerably shorter than the average time of manual prostate MRI segmentation, as 

reported in the literature15, 16. Therefore, we think minimal user interaction could be helpful 

to improve the segmentation accuracy significantly.

Figure 3 shows the qualitative results of the automatic approach, Model I, and Model II for 

three sample test cases and compares them to the manual segmentation.

4. DISCUSSION AND CONCLUSIONS

We developed a new CNN architecture by adding a new contraction path to the conventional 

U-Net structure. We used this model to propose a new technique for incorporating the user 

selected point information into a convolutional neural network for image segmentation to 

improve the performance. The proposed 3D fully convolutional deep learning segmentation 

technique is able to segment the prostate in 3D MR image volumes under minimal observer 

supervision. The results of Figure 2 show using our approach could significantly improve the 

segmentation accuracy compared to automatic segmentation when 15 or more surface 

landmark points were used.

The results of this study show that our approach for combining the deep learning-based 

automatic segmentation with the user interaction could improve the accuracy and robustness 

of the prostate MRI segmentation. Using DSC as the accuracy measurement metric, the 

results in Table I and Figure 2 show that by incorporating the input points, the accuracy 

Shahedi et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased and reached the inter-expert observer difference, and the standard deviation 

decreased. Lower standard deviation values indicate the increased robustness and reliability 

of the system.

Both CNN models (Model I and Model II) could segment the prostate in less than a second, 

excluding the user interaction time. The measured execution times for U-Net and DIP U-Net 

(Table I) were 0.8 and 0.9 seconds, respectively. The slightly higher execution time of DIP 

U-Net is because of the higher number of layers in the network architecture compared to the 

U-Net architecture. The execution time did not depend on the number of the selected 

landmark points because regardless of the number of points, the points were provided to 

both networks as an input channel with the same size as the input MR image.

4.1 Limitations

The limitations of this study must be considered for interpretation of the achieved results. 

The proposed approach has been tested only on prostate MRI dataset. To confirm the 

hypothesis of this work, it is required to test the proposed network on different datasets. 

Moreover, in this study we assumed that the number of the selected points were constant and 

they were uniformly distributed on the prostate surface. However, in a real situation, the 

physician may select a different number of points for each patient, which are not necessarily 

well distributed on the prostate surface. Therefore, an observer study is required to confirm 

the effectiveness of this approach for prostate segmentation in a real clinical situation. In 

addition, although our previous studies13, 14, 17 showed that using minimal user interaction 

for prostate segmentation could substantially speed up the process when compared to 

manual segmentation time, the observer study must confirm that for this study.

4.2 Conclusions

We presented a new approach to include user input into deep learning segmentation 

algorithms. We guided the CNN by involving a set of sparse surface points as an input of the 

network. We also developed a new CNN architecture by adding a new contraction path to the 

conventional U-Net structure and compared the performance of the presented model to U-

Net. The results show statistically significant improvement in segmentation accuracy for the 

proposed CNN when compared to the automatic segmentation method of U-Net. The results 

also suggest that the presented architecture outperformed U-Net when there were fewer 

surface points involved. The proposed approach can be easily applied to different imaging 

methods and medical image segmentation applications to improve their performance and 

facilitate the adoption of the algorithms by clinical end users.
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Figure 1. 
CNN architectures. (a) Model I: four-level U-Net with two input channels, and (b) Model II: 

four-level DIP U-Net with two contraction paths. The number of feature maps in each layer 

is mentioned on the top of that layer. For each level, the size of each feature map is 

mentioned at the left side of the level.
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Figure 2. 
Supervised segmentation accuracy in terms of DSC in comparison with inter-expert observer 

difference (dashed line) and automatic segmentation (dotted line). The asterisk symbols 

indicate the significant improvement of segmentation performance compared to automatic 

segmentation (p < 0.05).
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Figure 3. 
Qualitative segmentation results for two test patients (semi-transparent, purple shapes) 

compared to manual segmentation reference #1 (green solid shapes). First column shows the 

automatic segmentation results using U-Net, the second and third column shows the 

supervised segmentation results using 20 selected surface points (shown with yellow dots) 

based on U-Net and DIP U-Net, respectively, and the last column compares the two manual 

segmentation labels.
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Table I.

Segmentation accuracy of the different models in comparison with automatic segmentation and inter-observer 

variability in manual segmentation. First observer’s manual segmentation labels were used as the reference 

labels.

Model # Boundary 
Points

Validation Test Exec. 
Time (s.)DSC (%) SR (%) PR (%) DSC (%) SR (%) PR (%)

2nd Observer - 83.0 ± 5.8 75.5 ± 7.1 92.8 ± 8.9 87.0 ± 7.4 80.0 ± 11.2 96.4 ± 2.5 -

Automatic - 83.5 ± 7.0 88.8 ± 5.3 80.0 ± 12.8 84.4 ± 10.8 91.7 ± 7.6 80.9 ± 17.1 0.8

Model I (U-Net) 5 83.0 ± 7.3 87.6 ± 5.4 80.4 ± 12.6 86.2 ± 8.9 92.2 ± 5.5 82.9 ± 14.3 0.8

10 83.2 ± 7.5 90.0 ± 5.1 78.8 ± 12.4 85.3 ± 10.8 93.4 ± 5.2 80.9 ± 16.7

15 83.3 ± 7.2 90.4 ± 4.8 78.4 ± 12.0 86.5 ± 8.6 92.5 ± 4.8 82.7 ± 13.7

20 85.7 ± 5.8 90.8 ± 4.5 82.1 ± 10.2 86.6 ± 8.8 91.9 ± 4.6 83.2 ± 13.5

30 86.8 ± 3.6 93.9 ± 2.7 81.2 ± 6.9 89.9 ± 2.9 92.8 ± 4.2 87.5 ± 5.1

Model II (DIP U-Net) 5 83.9 ± 6.0 88.4 ± 6.9 81.0 ± 10.0 87.5 ± 8.1 92.6 ± 5.0 84.4 ± 13.3 0.9

10 84.7 ± 6.1 90.3 ± 4.9 80.7 ± 10.5 85.3 ± 10.1 92.7 ± 4.9 81.0 ± 15.5

15 84.5 ± 5.7 89.9 ± 3.7 80.6 ± 10.3 88.1 ± 6.2 92.0 ± 5.3 85.4 ± 10.0

20 84.2 ± 5.3 93.1 ± 3.8 77.5 ± 9.4 88.8 ± 4.6 93.7 ± 3.8 85.0 ± 8.3

30 85.4 ± 5.0 92.1 ± 3.5 80.2 ± 9.1 88.8 ± 6.1 93.2 ± 4.4 85.8 ± 10.6
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