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Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by 
identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for 
exposure at younger ages, and evidence overall supports a linear dose–response relationship. We used the Adverse Outcome 
Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular 
initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events 
based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using 
references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes 
DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and 
epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and 
mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflamma-
tion contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and 
DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. 
For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer 
cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of 
“background” induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA 
damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological 
activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered 
potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Tech-
niques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or 
processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally 
driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes 
are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a 
priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing 
and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
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Introduction

Breast cancer imposes a significant burden on women 
worldwide and is an important focus for prevention. It 
is the most common invasive cancer in women with the 
highest rates found in North America and Europe (Ervik 
et al. 2016), and incidence is increasing globally (Forou-
zanfar et al. 2011). Around 60% of all cancers are related 
to non-heritable factors (Colditz and Wei 2012; Moller 
et al. 2016; Ronckers et al. 2005), so significant opportu-
nities exist to reduce risk. Understanding breast carcino-
genesis from an established breast carcinogen will help to 
identify early effect markers that can be used in screening 
chemicals and drugs to identify other breast carcinogens, 
prevent exposures, and reduce future breast cancers.

Ionizing radiation (IR) is a well-studied carcino-
gen that increases the risk of breast cancer in people 
(Bijwaard et al. 2010; Eidemuller et al. 2015; Henderson 
et al. 2010; Little and McElvenny 2017; Ma et al. 2008; 
Moskowitz et al. 2014; Neta et al. 2012) and mammary 
gland tumors in rodents (Imaoka et al. 2009; Rivina et al. 
2016; Russo 2015; Wagner 2004), so we selected it for 
detailed analysis using the Adverse Outcome Pathway 
(AOP) framework. AOPs provide a structure and meth-
odology for the systematic organization of mechanistic 
data into a series of discrete measurable events leading 
from the initial molecular perturbation by a stressor to an 
adverse outcome of regulatory relevance (OECD 2017; 
Villeneuve et al. 2014). AOPs are simplified representa-
tions of complex disease processes that identify interme-
diate events that are essential, biologically relevant, and 
testable.

This paper will identify and evaluate the evidence and 
dose–response for key events leading from IR exposure 
to breast cancer, and describe available assays and oppor-
tunities for measuring these events. Hormone exposure 
during development and into adulthood influences the risk 
of spontaneous breast cancer and breast cancer following 
IR, so this paper will review the role of hormones in IR 
carcinogenesis, and the intersection of hormonal effects 
with the key events identified here.

Methods

We used the approach outlined in Kushman and Kraft et al. 
(Kushman et  al. 2013) to construct this AOP. We used 
review papers (Barcellos-Hoff and Kleinberg 2013; Barcel-
los-Hoff and Mao 2016; Barcellos-Hoff and Nguyen 2009; 
Cadet et al. 2017; Committee to Assess Health Risks from 
Exposure to Low Levels of Ionizing Radiation 2006; Hana-
han and Weinberg 2011; Imaoka et al. 2009; Kadhim et al. 
2013; Mukherjee et al. 2014; Nguyen et al. 2011a; Ravanat 
et al. 2014; Ruhm et al. 2016; Smith et al. 2016; Sridharan 
et al. 2015) to identify the mechanisms by which exposure 
to ionizing radiation may cause breast cancer. We then used 
a multipronged approach to identify literature relating to 
each mechanism. We conducted comprehensive literature 
searches of PubMed for each mechanism or mechanisms 
in combination with ionizing radiation focusing on papers 
since 2006, and used review and primary literature refer-
ences as well as PubMed and Google Scholar queries to 
identify additional publications. The resulting publications 
were manually curated to identify human or animal in vivo 
or in vitro peer-reviewed primary publications relevant to 
ionizing radiation and to the events of interest. Papers were 
additionally evaluated for data quality and clarity before 
inclusion. Specifically, we looked for studies with three or 
more samples in each group, and excluded studies with inad-
equate controls or unclear methods. We ultimately extracted 
data from over 500 papers. Supplemental Table #1 summa-
rizes the key studies for each topic.

The AOP was constructed following Organization for 
Economic Co-operation and Development (OECD) guide-
lines (OECD 2017, 2018b) entered into the OECD AOP 
Wiki as two separate AOPs for RONS or DNA damage, and 
submitted to the OECD AOP Development Programme for 
inclusion in their work plan. Readers may look there for 
additional details omitted here because of space constraints.

We evaluated the strength of evidence based on the essen-
tiality of each key event to the pathway and to breast cancer 
using the modified Bradford Hill considerations as outlined 
in the OECD AOP handbook (Becker et al. 2015; OECD 
2017, 2018b). In other words, do studies show that interfer-
ing with the key event reduces the occurrence of downstream 
events and increasing the key event likewise increases down-
stream events? We highlight the quality and amount of evi-
dence, noting missing or conflicting evidence and identify-
ing factors not addressed in this AOP. We compiled assays 
available for each of the key events and outcomes and con-
sidered their generalizability to mammary tissue.
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The IR and breast cancer AOP

The sequence of key events by which ionizing radiation 
leads to breast cancer is shown in Fig. 1. IR induces two 
molecular initiating events via oxidation of DNA and pro-
teins: an increase in DNA damage and an increase in reactive 
oxygen and nitrogen species (RONS). DNA damage leads 
to increased genomic instability (GI), mutations, prolifera-
tion (including clonal selection), hyperplasia, and risk of 
breast cancer. The increase in RONS also contributes to this 
pathway via increasing epigenetic changes, GI and DNA 
damage. Both RONS and DNA damage also initiate mul-
tiple inflammatory reactions in the tissue. Inflammation 
contributes to direct and indirect effects (effects in cells 
not directly reached by IR) via positive feedback to RONS, 
DNA damage, and GI and separately increases breast cancer 
through increased proliferation of cells and tumorigenesis 
and invasion.

Ionizing radiation as stressor

Exposure to ionizing radiation (IR) comes from natural 
and industrial sources such as cosmic rays, radon, or radio-
active fuels and wastes and from medical radiation meth-
ods such as X-ray imaging, mammography and CT scans, 
and radiation therapy for cancers. The pattern of energy 
transferred by IR to matter (linear energy transfer per unit 
length or LET) (1970) varies between sources. Lower or 
no LET IR such as mammographic X-rays and some radia-
tion therapies sparsely deposit many individual excitations 
or small clusters of excitations of low energy (Goodhead 

1988) deep into tissue. In contrast, high LET such as alpha 
particles from radioactive isotopes readily transfer their 
energy (Goodhead 1994) and, therefore, deposit dense 
clusters of energy closer to the tissue surface (Goodhead 
1988). These different energy deposition patterns contrib-
ute to differences in radiation effects including the pattern 
of DNA damage.

Breast cancer as adverse outcome (AO)

Exposure to ionizing radiation is a well-established risk 
factor for many cancers including breast cancer (Ozasa 
et al. 2012; Preston et al. 2007). Women exposed to the 
atomic bomb in Japan (exposure is mostly low LET gamma 
IR with some inhaled high LET alpha and beta particles) 
(Little and McElvenny 2017), or to therapeutic radiation 
for benign disorders (Eidemuller et al. 2015), childhood 
cancer (Henderson et al. 2010; Moskowitz et al. 2014), or 
contralateral breast cancer (Neta et al. 2012) (often low 
LET X-rays but also higher LET beta radiation), or to fre-
quent chest X-rays including TB fluoroscopy (Bijwaard 
et al. 2010; Ma et al. 2008) show a significant increase in 
breast cancer with radiation exposure. Ionizing radiation 
also increases mammary tumors in rodents, and sensitivity 
varies by species and strain (Bijwaard et al. 2010; Ma et al. 
2008). See Supplemental Tables 2 and 3 for a summary of 
key studies examining ionizing radiation and breast and 
solid cancers in epidemiology and rodent studies, includ-
ing interactions between IR and hormonal manipulation.

Fig. 1   Adverse outcome 
pathway showing the key events 
linking the stressor ionizing 
radiation to breast cancer. 
Arrows indicate directional-
ity of events: e.g., an increase 
in the upstream event leads to 
an increase in the downstream 
event. The intersection of addi-
tional stressors (estrogen and 
progesterone) with this pathway 
is included on the right. MIE 
molecular initiating event, the 
original action caused by the 
stressor IR in tissue that leads to 
subsequent events. AO adverse 
outcome. While this pathway is 
focused on breast cancer as an 
adverse outcome, DNA damage 
and GI, mutations, and hyper-
plasia can be considered adverse 
outcomes in their own right
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Why breast?

The key events described here are likely relevant to all tis-
sues after exposure to IR, and are particularly relevant to 
the breast. While ionizing radiation causes many kinds 
of cancers including leukemia, lung, bladder, and thyroid 
cancers (Committee to Assess Health Risks from Exposure 
to Low Levels of Ionizing Radiation 2006; Preston et al. 
2007), breast cancers are among the cancers most increased 
by exposure to ionizing radiation (Preston et al. 2007).

The lengthy and hormone-dependent developmental 
trajectory of the breast is likely to be a major factor in its 
susceptibility to breast cancer in general and to breast can-
cer from ionizing radiation in particular. Although at first 
examination, breast cancer from ionizing radiation and hor-
mones involve very different processes, in fact the hormone-
dependent and ionizing radiation pathways of carcinogen-
esis intersect at multiple points along the trajectory of breast 
development and function, leaving the hormone-exposed 
breast especially vulnerable to radiation.

One major mechanism promoting breast cancer from ion-
izing radiation is the proliferation of breast stem cells. Most 
breast cancers form from epithelial cells, and the growth of 
these cells in the breast is limited until hormones rise during 
puberty, when stem cells proliferate to form ductal structures 
(Hinck and Silberstein 2005; Sternlicht et al. 2005). Stem 
cells are considered important to initiation because of their 
long life and capacity to pass on mutations to many progeny 
(Imaoka et al. 2009; Russo 2015). Breast tissue is respon-
sive to estrogen and progesterone, reproductive hormones 
that rise at puberty and stimulate cellular proliferation with 
each reproductive cycle and in pregnancy. These hormonal 
proliferative cycles increase the risk of cancer in breast tis-
sue (Brisken et al. 2015). IR increases the long-term pro-
liferation of stem cells in pubertal but not adult mammary 
gland (Datta et al. 2012a; Nguyen et al. 2011b; Snijders et al. 
2012; Suman et al. 2012; Tang et al. 2014). Replication of 
stem cells in the IR-exposed breast is, therefore, particularly 
elevated during puberty, likely contributing to the increased 
susceptibility to breast cancer from IR at this age.

Development continues to a lesser degree after puberty 
with each menstrual cycle until pregnancy, when another 
major hormone-dependent proliferation and subsequent 
differentiation and decline of stem cells is coupled with a 
decline in hormone-sensing epithelial cells (Anderson et al. 
2007; Dall et al. 2017; Oakes et al. 2006b). This pregnancy-
related decrease in hormone-sensing and stem cells does not 
occur in first pregnancies at older ages and may explain the 
lack of protection against spontaneous breast cancer afforded 
by the first parity in older women (Dall et al. 2017). This 
theory underlies the current efforts to prevent breast cancers 
by induction of terminal differentiation (mimicking preg-
nancy) in teenagers (Santucci-Pereira et al. 2013).

Another special vulnerability of the breast to IR is a 
byproduct of proliferation:mutations. Replication itself 
increases the likelihood of mutations, which add to 
mutations arising from IR and increase the likelihood 
of oncogenic transformation (Atashgaran et  al. 2016). 
Furthermore, the high replication rate of mammary stem 
cells during puberty and pregnancy increases reliance on 
homologous recombination pathways (Kass et al. 2016) 
which shift to error-prone non-homologous end joining 
to respond to DNA damage from IR (Chang et al. 2015). 
Long-term disruption of these homologous repair (HR) 
processes by polymorphisms in genes like BRCA or by 
IR-induced mutation can also increase mutation rates and 
increase tumorigenesis (Mahdi et al. 2018). The conse-
quence of mutations in stem cells is significant, since 
these cells can clonally expand to generate many mutated 
progeny. However, errors in stem cell division may not be 
the sole or primary factor driving cancer from radiation, 
since excess cancer risk for solid cancers at different sites 
from the atomic bomb is not clearly related to the number 
of stem cell divisions at that site (Tomasetti et al. 2017).

The elevated estrogen associated with normal develop-
ment and the estrous cycle may also have direct effects 
that further complement the carcinogenic effects of IR. 
Estrogen directly increases oxidative stress in virgin 
(but not parous) mice (Yuan et al. 2016), interferes with 
DNA repair (Li et al. 2014; Pedram et al. 2009) increases 
DNA damage and mutations (Mailander et al. 2006), and 
increases TGF-β (Jerry et al. 2010). These effects are seen 
at physiological concentrations of estrogen, and each cre-
ates the potential for additive or synergistic interactions.

Inflammation from the estrous cycle may also con-
tribute to tumorigenesis following IR. Cytokines and 
macrophages play an integral role in mammary gland 
development and ductal elaboration, with alternating 
inflammatory, immune surveillance, and phagocytic activ-
ity occurring over each estrous cycle (Atashgaran et al. 
2016; Brady et al. 2016; Hodson et al. 2013). This inflam-
mation could theoretically increase IR-induced DNA dam-
age and mutations and promote tumorigenic and invasive 
characteristics.

The enhancement of IR-induced tumorigenesis by the 
estrous cycle may be replicated or further enhanced by 
exogenous endocrine disrupting chemicals. Indeed, evi-
dence suggests that BPA (and presumably other estrogenic 
chemicals) exposure in utero can increase the mammary 
gland’s response to progesterone during puberty (Brisken 
et al. 2015). This enhancement would presumably also 
increase the risk of breast cancer from ionizing radiation, 
which rises with estrogen exposure and the number of 
menstrual cycles (De Bruin et al. 2009; Inskip et al. 2009; 
Moskowitz et al. 2014; Sigurdson et al. 2009; Travis et al. 
2003).
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Breast cancer risk factors

Younger age of exposure, exposure to estrogen and proges-
terone, pregnancy, and genetic susceptibility influence breast 
cancer risk from IR in people (Berrington de Gonzalez et al. 
2010; Boice et al. 1991; Land et al. 2003; Ma et al. 2008; 
Miller et al. 1989; Preston et al. 2007; Stovall et al. 2008). 
In rodents, risk is highest for IR exposures during mammary 
gland development and puberty (Imaoka et al. 2011, 2013, 
2017) and lower for embryonic, adult (Imaoka et al. 2011, 
2013), and post-estrous rats (Bartstra et al. 1998).

While IR exposure during breast development increases 
risk, pregnancy or parity is protective against breast cancer 
from later radiation in people (Brooks et al. 2012a; Land 
et al. 1994), similar to spontaneous and chemical carcino-
gen-induced mammary tumors in rodents (Britt et al. 2007; 
Dall et al. 2017; Imaoka et al. 2009; Rajkumar et al. 2007; 
Russo 2015). In rodents, IR exposure during or shortly 
after pregnancy increases mammary cancer (Holtzman 
et al. 1982; Inano et al. 1991, 1996b; McDaniel et al. 2006; 
Suzuki et al. 1994), consistent with increased susceptibility 
due to development and proliferation in the mammary gland 
during pregnancy. There is also a “risk bump” of pregnancy-
associated breast cancer observed in humans (Lambe et al. 
1994).

As with spontaneous breast cancer, the reproductive hor-
mones estrogen and progesterone increase the risk of breast 
cancer following ionizing radiation. Breast cancer rates fol-
lowing IR are lower in women who undergo premature men-
opause (De Bruin et al. 2009; Inskip et al. 2009; Moskowitz 
et al. 2014; Travis et al. 2003). Genetic variation in estrogen 
signaling also affects risk (Sigurdson et al. 2009), Similarly, 
exposure to estrogen or the synthetic estrogen diethylstil-
bestrol (DES) is associated with more tumors (particularly 
adenocarcinomas) in rats following IR (Broerse et al. 1987; 
Holtzman et al. 1979, 1981; Inano et al. 1991; Segaloff and 
Maxfield 1971; Shellabarger et al. 1976; Solleveld et al. 
1986) including male (Inano et al. 1996a) and ovariec-
tomized rats (Inano et al. 1995; Yamanouchi et al. 1995). 
Conversely, ovariectomy (Clifton et al. 1985; Cronkite et al. 
1960; Solleveld et al. 1986) and the anti-estrogen tamoxifen 
(Lemon et al. 1989; Peterson et al. 2005; Welsch et al. 1981) 
reduce tumors from IR.

Breast cancer risk from IR in postmenopausal atomic 
bomb survivors increases with and may be partially medi-
ated by increased serum estrogen (Grant et al. 2018), which 
may in turn be mediated by inflammatory factors (Frasor 
et al. 2008; Salama et al. 2009). In addition, one study 
reports that IR can increase circulating estrogen in rodents 
(Suman et al. 2012). To our knowledge, no publications have 
attempted to replicate these findings. Progesterone also pro-
motes mammary carcinogenesis after IR in rodents, but its 
effect depends on the developmental state of the mammary 

gland: moderate doses promote carcinogenesis in the mature 
but not immature mammary gland, but high doses can be 
protective, possibly by differentiating the gland in a manner 
akin to pregnancy (Inano et al. 1995; Takabatake et al. 2018; 
Yamanouchi et al. 1995).

IR may increase the risk of ER- breast cancer in particu-
lar (Alkner et al. 2015; Castiglioni et al. 2007; Dores et al. 
2010; Horst et al. 2014; Huang et al. 2000; Neta et al. 2012; 
VoPham et al. 2017), although some studies report no dif-
ference between risk of ER+ and ER− cancers (Ma et al. 
2008; Miura et al. 2008). This effect depends on the pres-
ence of estrogen or developmental state: in animals, tumors 
formed after IR in the absence of estrogen (ovariectomized 
animals) are often ER−, while those formed in the presence 
of estrogen or DES are often ER + (Inano et al. 1995) and 
those formed in the presence of estrogen and progesterone 
are almost always ER + (Inano et al. 1995; Yamanouchi et al. 
1995). Breast tumors can change from ER+ to ER− as the 
tumor advances or in response to ER antagonists (Lindstrom 
et al. 2012; Szostakowska et al. 2019).

An early study of women exposed to the atomic bomb 
suggested that a surge in early onset cancers arose from 
genetically susceptible populations (Land et al. 1993). Stud-
ies of genetic polymorphisms in people and strain variation 
in rodents support a contribution of genetic background to 
breast cancer risk from IR (Andrieu et al. 2006; Bernstein 
et al. 2010; Bernstein et al. 2013; Broeks et al. 2007; Brooks 
et al. 2012b; Imaoka et al. 2007; Millikan et al. 2005; Pijpe 
et al. 2012; Rivina et al. 2016; Shellabarger 1972; Sigurdson 
et al. 2009; Vogel and Turner 1982).

RONS (MIE)

Evidence of activation by IR

Reactive oxygen and nitrogen species (RONS) are oxygen- 
and nitrogen-based molecules that often contain or gener-
ate free radicals, including superoxide ([O2]•−), hydrogen 
peroxide (H2O2), hydroxyl radical ([OH]•), lipid peroxide 
(ROOH), nitric oxide ([NO]•, and peroxynitrite ([ONOO–]) 
(Dickinson and Chang 2011; Egea et al. 2017). RONS are 
generated in the course of cellular respiration, metabolism, 
cell signaling, and inflammation (Dickinson and Chang 
2011; Egea et al. 2017).

We include both reactive oxygen (ROS) and nitrogen 
(RNS) species in this key event for several reasons. First, 
reactive species of both types interact and produce over-
lapping effects (Calcerrada et  al. 2011; Mikkelsen and 
Wardman 2003). Second, because the most common meth-
ods used to detect their presence are fairly non-selective 
(Kalyanaraman et al. 2012; Mikkelsen and Wardman 2003) 
and thus the majority of evidence for their activation by IR 
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does not distinguish between them. Third, evidence sug-
gests that both ROS and RNS are produced after IR and are 
involved in the generation of downstream events (addressed 
below).

RONS levels increase at multiple time points in vitro and 
in vivo following IR indicating a persistent effect (Fig. 2) 
(Ameziane-El-Hassani et al. 2015; Choi et al. 2007; Das 
et al. 2014; Datta et al. 2012b; Denissova et al. 2012; Du 
et al. 2009; Lyng et al. 2001; Manna et al. 2015; Martin 
et al. 2014; Narayanan et al. 1997; Pazhanisamy et al. 2011; 
Saenko et al. 2013; Werner et al. 2014; Yang et al. 2005; 
Yoshida et al. 2012; Zhang et al. 2017). Ionizing radiation 
initially generates RONS by direct hydrolysis of water mol-
ecules. An early (15 min) and later (days to weeks) eleva-
tion in RONS is associated with increased NADPH-oxidase 
production of superoxide and H2O2 (Ameziane-El-Hassani 
et al. 2015; Narayanan et al. 1997). Intermediate (hours to 
days) and chronic RONS elevation has been associated with 
mitochondrial respiration (Datta et al. 2012b; Dayal et al. 
2009; Saenko et al. 2013) driven by nitric oxide signals and 
cell division (Suzuki et al. 2009). IR-exposed cells show 
elevated oxidative activity up to a year after IR exposure of 
the animal (Datta et al. 2012b; Pazhanisamy et al. 2011). For 
RNS in particular, mitochondrial and NOS1-dependent NOS 

increase NO and peroxynitrate at 1–30 min after IR, peaking 
around 5 min (Kostyuk et al. 2012; Leach et al. 2002). Mito-
chondrial and NF-κB dependent NO concentrations increase 
again around 8–24 h (Dong et al. 2015; Ha et al. 2010; Sae-
nko et al. 2013; Zhou et al. 2008). RONS (Buonanno et al. 
2011; Lyng et al. 2001; Narayanan et al. 1997; Yang et al. 
2005) including RNS (Shao et al. 2008; Zhou et al. 2008) is 
also increased in neighboring or bystander cells—cells not 
directly exposed to IR—via H2O2, NO, TNF-α, and TGF-β 
(Narayanan et al. 1997; Shao et al. 2008; Zhou et al. 2008) 
as well as COX2 and NF-κB activation and decreased SOD2 
(Chai et al. 2013b; Tian et al. 2015; Zhou et al. 2008). Meas-
ures of RONS after IR in breast or breast cancer cells are 
rare, but generally support increased RONS minutes or days 
after IR (Bensimon et al. 2016; Jones et al. 2007; Leach 
et al. 2001).

A few studies have measured RONS at multiple or lower 
doses (< 1 Gy) of ionizing radiation to establish a clear 
dose–response relationship, and those that have tested multi-
ple doses performed their measures at a range of time points 
after IR, making it difficult to establish a clear narrative. 
Immediately after IR, one study at doses above 1 Gy finds 
that IR increases the number of cells with elevated RONS 
rather than the degree of RONS in each cell (Leach 2001) 

Fig. 2   Intracellular RONS at varying times after IR. RONS are meas-
ured with DCFH (dichlorodihydrofluorescein diacetate), a common 
but non-specific fluorescent indicator of intracellular oxidants. Red 
indicates elevated RONS; black indicates that RONS was measured 

but not elevated. Each reference is listed on the y-axis. Cell types are 
mostly embryonic or immortalized fibroblasts, keratinocytes, epithe-
lial cells, and immune cells—none are mammary/breast (color figure 
online)
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and another at doses below 1 Gy reports non-linear dose-
dependence of RONS species with a maximum response 
around 0.4 Gy (Narayanan et al. 1997). RONS increases 
between 0.5 and 12 Gy IR at 1–2 days (Jones et al. 2007; 
Saenko et al. 2013) but plateaus at 1 Gy (Werner et al. 2014) 
at 7 days. The only study explicitly measuring reactive nitro-
gen species (RNS) at different doses of IR (in endothelial 
cells) also reports non-linear dose-dependence at 3 h, with a 
nadir around 0.1 Gy (Kostyuk et al. 2012). RONS increases 
dose-dependently in extracellular media (Driessens et al. 
2009) and in bystander cells not directly exposed to IR (Buo-
nanno et al. 2011; Narayanan et al. 1997).

Essentiality of RONS

Essentiality is high. RONS are sufficient to trigger sub-
sequent key events in this AOP. Extracellularly applied or 
intracellularly generated ROS (which also facilitates the 
formation of RNS) are capable of creating DNA damage 
in vitro including base damage, single- and double-strand 
breaks, and chromosomal damage (Berdelle et al. 2011; 
Dahm-Daphi et al. 2000; Driessens et al. 2009; Gradzka 
and Iwanenko 2005; Ismail et al. 2005; Lorat et al. 2015; 
Nakamura et al. 2003; Oya et al. 1986; Stanicka et al. 2015) 
and mutations (Ameziane-El-Hassani et al. 2010; Sandhu 
and Birnboim 1997; Seager et al. 2012; Sharma et al. 2016). 
Similarly, decreased antioxidant activity and higher RONS 
are observed in cells with GI (Bensimon et al. 2016; Buo-
nanno et al. 2011; Datta et al. 2012b; Dayal et al. 2008; Kim 
et al. 2006; Limoli and Giedzinski 2003; Limoli et al. 2003; 
Natarajan et al. 2007; Owens et al. 2012; Pazhanisamy et al. 
2011; Thomas et al. 2012). RONS are also involved in the 
activation of inflammation (Nakao et al. 2008; Zhang et al. 
2017) and epigenetic effects (Bernal et al. 2013; Galligan 
et al. 2014; Kloypan et al. 2015; Simone et al. 2009; Yang 
et al. 2014).

The strongest evidence for the essentiality of RONS in 
breast cancer from IR comes from studies, showing that 
reducing RONS with antioxidants including catalase or 
SOD or NOX/DUOX inhibitors also reduces downstream 
key events including DNA damage and GI in multiple 
types of irradiated cells and bystander cells in vivo and 
in vitro after IR (Ameziane-El-Hassani et al. 2010, 2015; 
Azzam et al. 2002; Bensimon et al. 2016; Choi et al. 2007; 
Dayal et al. 2008, 2009; Douki et al. 2006; Jones et al. 
2007; Manna et al. 2015; Ozyurt et al. 2014; Pazhanisamy 
et al. 2011; Tartier et al. 2007; Tian et al. 2015; Weyemi 
et al. 2015; Winyard et al. 1992; Yang et al. 2007b, 2005), 
while inhibiting NO in particular inhibits DNA damage 
and mutations in bystander cells (Han et al. 2010; Tartier 
et al. 2007; Yang et al. 2007b; Zhou et al. 2008). Antioxi-
dant activity also reduces the inflammatory response to IR 

in animals and cultured skin cells (Berruyer et al. 2004; 
Das et al. 2014; Ezz et al. 2018; Haddadi et al. 2017; Khan 
et al. 2015; Ozyurt et al. 2014; Sinha et al. 2011, 2012; 
Zetner et al. 2016; Zhang et al. 2017) and the epigenetic 
effects of IR in vitro (Bernal et al. 2013; Kloypan et al. 
2015; Simone et al. 2009). RONS also drives proliferation 
directly (Han et al. 2010) and via cell death and compensa-
tory proliferation following damage to DNA and important 
cellular macromolecules (Nishida et al. 2013).

None of the studies addressing RONS and inflamma-
tion are in mammary gland/breast, but a limited number 
of studies in mammary and breast cells do support the 
essentiality of RONS to DNA damage or cancer (Ben-
simon et al. 2016; Dutta et al. 2014) including after IR 
(Inano et al. 1999; Jones et al. 2007).

RONS act in multiple ways to promote downstream key 
events, not only directly damaging DNA and proteins but 
also modifying signal transduction pathways and epige-
netic mechanisms (Gao and Schottker 2017; Mikkelsen 
and Wardman 2003). Examples include inflammatory 
pathways like TNF-α and IL-6, transcription factors like 
NF-κB, and methylation of histones (Eskiocak et al. 2010; 
Galligan et al. 2014; Kloypan et al. 2015; Yang et al. 2014; 
Zhou et al. 2008).

Data gaps and uncertainties

Although many studies support the link between IR, 
RONS, and DNA damage, a few RONS studies use mam-
mary tissue, multiple doses, doses below 1 Gy, or explic-
itly measure RNS presenting an addressable data gap.

Despite the effectiveness of antioxidants in decreasing 
all forms of DNA damage, externally applied RONS is 
less effective than IR at generating double-strand breaks 
and mutations (Dahm-Daphi et  al. 2000; Gradzka and 
Iwanenko 2005; Ismail et al. 2005; Sandhu and Birnboim 
1997). One possible explanation for this discrepancy is 
that IR may elicit a higher concentration of localized 
RONS than can be achieved with external application of 
H2O2. IR deposits energy and oxidizes molecules within 
a relatively small area over a rapid timescale potentially 
permitting a very high local concentration which could 
precede or overwhelm local buffering capacity. In con-
trast, extracellularly applied H2O2 would interact with 
many antioxidants and other molecules on its way to the 
nucleus, where the concentration would slowly reach a 
lower steady state.

To our knowledge, no experiments have tested whether 
elevating intracellular RONS alone in one group of cells 
can cause bystander effects in another.
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DNA damage, GI, and mutation (MIE & KEs)

Evidence of activation by IR and RONS

IR and RONS cause immediate and delayed DNA damage 
and GI. Both of these forms of DNA damage contribute to 
changes in DNA sequence, i.e., mutations. DNA changes 
include to the base of the nucleotide (with guanine particu-
larly vulnerable because of its low redox potential), a break 
in the sugar (deoxyribose)-phosphate backbone creating 
a single-strand break (David et al. 2007), or simultaneous 
proximal breaks in both strands of DNA to form double-
strand breaks (Ameziane-El-Hassani et al. 2015; Berdelle 
et al. 2011; Dahm-Daphi et al. 2000; Driessens et al. 2009; 
Haegele et al. 1998; Han et al. 2010; Lorat et al. 2015; Naka-
mura et al. 2003; Oya et al. 1986; Pouget et al. 2002; Roots 
et al. 1990; Rothkamm and Lobrich 2003; Sandhu and Birn-
boim 1997; Seager et al. 2012; Sharma et al. 2016; Stan-
icka et al. 2015; Ward 1988; Werner et al. 2014; Yang et al. 
2013). Double-strand breaks are considered more destruc-
tive and mutagenic than lesions or single-strand breaks, and 
higher densities of double-strand breaks generate chromo-
somal abnormalities including changes in chromosomal 
number, breaks and gaps, translocations, inversions, and 
deletions (Behjati et al. 2016; Haag et al. 1996; Morishita 
et al. 2016; Ponnaiya et al. 1997b; Unger et al. 2010; Yang 
et al. 1992, 1997).

The type and amount of DNA damage depends on both 
the quality and dose of radiation. The pattern of energy 
transferred by IR to matter (linear energy transfer per unit 
length or LET) (1970) varies between sources. Lower or 
no LET IR such as mammographic X-rays and some radia-
tion therapies sparsely deposit many individual excitations 
or small clusters of excitations of low energy (Goodhead 
1988) deep into tissue. In contrast, high LET such as alpha 
particles from radon readily transfer their energy (Goodhead 
1994) and, therefore, deposit dense clusters of energy closer 
to the tissue surface (Goodhead 1988).

These different energy deposition patterns contribute 
to differences in radiation effects including the pattern of 
DNA damage. Higher LET radiation such as alpha parti-
cles generates more complex clusters of damage including 
more frequent double-strand breaks (Nikitaki et al. 2016; 
Ottolenghi et al. 1997; Rydberg et al. 2002; Watanabe et al. 
2015) and other chromosomal abnormalities (Anderson et al. 
2002; Yang et al. 1997), while lower LET radiation (gamma 
rays, X-rays) and RONS generate more oxidized base dam-
age and single-strand breaks (Douki et al. 2006). Although 
complex damage is more likely to occur from high LET IR, 
low LET IR and RONS can also generate complex damage, 
even from a single particle or photon (Ravanat et al. 2014; 

Sharma et al. 2016; Sutherland et al. 2002). Complex dam-
age is more difficult to repair, making it more detrimental 
to the cell and the organism than a single point of damage 
(Kuhne et al. 2000; Pinto et al. 2005; Rydberg et al. 2005; 
Stenerlow et al. 2000).

DNA damage is also observed in in cells not directly 
in the path of ionizing radiation and at a delay following 
exposure. These indirect or bystander effects are mediated 
by multiple factors including RONS (Yang et al. 2005), 
TGF-β (Dickey et al. 2009), and other cytokines (Havaki 
et al. 2015).

Most evidence suggests that nucleotide damage, sin-
gle-strand breaks, clustered damage, and double-strand 
breaks increase linearly with IR dose over a wide range 
(0.001–80 Gy) (Asaithamby and Chen 2009; Beels et al. 
2010; Ojima et al. 2008; Roots et al. 1990; Rothkamm and 
Lobrich 2003; Rydberg et al. 2002; Sutherland et al. 2002; 
Yang et al. 2005). The low LET dose–response of chromo-
somal aberrations and other mis-rejoining of DNA is linear 
or supralinear (Iwasaki et al. 2011; Ryu et al. 2016; Tanaka 
et al. 2009; Yang et al. 1997) at lower doses (0.01 Gy) (Iwa-
saki et al. 2011; Schiestl et al. 1994) and dose–response 
upwardly curving at high-dose rates (0.89 Gy/day) and 
higher doses (10–80 Gy) (Olipitz et al. 2012; Rydberg et al. 
2005; Tanaka et al. 2009), while the response to high LET 
radiation is linear (Jones et al. 2007; Yang et al. 1997). 
DNA damage measured in bystander cells 1 h to 3 days after 
exposure is also dose-dependent at very low doses, but may 
approach a maximum around 0.1 Gy (Ojima et al. 2008; 
Yang et al. 2007b).

GI is the recurrent appearance of DNA and chromo-
somal damage and mutations. DNA damage following 
ionizing radiation in directly and indirectly damaged cells 
is repaired over the first few hours or days (Nikitaki et al. 
2016), but GI can appear weeks, months, or even years after 
the initial exposure and persist in subsequent generations 
of cells in vivo (Datta et al. 2012b; Mukherjee et al. 2012; 
Pazhanisamy et al. 2011; Snijders et al. 2012) and in vitro 
(Bensimon et al. 2016; Buonanno et al. 2011; Moore et al. 
2005; Natarajan et al. 2007). DNA damage response and 
dysfunctional telomeres are implicated in the formation of 
GI (Sishc et al. 2015; Williams et al. 2009; Yu et al. 2001), 
but the delayed appearance and high frequency of GI and its 
transmission through media to bystander cells strongly sug-
gest the involvement of non-mutational (epigenetic) mecha-
nisms (Al-Mayah et al. 2012; Rugo et al. 2011; Ullrich and 
Davis 1999). RONS is also involved in the production of GI 
(Bensimon et al. 2016; Buonanno et al. 2011; Datta et al. 
2012b; Dayal et al. 2008; Kim et al. 2006; Limoli and Giedz-
inski 2003; Limoli et al. 2003; Natarajan et al. 2007; Owens 
et al. 2012; Pazhanisamy et al. 2011; Thomas et al. 2012).

Mutations occur when DNA damage is converted to per-
manent changes in nucleotide sequence. Nucleotide lesions 
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contribute to point mutations when a different nucleotide is 
mistakenly inserted in place of a damaged nucleotide, some-
times altering the resulting amino acid. Nucleotide lesions 
also contribute to single-strand breaks, and both lesions and 
single-strand breaks contribute to double-strand breaks if not 
repaired before replication. Double-strand breaks contrib-
ute to deletions, inversions, translocations, and duplications, 
and can lead to major chromosomal damage. Complex DNA 
damage (multiple damaged sites in close proximity) is more 
difficult and time-consuming to repair, so complex damage 
is more likely to persist until replication and be converted 
into mutations.

Because DNA damage and mutation increase the risk of 
all types of cancers, these events are the subject of estab-
lished guideline assays (Table 1) and are considered adverse 
outcomes in their own right.

Essentiality of DNA damage, GI, and mutation

Essentiality is high. Although not commonly measured in 
the same experiments, IR-induced DNA damage, GI, and 
mutation (Denissova et al. 2012; Fibach and Rachmilewitz 
2015; Jones et al. 2007; Padula et al. 2016; Sandhu and 
Birnboim 1997; Ullrich and Davis 1999; Wazer et al. 1994) 
precede cell transformation (Ullrich et al. 1996; Unger et al. 
2010; Wang et al. 2011; Wazer et al. 1994; Yang et al. 1992, 
1997), and tumorigenesis (Adams et al. 1987; Andrieu et al. 
2006; Bernstein et al. 2010; Bernstein et al. 2013; Broeks 
et al. 2007; Brooks et al. 2012b; de Ostrovich et al. 2008; 
Francis et al. 2009; Francis et al. 2011; Gustin et al. 2009; 
Little 2009; Millikan et al. 2005; Pijpe et al. 2012; Podsy-
panina et al. 2008; Poirier and Beland 1994; Radice et al. 
1997; Tao et al. 2017; Umesako et al. 2005). Further sup-
port for including DNA damage, GI, and mutation in the 
mechanistic pathway linking ionizing radiation with breast 
cancer comes from the observation that variants in DNA 
repair genes increase the risk of mammary tumors in animals 
after IR (Umesako et al. 2005; Yu et al. 2001) and increase 
breast cancer after IR (Andrieu et al. 2006; Bernstein et al. 
2010, 2013; Broeks et al. 2007; Brooks et al. 2012b; Mil-
likan et al. 2005; Pijpe et al. 2012). BRCA is perhaps the 
best known DNA repair gene linked with breast cancer risk, 
and several of these studies have suggested a link between 
BRCA mutation status and increased susceptibility to breast 
cancer following ionizing radiation, particularly in women 
exposed at younger ages (Pijpe et al. 2012).

Outside of the IR literature, multiple studies confirm 
that mutations can increase proliferation, hyperplasia, and 
tumors (Podsypanina et al. 2008). Mutations in cell cycle 
checkpoint, growth factor signaling, and other genes enable 
mammary epithelial and other cells to proliferate in vitro 
(Gustin et al. 2009; Higashiguchi et al. 2016; Kouros-Mehr 
et al. 2006; Shahi et al. 2017; Tao et al. 2011), promote 

mammary hyperplasia in vivo (Francis et al. 2009), and con-
tribute to tumors when combined with the other mutations in 
the same pathway (Francis et al. 2011). Restoring function 
in mutated genes regresses tumors in animals (Martins et al. 
2006; Podsypanina et al. 2008). Mutations are common in 
tumors (CGAN (Cancer Genome Atlas Network) 2012; Gar-
raway and Lander 2013; Greenman et al. 2007; Haag et al. 
1996; Stratton et al. 2009; Vandin et al. 2012; Vogelstein 
et al. 2013; Yang et al. 2015) and tumors are largely clonal, 
suggesting that individual mutations offer the tumor evo-
lutionary advantages (Begg et al. 2016; Wang et al. 2014c; 
Yates et al. 2015). GI increases the frequency and duration 
of DNA damage and mutation after IR, thereby increasing 
the likelihood of transformation and tumorigenesis (Selva-
nayagam et al. 1995; Ullrich and Ponnaiya 1998).

The evidence linking DNA damage with epigenetic 
changes is indirect. The two key events are often observed at 
the same time or DNA damage precedes epigenetic changes 
(Koturbash et al. 2016, 2008, 2005, 2006b; Nishida et al. 
2013; Pogribny et al. 2005, 2004; Szatmari et al. 2017). 
However, DNA damage does not always correspond with or 
precede epigenetic changes (Koturbash et al. 2016, 2006b; 
Pogribny et al. 2005).

Data gaps and uncertainties

The majority of research on the effects of IR on DNA dam-
age has been performed in tissues other than mammary 
gland, but several studies suggest that effects in the mam-
mary gland (and its consequences) would be consistent with 
the other tissues (Haegele et al. 1998; Hernandez et al. 2013; 
Jones et al. 2007; Snijders et al. 2012; Soler et al. 2009; 
Wang et al. 2015) and many of the studies in support of the 
proliferative and tumorigenic role of mutations are in mam-
mary gland or breast cancers (Behjati et al. 2016; CGAN 
(Cancer Genome Atlas Network) 2012; de Ostrovich et al. 
2008; Francis et al. 2009; Francis et al. 2011; Gustin et al. 
2009; Haag et al. 1996; Korkola and Archer 1999; Marusyk 
et al. 2014; Miura et al. 2008; Morganella et al. 2016; Nik-
Zainal et al. 2016; Podsypanina et al. 2008; Radice et al. 
1997; Tao et al. 2017; Umesako et al. 2005; Wazer et al. 
1994; Yang et al. 2015). Recent studies in other tissues have 
shown a high frequency of cancer-driving mutations in nor-
mal tissues, raising questions about factors leading to clonal 
selection (Martincorena 2019); and further description of 
these processes in breast represents a data gap.

All cancers have DNA mutations, but mutation is not 
always the initiating event. Instead mutation can result from 
other stressors like proliferation or inflammation. Mammary 
tumor incidence following ionizing radiation treatment of 
the animal (as discussed above) or transplanted cells (Maffini 
et al. 2005; McDaniel et al. 2006) varies significantly by sex 
and depends on the presence of ovarian hormones. Stroma 
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Table 1   Guideline assays and other methods measuring key events in the pathway to breast cancer

Event Guideline test Methods Tissue

Breast cancer Yes OECD Test No. 451 and 453, 2-year bioassay 
for carcinogenicity and combined toxicity and 
carcinogenicity (OECD 2009a, b)

Mammary

US National Toxicology Program (NTP), FDA, 
EPA guidelines for 2-year cancer bioassay and 
risk assessments (EPA 2005; FDA 2007; NTP 
2011b)

Mammary

RONS No Fluorescent protein-based probes (Dickinson and 
Chang 2011; Griendling et al. 2016; Kalyanara-
man et al. 2012; Wang et al. 2013)

Any*

Boronate-based small molecule probes (Dickin-
son and Chang 2011; Griendling et al. 2016; 
Kalyanaraman et al. 2012; Wang et al. 2013)

Any*

EPA ToxCast assay for mitochondrial membrane 
potential and intracellular superoxide (DHE) 
(Giuliano et al. 2010)

Primary rat hepatocyte*

DNA damage Yes OECD DNA synthesis Test No. 486 for nucleo-
tide excision repair (OECD 1997b)

Mammalian liver cells—only informs primary 
damage to liver (EFSA Scientific Committee 
et al. 2017)

OECD Alkaline comet assay Test No. 489 for 
single- and double-strand breaks and nucleotide 
damage (OECD 2016f)

Any*,**

OECD Chromosomal damage and micronuclei 
Test No. 473, 475, 483, and 487 (OECD 2016a; 
OECD 2016b; OECD 2016d; OECD 2016e)

473, 487: Stable cell line, esp lymphocyte (no 
validated mammary)*

475: Mammalian bone marrow*,**
483: Rodent sperm cells*,**

No Electrophoretic methods for finding strand breaks 
or specific DNA lesions: high-throughput 
comet assay (Ge et al. 2014; Sykora et al. 
2018), pulsed field gel electrophoresis (PFGE) 
(Nikitaki et al. 2015; Sutherland et al. 2003)

Any*

Direct measurement of DNA lesions via HPLC–
MS/MS (Ravanat 2012)

Any**

Immunostaining using antibodies to label DNA 
damage repair proteins (H2AX, XRCC2, 
OGG1, etc.) coupled with microscopy or flow 
cytometry (Lobrich et al. 2005; Nikitaki et al. 
2015, 2016; Ojima et al. 2008; Rothkamm and 
Lobrich 2003). Can detect clustered lesions 
(Nikitaki et al. 2016)

Any*,**

EPA ToxCast anti-p53 assay (Giuliano et al. 
2010)

HEPG2 cells*
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Table 1   (continued)

Event Guideline test Methods Tissue

Mutation Yes OECD Ames Test No. 471 (OECD 1997a) Bacteria*

OECD Hprt or Xprt Test No. 476 (OECD 2016c) Selected lines, not mammary*

OECD Transgenic Rodent Somatic and Germ 
Cell Gene Mutation Assays Test No. 488 
(OECD 2013)

Any (performed in mammary gland (Jakubczak 
et al. 1996)**

OECD Thymidine kinase Test No. 490 (OECD 
2016g)

Lymphoma or lymphoblastoid cell lines*

No Transgenic rodent in vivo/in vitro: RaDR-GFP 
for errors in homologous recombination (sister 
chromatid exchange) (Sukup-Jackson et al. 
2014)

Any (performed in mammary gland (Sukup-
Jackson et al. 2014))**

Transgenic rodent in vitro: many tests, some 
metabolically characterized (White et al. 2019)

Any (some in mammary) (White et al. 2019)

Array CGH detects copy number variations in 
tumors or clonal cells (Bonnet et al. 2012; 
Gaudet et al. 2003)

Any*

Genomic Instability No Many of the above methods for detecting DNA 
and chromosomal damage and mutation are 
applied at a range of time points to detect GI 
(Datta et al. 2012b; Gaudet et al. 2003; Lee 
et al. 2015; Owens et al. 2012; Rugo et al. 
2011; Sishc et al. 2015; Snijders et al. 2012). 
Multiple time points should be used to find the 
rate of ongoing damage, and multiple methods 
used to capture the range of possible GI out-
comes (Limoli et al. 1997)

Any*,**

Proliferation, Hyperplasia No Change in cell numbers (DNA synthesis markers 
(in vivo or in vitro), impedance, time lapse 
imaging, colony formation assay (in vitro)) 
(Menyhart et al. 2016; Morgan et al. 2020)

Any*

Immunohistochemistry (Ki67 labeling) (Romar 
et al. 2016)

Any*,**

Histology (proliferation, hyperplasia) in in vivo 
toxicity studies such as 90-day subchronic, 
28 day, or 14-day can include longitudinal 
sectioning of male and female mammary 
glands and BrDU injection and staining to bet-
ter detect proliferation (Collins 2018; Makris 
2011; Rudel et al. 2011)

Any*,**

EPA ToxCast BRDU assay (Giuliano et al. 2010) HepG2 carcinoma line*
Inflammation No Detection of inflammatory proteins like IL6, 

TNF-α: ELISA (El-Saghire et al. 2013; Par-
tridge et al. 2010; Siva et al. 2014), Western 
Blot (Chai et al. 2013b; Ha et al. 2010), 
electrophoretic mobility shift assay (Haase 
et al. 2003), immunostaining (Chai et al. 
2013b; Wang et al. 2015), PCR based changes 
in expression of inflammation-related signals 
(Azimzadeh et al. 2011; Bouchet et al. 2013; 
Moravan et al. 2011; Snijders et al. 2012; Wang 
et al. 2014b)

Any (ideally both target tissue and leuko-
cytes)*,**

Histology (leukocyte infiltration) (Ebrahimian 
et al. 2018; Monceau et al. 2013; Moravan et al. 
2011)

Any*,**

EPA ToxCast BioMap assays (Houck et al. 2009) Various, not including mammary*
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treated with carcinogens or IR supports the growth of tumors 
from pre-malignant epithelial cells (although these may have 
pre-existing mutations) (Barcellos-Hoff and Ravani 2000; 
Maffini et al. 2004; Nguyen et al. 2011b). In these cases, 
the hormones or inflammation in the mammary gland may 
modify the stromal environment to increase the likelihood of 
cellular proliferation, which amplifies the existing mutated 
cells and generates new mutations.

Some evidence points to a protective effect of lower dose 
IR on chromosomal damage, mutation, and transformation 
in vitro (Azzam et al. 2016; Elmore et al. 2008; Ina et al. 
2005; Kakinuma et al. 2012; Sakai et al. 2006; Sasaki et al. 
2002; Shin et al. 2010; Wolff et al. 1988; Yamauchi et al. 
2008) and chromosomal damage, mutation and thymic lym-
phomas, and skin cancer in vivo (Ina et al. 2005; Kakinuma 
et al. 2012; Sakai et al. 2006; Shin et al. 2010; Yamauchi 
et al. 2008). However, the dose range at which protection 
is observed varies greatly between target tissue, animal 
models, and other experimental conditions, suggesting that 
the protection is not a fixed or immutable response (Tang 
and Loke 2015). Most animal studies (of chemical geno-
toxicants) are not sufficiently designed or powered to detect 
low-dose changes in dose–response and are insufficient to 
reject the linear no threshold model (Guerard et al. 2015), 
but a large IR animal cancer study and a systematic meta-
analysis of IR protection in animals found no convincing 
evidence of protection against carcinogenesis (Crump et al. 

2012; Tanaka et al. 2007). In people, a recent systematic 
review and meta-analysis of low-dose IR epidemiology 
concludes that the evidence does not support protection 
against total solid cancers (Shore et al. 2017), and although 
the dose–response for epidemiology of leukemia and lym-
phoma leave open the possibility of a protective response at 
low doses, a dose–response model without an inflection or 
protective effect of IR is recommended (Sasaki et al. 2014). 
No evidence suggests a protective effect of ionizing radiation 
on breast cancer, and dose–response relationships are further 
discussed in Sect. 13.2 below.

Proliferation and hyperplasia (KEs)

Evidence of proliferation and hyperplasia 
following IR

While higher doses of ionizing radiation cause cell death in 
the short term (especially of dividing cells), IR is associated 
with proliferation in vitro and in vivo. In vitro, IR promotes 
proliferation/expansion of p16-suppressed and immortal 
epithelial populations as well as in bystander CHO cells co-
cultured with IR-exposed cells (Han et al. 2010; Mukho-
padhyay et al. 2010; Tang et al. 2014). In vivo, IR increases 
compensatory proliferation in adult rats (Loree et al. 2006), 
and long-term expression of proliferation in adolescent but 

Table 1   (continued)

Event Guideline test Methods Tissue

Epigenetic changes No Global methylation: [3H]dCTP extension assay 
(Koturbash et al. 2016), HPLC for 5mdC 
(Wang et al. 2014a), quantitative immunoassay 
for 5-mc (Nzabarushimana et al. 2014)

Any*,**

Gene-specific methylation: MeDIP-on-chip (Hsu 
et al. 2015), methylation-sensitive/dependent 
restriction enzymes and qPCR (Nzabarushi-
mana et al. 2014; Oakes et al. 2006a), bisulfite 
sequencing (Wang et al. 2014a)

Any*,**

miRNA expression (Mestdagh et al. 2014): qRT-
PCR (Stankevicins et al. 2013; Szatmari et al. 
2017), hybridization (e.g., microarray, etc.) 
(Aypar et al. 2011; Jacob et al. 2013), sequenc-
ing (Mestdagh et al. 2014)

Any*,**

Histone methylation: ChIP (Prior et al. 2016) and 
immunohistochemistry (Kutanzi and Koval-
chuk 2013)

Any*,**

Gene expression: western blot (Wang et al. 
2014a), qRT-PCR (Prior et al. 2016), whole 
transcriptomics e.g. RNA microarray, RNA-seq 
(Hrdlickova et al. 2017; Manzoni et al. 2018)

Any*,**

*This test/measurement is not typically conducted in mammary tissue, so validation that results are generalizable is needed
**Verify that test substance reaches the mammary gland
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not adult mammary gland (Datta et al. 2012a; Snijders et al. 
2012; Suman et al. 2012), possibly via the expansion of a 
population of stem-like cells in vivo (Nguyen et al. 2011b; 
Tang et al. 2014). This proliferation appears to be associ-
ated with TGF-β/Notch activity (Tang et al. 2014) and nitric 
oxide (Han et al. 2010). Proliferative nodules and hyper-
plasia appear in mammary terminal-end bud, alveolae, and 
ducts of rats and mice after exposure to ionizing radiation 
(Ethier and Ullrich 1982; Faulkin et al. 1967; Imaoka et al. 
2006) as well as chemical carcinogens (Beuving et al. 1967a, 
1967b; Purnell 1980; Russo et al. 1977).

Essentiality of proliferation

Essentiality is high. Cellular proliferation is a key char-
acteristic of cancer cells (Hanahan and Weinberg 2011). 
Hyperplasia signals the presence of excess proliferation 
and represents an intermediate phase in the development of 
tumorigenesis. Hyperplasia is generally considered to be an 
adverse outcome in its own right.

Proliferation occurs following the release of inhibitory 
controls limiting entry into the cell cycle, and oncogenic 
mutations act via these same pathways to generate abnor-
mal proliferation (Hanahan and Weinberg 2011; Weber et al. 
2017), including in mammary gland (Francis et al. 2009, 
2011; Garbe et al. 2009; Gustin et al. 2009; Weber et al. 
2017). Inhibitory signals such as contact inhibition or TGF-β 
(Francis et al. 2009; Polyak et al. 1994) stabilize the mecha-
nisms limiting entry into the cell cycle. Proliferative signals 
such as those following progesterone or estrogen (Croce 
2008; Weber et al. 2017) or compensatory proliferation after 
apoptosis (Fogarty and Bergmann 2017) relieve inhibition 
and enable cells to enter the cell cycle. Mutations that inac-
tivate inhibitory signals (tumor suppressors) or activate pro-
liferative signals (oncogenes) promote proliferation outside 
of the normal biological context (Francis et al. 2011; Gustin 
et al. 2009; Hanahan and Weinberg 2011; Weber et al. 2017). 
Abnormal proliferation is typically met with apoptosis or 
senescence, so additional mutations or other mechanisms 
are required to escape these additional levels of control for 
proliferation to continue indefinitely (Fernald and Kurokawa 
2013; Garbe et al. 2009; Shay and Wright 2011).

Proliferation is required for DNA damage and replication 
errors to be integrated into the genome as mutations (Kiraly 
et al. 2015). Proliferation can also promote the expansion 
and clonal selection of existing cells with proliferative muta-
tions. Genomic mutations favoring further proliferation are 
positively selected from among the expanded cells, resulting 
in the accumulation of mutational errors and moving the 
organism further towards cancer. Different clonal popula-
tions can also collaborate to promote growth as observed in 
mammary gland (Franco et al. 2016; Marusyk et al. 2014).

Increasing proliferation leads to hyperplasia in mammary 
gland (Korkaya et al. 2009). During mammary tumorigen-
esis following IR in rodents, proliferating foci precede the 
development of tumors (Haslam and Bern 1977; Purnell 
1980) and form tumors more effectively than non-prolif-
erating tissue (Beuving 1968; Deome et al. 1959; Rivera 
et al. 1981). Adenocarcinomas in mammary gland appear 
to preferentially form from terminal-end bud hyperplasia 
(Haslam and Bern 1977; Purnell 1980; Russo et al. 1977) in 
rats, similar to the origin of many breast cancers for humans 
and for some mice after IR (Medina and Thompson 2000).

Supporting the essentiality of these proliferative pro-
cesses to tumorigenesis, ACI rats that exhibit no mammary 
proliferation or hyperplasia following IR are resistant to 
tumors following IR (Kutanzi et al. 2010). Interventions 
reducing proliferation in susceptible PyVT and BALB/c 
mice also reduce mammary tumors (Connelly et al. 2011; 
Luo et al. 2009; Tang et al. 2014).

Data gaps and uncertainties

Some studies report carcinogenesis in the absence of hyper-
plasia (Sinha and Dao 1974) and others do not find increased 
tumorigenesis from transplanted hyperplasia (Beuving et al. 
1967a; Haslam and Bern 1977; Sinha and Dao 1977).

Inflammation (KEs)

Evidence of activation by IR

Inflammatory pathways are commonly activated in mam-
mary gland (Barcellos-Hoff et al. 1994; Bouchard et al. 
2013; Datta et al. 2012a; Dickey et al. 2009; Snijders et al. 
2012; Wang et al. 2015) and in breast and mammary can-
cers following IR (Illa-Bochaca et al. 2014; Nguyen et al. 
2013, 2011b).

Essentiality of inflammation

Essentiality is moderate. While inflammation in response 
to tissue damage or infection is typically resolved without 
lasting effects, excess initial inflammation, chronic inflam-
mation, and anti-inflammatory signaling (via fibrosis) can 
contribute to chronic inflammatory diseases including can-
cer (Perez et al. 2014). Such dysregulation of inflammation 
may be related to continual competition of inflammatory and 
anti-inflammatory factors, which can lead to chronic wounds 
(Eming et al. 2014).

Tumors and tumor cells exhibit features of inflammation, 
and inflammation is generally understood to promote trans-
formation and tumor progression by supporting multiple 
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hallmarks of cancer including oxidative activity and DNA 
damage, survival and proliferation, angiogenesis, and inva-
sion and metastasis (Esquivel-Velazquez et al. 2015; Hana-
han and Weinberg 2011; Iliopoulos et al. 2009).

Many of these cancer promoting effects of inflamma-
tion can be seen following exposure to ionizing radiation 
(Bisht et al. 2003; Bouchard et al. 2013; Elahi et al. 2009; 
Illa-Bochaca et al. 2014; Nguyen et al. 2011b, 2013). Poly-
morphisms in inflammation genes are associated with breast 
cancer risk from IR in radiation technologists (Schonfeld 
et al. 2010) and with susceptibility to intestinal adenoma 
following IR in mice (Elahi et al. 2009). Cytokines TGF-β 
and IL6 transform primary human mammospheres and pre-
malignant mammary epithelial cell lines in vitro and make 
them tumorigenic in vivo (Iliopoulos et al. 2009; Nguyen 
et al. 2011b; Sansone et al. 2007), and inflammation-related 
factors COX2 and TGF-β are required for the full effect of 
IR on DNA damage and transformation in vitro and mam-
mary tumor growth and invasion in vivo (Bisht et al. 2003; 
Nguyen et al. 2011b). Further evidence for inflammation 
comes from tumors arising from mammary epithelial cells 
transplanted into IR-exposed cleared fat pads: inflammation-
related genes and pathways are upregulated or enriched in 
the gene expression patterns of these indirectly IR-induced 
tumors (Illa-Bochaca et  al. 2014; Nguyen et  al. 2013, 
2011b).

Activation of an inflammatory NF-kB/IL6/STAT3 sign-
aling pathway generates cancer stem cells in breast cancer 
cells in vitro (Iliopoulos et al. 2009, 2010, 2011) and is 
also implicated in colon and other cancers (Iliopoulos et al. 
2010). The inflammation-related transcription factor NF-kB 
also contributes to mammary tumorigenesis and metastasis 
in PyVt mice, in which mammary tumors are induced by 
expression of an MMTV-driven oncogene (Connelly et al. 
2011).

One mechanism of cancer promotion involves oxidative 
activity and DNA damage: inflammation in response to IR 
increases oxidative activity in a positive feedback loop lead-
ing to increased DNA lesions, GI, and mutations. Oxida-
tive activity mediates the increase in inflammatory (TNF-α 
and neutrophil) markers (Ozyurt et al. 2014), and oxida-
tive activity is increased by direct treatment with TNF-α 
or neutrophils (Jackson et al. 1989; Natarajan et al. 2007; 
Yan et al. 2006; Yang et al. 2007a) or after IR mediated 
by Il13, TNF-α, CCL2, COX2, and TLR9 (Ameziane-El-
Hassani et al. 2015; Jackson et al. 1989; Kostyuk et al. 2012; 
Redon et al. 2010; Stevens et al. 1992; Zhang et al. 2017). 
Cytokines IL13 and TNF-α, neutrophils, and COX2 damage 
DNA and increase mutations indirectly in IR cells (Ame-
ziane-El-Hassani et al. 2015; Bisht et al. 2003; Burr et al. 
2010; Hosseinimehr et al. 2015; Jackson et al. 1989; Ozyurt 
et al. 2014; Yan et al. 2006), and NO, TGF-β, NF-kβ, and 
COX2 increase DNA damage and mutations in bystander 

cells (Chai et al. 2013b; Dickey et al. 2009; Han et al. 2010; 
Redon et al. 2010; Shao et al. 2008; Zhou et al. 2005; Zhou 
et al. 2008). The DNA damage and mutations are reduced 
by blocking the inflammatory factors NF-kβ, COX2, TNF-α, 
TGF-β, or NO or with antioxidants (Burr et al. 2010; Han 
et al. 2010; Jackson et al. 1989; Rastogi et al. 2012; Zhang 
et al. 2017; Zhou et al. 2005, 2008). Inhibiting TNF-α or 
COX2 or using antioxidants also reduces GI after IR (Lori-
more et al. 2008, 2011; Moore et al. 2005; Mukherjee et al. 
2012; Natarajan et al. 2007).

Inflammatory pathways activated by IR promote tumor 
growth and metastasis. Exposure to IR or RONS sensitizes 
mammary epithelial cells to respond to TGF-β—which is 
widely activated by IR (Ehrhart et al. 1997). IR and TGF-β 
signaling leads to an epithelial-to-mesenchymal (EMT)-like 
transition, which disrupts the expression and distribution of 
cell adhesion molecules and multicellular organization and 
promotes invasion (Andarawewa et al. 2011, 2007; Iizuka 
et al. 2017; Park et al. 2003). This mechanism resembles 
wound healing (Koh and DiPietro 2011; Landen et al. 2016; 
Perez et al. 2014), but also resembles malignancy—invasive 
breast cancer cell lines overexpress TGF-β and respond to 
TGF-β with increased invasion (Gomes et al. 2012; Kim 
et al. 2004). The TGF-β-mediated response to IR likely 
involves an increase in senescence in fibroblasts (Liakou 
et al. 2016; Perrott et al. 2017; Sourisseau et al. 2011; Tsai 
et al. 2005).

IL6 is implicated in the carcinogenic response to IR. IL6 
is expressed in mouse mammary gland after IR (Bouchard 
et al. 2013) and is produced by IR-senescent fibroblasts, 
but may also be expressed by epithelial cells after IR, since 
primary human mammospheres and pre-malignant mam-
mary epithelial cell lines respond to IL6 with increased IL6 
expression (Iliopoulos et al. 2009; Sansone et al. 2007). IL6 
promotes the mobility and tumorigenesis of normal and 
breast cancer epithelial cells (Iliopoulos et al. 2009, 2010; 
Sansone et al. 2007; Sasser et al. 2007; Studebaker et al. 
2008) through a NOTCH dependent pathway. NOTCH sup-
ports the renewal of stem-like cell populations (Sansone 
et al. 2007) and is implicated in the proliferative response 
to IR in mammary epithelia (Marusyk et al. 2014; Nguyen 
et al. 2011b; Tang et al. 2014). Interestingly, IL6 is also 
required for the growth and tumor promoting effects of 
breast cancer fibroblasts and fibroblasts from common sites 
of breast cancer metastasis (bone, lung) on ER-positive 
cancer cells in vitro and in vivo. ER-negative breast epi-
thelial cells release autocrine IL6 and may, therefore, be 
less dependent on IL6 from fibroblasts, although IL6 also 
transforms these cells (Iliopoulos et al. 2009; Sasser et al. 
2007; Studebaker et al. 2008).
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Data gaps and uncertainties

The effects of inflammation can be both pro- and anti-tum-
origenic. For example, in addition to TGF-β’s role in EMT, 
in mammary epithelial cells TGF-β is essential to apoptosis 
of DNA damaged cells including IR-induced damage (Ewan 
et al. 2002), thus limiting GI (Maxwell et al. 2008). Inflam-
matory factors TNF-α and COX2 play a similar role in bone 
marrow of C57BL/6 mice (Lorimore et al. 2013). By elimi-
nating cells with severe DNA damage and curtailing GI, 
apoptosis (and therefore TGF-β or TNF-α) limits the appear-
ance of major (possibly carcinogenic) mutations following 
ionizing radiation. However, apoptosis (and thus TGF-β or 
TNF-α) can indirectly promote tumorigenesis through com-
pensatory proliferation (Fogarty and Bergmann 2017; Loree 
et al. 2006).

Genetic background also influences the interaction 
between inflammation and tumorigenesis. Polymorphisms 
in inflammatory genes influence susceptibility to intesti-
nal cancer following IR (Elahi et al. 2009). In the SPRET 
outbred mouse, higher baseline TGF-β during development 
decreases mammary tumor incidence following lower doses 
of IR (0.1 Gy), possibly by reducing ductal branching and 
susceptibility (Zhang et al. 2015). Conversely, the BALB/c 
mouse susceptible to mammary tumors after IR has a lower 
baseline TGF-β (and a polymorphism in a DNA damage 
repair-related gene). Early (4 h) after low dose (0.075 Gy), 
IR BALB/c mice have suppressed immune pathways and 
macrophage response but increased IL6, COX2, and TGF-β 
pathway activation in mammary gland compared to the 
tumor-resistant C57BL/6 mouse (Bouchard et  al. 2013; 
Snijders et al. 2012). By 1 week after IR, the BALB/c mice 
show TGF-β-dependent inflammation in the mammary 
gland, and by 1 month after IR, their mammary glands show 
proliferation (Nguyen et al. 2011a; Snijders et al. 2012), sug-
gesting that TGF-β is associated with inflammation, prolif-
eration, and mammary tumorigenesis in these mice. Consist-
ent with this pattern, BALB/c mice that are heterozygous for 
TGF-β are more resistant to mammary tumorigenesis follow-
ing IR (Nguyen et al. 2011b). However, the BALB/c mouse 
also has a polymorphism in a DNA repair gene associated 
with IR-induced GI (Yu et al. 2001), making it difficult to 
distinguish potentially overlapping mechanisms.

While inflammatory signals are associated with bystander 
effects including DNA damage, GI, and mutation, these 
effects vary between organs in vivo (Chai et al. 2013a, b), 
by genotype (Coates et al. 2008; Lorimore et al. 2008, 2011), 
and by cell type (Chai et al. 2013a). Further research will 
be required to identify all the underlying factors determin-
ing differences in bystander effects, but one variable is the 
appearance of a protective apoptotic response to cytokines 
under some conditions (Lorimore et al. 2011, 2013).

One major piece of conflicting evidence comes from a 
direct test of the essentiality of inflammation to IR-induced 
carcinogenesis. In a mouse model of lymphoma, a mutation 
preventing the PIDD/NEMO-dependent activation of NF-kB 
blocks the early IR-induced activation of NF-kB (4–24 h) 
and production of TNF-α (5–48 h) but not lymphoma, sug-
gesting that activation of these inflammatory factors is not 
essential in this time period (Bock et al. 2013). However, this 
study examined only day 1 post-IR time points for NF-kB 
activity, and did not block the production of IL6. Later acti-
vation of NF-kB or activation of other inflammation-related 
factors including IL6 and TGF-β could, therefore, have con-
tributed to lymphoma.

Epigenetic changes (KE)

Evidence of activation by IR

IR produces epigenetic effects including changes in global 
and gene-specific DNA methylation, histone modification, 
and expression of methylation-related proteins and miRNA 
(Cui et al. 2011; Nzabarushimana et al. 2014; Prior et al. 
2016; Raiche et al. 2004; Tawa et al. 1998) (see Supplemen-
tal Table 1 for more). Epigenetic effects appear in a variety 
of models within hours after IR and have also been detected 
days or weeks later (Chaudhry and Omaruddin 2012; Lima 
et al. 2014; Nzabarushimana et al. 2014; Pogribny et al. 
2005).

The mechanism by which IR alters epigenetics is not 
well established, but RONS are implicated (Bernal et al. 
2013; Galligan et al. 2014; Kloypan et al. 2015; Simone 
et al. 2009; Yang et al. 2014), and DNA damage is suggested 
(Koturbash et al. 2005, 2006b, 2008, 2016; Nishida et al. 
2013; Pogribny et al. 2004, 2005; Szatmari et al. 2017).

Epigenetic changes vary widely with tissue and cell 
type, target, time after exposure, and sex (Lima et al. 2014; 
Miousse et al. 2017, 2014; Prior et al. 2016; Raiche et al. 
2004), as well as between experiments (e.g., (Pogribny 
et al. 2004) vs (Raiche et al. 2004), (Miousse et al. 2014) 
vs (Miousse et al. 2017)), and do not necessarily correlate 
with expected changes in gene expression (Lima et al. 2014; 
Luzhna et al. 2015; Miousse et al. 2017, 2014).

Given the variation in epigenetic response in different tis-
sues and sexes, studies in tissue other than female breast and 
mammary gland may not be informative for this AOP. How-
ever, a few studies have examined IR in breast or mammary 
gland or cells. IR of mammary gland in vivo causes global 
hypomethylation in the first 4 days and 6 weeks after 3–5 Gy 
IR (Kutanzi and Kovalchuk 2013; Loree et al. 2006) and 
hypomethylation of LINE1 in the 4 days after 0.1–2.5 Gy IR 
(Luzhna et al. 2015). In vitro, IR dose-dependently increased 
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tumor suppressor miR-34a (only miR-34a, let-7a, let-21, and 
miR-21 were examined) in immortal MCF-10 cells but not 
MCF-7 cancer cells (Stankevicins et al. 2013). These studies 
suggest a possible epigenetic response to IR in breast and 
mammary gland, but the small number of studies and doses 
prevent drawing conclusions.

Essentiality of epigenetic changes

Essentiality is low. Epigenetic changes in mRNA or 
miRNA contribute to the short-term DNA-damaging effect 
of IR on bystander cells. miRNA-containing vesicles from 
IR-exposed animals promote new DNA damage in unex-
posed animals (Szatmari et al. 2017) and RNase blocks the 
short-term DNA-damaging effects of exosome contain-
ing media from IR-exposed cells (Al-Mayah et al. 2012, 
2015). MiRNA-21 is of particular interest: miRNA-21 in 
exosomes from exposed cells, miRNA-21 expressing cells, 
or bystander cells increases DNA damage in bystander cells, 
while miRNA-21 inhibitors reduce DNA damage from IR in 
bystander cells (Tian et al. 2015; Xu et al. 2015).

Several studies suggest that epigenetic changes also con-
tribute to GI after IR. In one experiment, DNMTs (which 
methylate DNA) appear to be essential to transmission of 
GI to bystander cells in vitro (Rugo et al. 2011). Global 
hypomethylation is correlated with chromosomal aberrations 
in nuclear workers (Lee et al. 2015) and global hypomethyla-
tion associated with decreased DNMTs precedes DSBs and 
chromosomal rearrangements in vivo (Gaudet et al. 2003; 
Koturbash et al. 2006a). In cell lines with and without GI 
following IR exposure, the unstable cells had significant 
changes in repeat element methylation and in mRNA and 
miRNA associated with instability and mitochondrial res-
piration (Baulch et al. 2014; Thomas et al. 2012).

Epigenetic mechanisms including miRNAs, DNA, and 
histone methylation and DNMT expression are also impli-
cated in tumorigenesis and invasion, with several studies in 
breast and mammary tissue. Invasive breast cancer tissue 
has more miRNA-21, and mammary adenocarcinomas from 
IR-exposed rats has enriched areas of both hyper and hypo-
methylation (Daino et al. 2018; Huang et al. 2009). Most of 
the genes that were differently methylated and expressed in 
exposed rats were related to developmental targets of PRC2, 
a histone methyltransferase (Daino et al. 2018). Mice under-
expressing DNMT1 have global hypomethylation preceding 
thymic tumors (Gaudet et al. 2003), and more malignant 
breast cancer cells have more extensive hypomethylation and 
more changes in DNMT and histone methylation (Tryndyak 
et al. 2006).

Data gaps and uncertainties

The evidence supporting a key role for epigenetic changes 
in breast cancer from IR is limited in three key areas. First, 
many studies have established that epigenetic effects vary 
greatly between organs, cell types, and sex (as well as with 
the other variables like time after exposure) (Lima et al. 
2014; Miousse et al. 2014, 2017; Prior et al. 2016; Raiche 
et al. 2004). However, only eight studies in breast or mam-
mary gland link IR with epigenetic changes or epigenetic 
changes with DNA damage or GI, and four of these use 
breast cancer cells. Given the variation between tissues, 
additional evidence in the breast or mammary gland is 
needed. Second, several studies report no link between epi-
genetic changes and changes in protein expression (Lima 
et al. 2014; Luzhna et al. 2015; Miousse et al. 2014, 2017), 
so this link needs to be verified or alternate mechanisms 
must be identified to assert a mechanistic effect. Finally, the 
large number of possible epigenetic changes, targets, and 
outcomes contributes to a general lack of understanding of 
the downstream effect of observed epigenetic changes.

Additional limitations and conflicting results also under-
mine confidence in the essentiality of this key event. Lim-
ited studies in vivo link epigenetic changes to DNA damage 
or GI. Furthermore, not all epigenetic changes necessarily 
increase DNA damage—instead, hypermethylation may 
protect against DNA damage. Cells exposed to repeated 
low (0.035 Gy) doses of IR show global hypermethylation 
but no increase in micronuclei, and blocking hypermeth-
ylation reduces the protective effect of low doses against 
DNA damage from higher (2 Gy) doses (Ye et al. 2013). 
Epigenetic changes including global methylation, repeat ele-
ments (including LINE1) and miRNA can also be seen in the 
absence of GI (Aypar et al. 2011; Miousse et al. 2014), and 
global methylation was not associated with GI in unstable 
cells after IR (Baulch et al. 2014).

Key event measurement

Measurement of these key events is critical both to vali-
date their roles in these and other AOPs, and to test agents 
for their ability to contribute to these key events, most of 
which are themselves adverse on the basis of their regula-
tory relevance. Available methods to measure these events 
are discussed below and summarized in Table 1. Standard-
ized OECD guideline assays measure several key events 
and adverse outcomes, and limitations to those are noted 
where applicable. We also describe non-guideline methods 
to measure key events. Standardization and adoption into 
OECD-accepted guideline methods would advance the use 
of these assays and integration into chemicals testing. Very 
few of the assays are conducted in breast tissue, so additional 
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validation is needed to ensure that results in other models 
can be generalized to breast.

There are several guideline assays for measuring breast 
cancer, DNA damage and mutation, and multiple non-guide-
line methods for measuring RONS, proliferation, inflamma-
tion, and epigenetic changes.

At least one method described for each key event has been 
applied in mammary glands or mammary cells. However, 
many of the assays specify a non-mammary tissue and even 
tissue-agnostic assays are not typically conducted in breast/
mammary tissue. For chemical testing work in vitro, it is a 
priority to develop culture models that reflect the behavior 
of normal tissue (as opposed to cancer cells), and to estab-
lish the relevance of chosen models to the outcome of inter-
est. For some key events, it may be important that models 
include multiple cell types (Morgan et al. 2020).

Non-guideline methods should be standardized for con-
sistency. In particular GI, proliferation, epigenetic changes, 
and chronic inflammation all have a strong temporal compo-
nent, and methods should be developed to measure these key 
events at multiple time points along with the other standard 
procedures to improve reproducibility.

Breast cancer

The 2-year rodent carcinogenicity bioassay is the primary 
assay for breast cancer (Rudel et al. 2007). The assay is 
included in the OECD Test No. 451 and 453 for carcino-
genicity and combined toxicity and carcinogenicity (OECD 
2009a, b), and is also used by the US National Toxicology 
Program (NTP) (Chhabra et al. 1990), and the FDA (2007), 
and referenced by the EPA (EPA 2005) in guidelines for 
risk assessments. Other assays from short term (2–4 weeks) 
and subchronic (90 day) to chronic (1 year) toxicity also 
call for the documentation of mammary tumors (FDA 2007; 
OECD 2018), so these assays could capture the early onset 
of tumors if the methods were sufficiently sensitive to detect 
small lesions (Makris 2011), and could be modified to report 
earlier key events like hyperplasia and inflammation. For 
example, evaluation of breast tissue for hyperplasia or pro-
liferative epithelial lesions could be done at several early 
time points and could trigger later evaluations. Doing these 
observations after BrdU injection and staining of tissue sec-
tions to evaluate proliferation could also increase sensitivity 
of the assay.

Several characteristics of classic cancer bioassays limit 
the sensitivity of these assays to mammary gland carcino-
gens. First, assays do not require prenatal or early post-natal 
exposures for carcinogenicity testing. The NTP often starts 
exposures at 5–6 weeks of age and OECD regulatory assay 
exposures suggest (but do not require) exposures begin-
ning after weaning and before 8 weeks of age. Since sen-
sitivity appears to peak around or before week 7 for these 

DNA-damaging agents (around puberty) (Imaoka et  al. 
2013), studies that start dosing later may have reduced sen-
sitivity. Also, assays that initiate exposure in mature ani-
mals have diminished sensitivity to hormonally active agents 
that act during development to alter breast development and 
increase future susceptibility to cancer, such as estrogenic 
hormones, DDT, and dioxins (EPA 2005; Rudel et al. 2011). 
Second, carcinogenicity assay guidelines do not require the 
best methods for detecting tumors in mammary gland: whole 
mount preparations of mammary gland coupled with longi-
tudinal sections (dorsoventral sections parallel to the body) 
of mammary gland for histology (Tucker et al. 2017). Palpa-
tion and transverse sections of mammary gland can easily 
miss tumors or lesions of interest. The NTP does specify 
these preferable methods for mammary gland analysis in 
reproductive toxicity guidelines (NTP 2011a) and an NTP 
workgroup recommends the early life and in utero dosing for 
cancer bioassays (Thayer and Foster 2007).

Two additional limitations may reduce the sensitivity of 
standard carcinogenicity assays. First, benign tumors are not 
always interpreted as an indicator of carcinogenicity, leading 
to a possible underestimation of risk. NTP and EPA guid-
ance suggest that benign tumors provide additional weight 
of evidence if malignant tumors are also present or if studies 
suggest benign tumors can progress to carcinogenicity. In a 
short-term study, proliferative epithelial lesions, hyperpla-
sia, or benign tumors may indicate a need for a longer term 
study. Benign mammary tumors (fibroadenomas) almost 
always coincide with carcinogenic tumors in mammary 
gland or other organs, and carcinomas sometimes grow from 
fibroadenomas (Rudel et al. 2007; Russo 2015), suggesting 
that benign tumors are an underutilized indicator of mam-
mary carcinogenicity.

Finally, the dose-selection guidance in carcinogenicity 
testing typically calls for a high dose that is sufficiently 
toxic to suppress body weight (OECD 2009a). However, 
body weight in rodent cancer bioassays is correlated with 
mammary tumors, and so, toxicity-induced weight loss at 
higher doses may result in fewer mammary tumors, and as a 
result, observed mammary tumors at the lower doses may be 
dismissed because of the apparent lack of a dose–response 
(Haseman et al. 1997; Rudel et al. 2007). This potential for 
suppression of mammary tumors by toxicity at high dose 
should be considered in weight of evidence determinations 
for carcinogenicity.

RONS

RONS is typically measured using fluorescent or other 
probes that react with RONS to change state, or by meas-
uring the redox state of proteins or DNA (Dickinson and 
Chang 2011; Griendling et al. 2016; Wang et al. 2013). 
Optimal methods for RONS detection have high sensitivity, 
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selectivity, and spatiotemporal resolution to distinguish tran-
sient and localized activity, but most methods lack one or 
more of these parameters.

Molecular probes that indicate the presence of RONS spe-
cies vary in specificity and kinetics (Dickinson and Chang 
2011; Griendling et al. 2016; Wang et al. 2013). Small mol-
ecule fluorescent probes can be applied to any tissue in vitro, 
but cannot be finely targeted to different cellular compart-
ments. The non-selective probe DCHF was widely used in 
the past, but can produce false-positive signals and may not 
be optimal (Griendling et al. 2016). EPR (electron paramag-
netic resonance spectroscopy) provides the most direct and 
specific detection of free radicals, but requires specialized 
equipment. Fluorescent protein-based probes can be geneti-
cally engineered, expressed in vivo, and targeted to cellular 
compartments and specific cells. However, these probes are 
very sensitive to pH in the physiological range and must be 
carefully controlled. Newer selective small molecule probes 
such as boronate-based molecules are being developed, 
but are not yet widely used. EPA’s ToxCast series of high-
throughput in vitro assays (Thomas et al. 2019) includes an 
assay that measures mitochondrial membrane potential in 
combination with dihydroethidium, a qualitative measure of 
superoxide formation (Giuliano et al. 2010; Kalyanaraman 
et al. 2012).

Alternative methods involve the detection of redox-
dependent changes to cellular constituents such as proteins, 
DNA, lipids, or glutathione (Dickinson and Chang 2011; 
Griendling et al. 2016; Wang et al. 2013). However, these 
methods cannot generally distinguish between the oxidative 
species behind the changes, and cannot provide good resolu-
tion for kinetics of oxidative activity.

These methods are readily applied to mammary cells. 
However, measurements in different cell types may vary 
based on differences in the expression of endogenous anti-
oxidants (Kannan et al. 2014). A standard comparison of 
response across cell types would be useful.

DNA damage, GI, and mutation

DNA damage can be studied in isolated DNA, fixed cells, 
or living cells. Types of damage that can be detected 
include single- and double-strand breaks, nucleotide dam-
age, complex damage, and chromosomal or telomere dam-
age. The OECD test guideline for DNA synthesis Test No. 
486 (OECD 1997b) detects nucleotide excision repair, so 
it will reflect the formation of bulky DNA adducts but not 
the majority of oxidative damage to nucleotides, which is 
typically repaired via the Base Excision Repair pathway. 
This test is not recommended by some agencies, because 
it is not generalizable beyond the liver (EFSA Scientific 
Committee et al. 2017). The OECD test guideline alkaline 
comet assay Test No. 489 (OECD 2016f) detects single- and 

double-strand breaks, including those arising from repair as 
well as some (alkali sensitive) nucleotide lesions including 
some lesions from oxidative damage. OECD tests for chro-
mosomal damage and micronuclei Test Nos. 473, 475, 483, 
and 487 measure longer term effects of DNA damage, but 
these tests require the damaged cell to subsequently undergo 
replication (OECD 2016a, b, d, e). They can, therefore, 
reflect a wider range of sources of DNA damage, including 
changes in mitosis. While the comet assay test 489 does 
not specify a target tissue, it is not typically performed in 
mammary cells (OECD 2016f) and the other guideline tests 
are never performed in mammary cells or tissues. Although 
Rube 2008 reports no difference in degree of DNA damage 
and repair kinetics in five tissues, expression of DNA repair 
proteins can vary between tissues (Gottlieb et al. 1997; Gur-
ley and Kemp 2007; Sun et al. 2019) which could lead to a 
difference in damage observed at various time points. For 
genotoxicity testing, variations in transport and metabolism 
can also lead to differences between mammary gland and 
other tissues (Ding et al. 2014). These tests should, there-
fore, be generally validated for or performed in mammary 
gland to address risk in this tissue.

Many other (non-test guideline) techniques have been 
used to examine specific forms of DNA damage. The 
comet chip facilitates high-throughput comet assays (Ge 
et al. 2014). Double-strand breaks are commonly measured 
microscopically using fluorescently labeled antibodies to 
H2AX or other labeled probes because of the significant 
risk attributed to breaks and the relative ease of detecting 
and quantifying them (Lorat et al. 2016; Nikitaki et al. 2016; 
Ojima et al. 2008; Rothkamm and Lobrich 2003). Measure-
ment of single-strand break repair is less common but pos-
sible by labeling single-strand break repair protein XRCC2 
(Lorat et al. 2016; Nikitaki et al. 2016). Base lesions can 
also be detected using labeled probes for base excision repair 
enzymes, or by chemical methods such as mass spectroscopy 
(Madugundu et al. 2014; Nikitaki et al. 2016; Ogawa et al. 
2003; Ravanat et al. 2014). Refinements on these methods 
characterize complex or clustered damage, in which various 
forms of damage occur in close proximity on a DNA mol-
ecule (Lorat et al. 2016; Nikitaki et al. 2016). Some DNA-
damaging agents act by directly binding to DNA to form 
adducts, the detection of which is indicative of the potential 
for mutation (Rundle 2006). EPA’s ToxCast uses a labeled 
antibody to p53 to indicate non-specific increases in DNA 
damage and stress (Giuliano et al. 2010). These methods 
can be or have been applied to mammary or breast cells (Al-
Mayah et al. 2012, 2015; Dutta et al. 2014; Haegele et al. 
1998; Hernandez et al. 2013; Jones et al. 2007; Kirshner 
et al. 2006; Redon et al. 2010; Snijders et al. 2012; Soler 
et al. 2009; Wang et al. 2015). Since results in other tissue 
may or may not be applicable to breast tissue, they should 
be performed in breast to best inform risk of breast cancer.
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Certain challenges are common to all methods of detect-
ing DNA damage. In the time required to initiate the detec-
tion method, some DNA may already be repaired, leading 
to undercounting of damage. On the other hand, apoptotic 
DSBs may be incorrectly included in a measurement of 
direct (non-apoptotic) induction of DSB damage unless con-
trolled. All methods have difficulty distinguishing individual 
components of clustered lesions, and microscopic methods 
may undercount disparate breaks that are processed together 
in repair centers (Barnard et al. 2013). Methods that use 
isolated DNA (gel electrophoresis and analytical chemistry) 
are vulnerable to artifacts and must ensure that the DNA 
sample is protected from oxidative damage during extraction 
(Barnard et al. 2013; Pernot et al. 2012; Ravanat et al. 2014).

Finally, tests for mutations reveal past DNA damage 
that result in a heritable change, including multiple guide-
line tests (OECD Ames Test No. 471 (OECD 1997a), Hprt 
or Xprt Test No. 476 (OECD 2016c), Transgenic Rodent 
Somatic and Germ Cell Gene Mutation Assays Test No. 
488 (OECD 2013; White et al. 2019), and Thymidine kinase 
Test No. 490 (OECD 2016g)) and other assays such as the 
RaDR-GFP transgenic mouse that detects mutational errors 
in homologous recombination (Kiraly et al. 2015; Sukup-
Jackson et al. 2014). One of the approved TG 488 transgenic 
mouse lines (Jakubczak et al. 1996) has been used to meas-
ure mutations in mammary gland in vivo, and the RaDR-
GFP mouse and several TG 488 approved lines have been 
used for primary or established mammary cell lines (Sukup-
Jackson et al. 2014; White et al. 2019). The other tests are 
limited to specific non-mammary tissues, and should be 
validated for relevance to mammary gland.

No validated protocols exist specifically to measure GI, 
but a wide range of the above methods are currently per-
formed at various times after exposure to verify ongoing 
damage or mutations, including in mammary gland or breast 
cells (Al-Mayah et al. 2012, 2015; Jakubczak et al. 1996; 
Maxwell et al. 2008; Ponnaiya et al. 1997a, b; Snijders et al. 
2012; Ullrich and Davis 1999; Yu et al. 2001). Since GI 
can be expressed in a variety of ways, a validated protocol 
should be developed that measures multiple outcomes and 
time points.

Proliferation and hyperplasia

Past cellular proliferation can be measured directly using 
labels that are incorporated into cells upon cell division 
(BRDU or cytoplasmic proliferation dyes) or indirectly 
by measuring a change in population size. Ongoing prolif-
eration can be quantified by labeling a protein associated 
with the cell cycle (e.g., Ki67). Methods have been recently 
reviewed (Menyhart et al. 2016; Romar et al. 2016) and his-
topathological assessments for mammary gland hyperplasia 

in in vivo guideline toxicity studies are reviewed in (Makris 
2011).

For in vitro assays, EPA’s ToxCast has a BRDU assay for 
proliferation in HepG2 (Giuliano et al. 2010) and an assay 
for estrogen-mediated proliferation in T47D breast cancer 
cells (Judson et al. 2015). Since many of the cells are pro-
liferating in the sub-confluent cell-culture system, it is not 
clear how sensitive the assay is to increased proliferation. 
A large body of work has demonstrated that cancerous and 
non-cancerous cells grow differently in 3D culture systems 
and that the differences are not apparent in 2D. Furthermore, 
the effects of chemical exposure on cell growth and develop-
ment may only be manifest in tissue that contains multiple 
cell types together. For example, mammary pre-adipocytes 
produce estradiol via aromatase and epithelial cells prolif-
erate in response (Morgan et al. 2020). Finally, while many 
toxicity testing models use cancer cell lines, non-cancerous 
cells may respond differently. Thus, there is considerable 
need for investment to strengthen in vitro models.

Hyperplasia is measured histologically based on 
increased cell numbers leading to increased layers of cells 
and tissue depth (Collins 2018). Several modifications to 
guideline in vivo toxicity studies would enhance the detec-
tion of hyperplasia and could also detect altered mammary 
development. These include adding time points and more 
detailed protocols for evaluating mammary tissue, assess-
ment in male as well as female mammary tissue, longitudinal 
rather than transverse sectioning, and BrDU injection and 
staining to better detect proliferation. These assessments 
could be added to 90-day, 28-day, and 14-day studies, and to 
studies with developmental exposure such as EPA’s pubertal 
and the OECD one-generation reproduction study (Makris 
2011; Rudel et al. 2011).

In mammary gland, Ki67 or histology is commonly 
used to characterize proliferation both in vivo and in vitro, 
and other methods can be easily applied as well. Given the 
potential variation in endogenous and context-dependent 
proliferation between mammary and other tissues, findings 
in non-mammary tissues should be either validated or meas-
ured directly in mammary tissues.

Inflammation

Inflammation is commonly measured using cytokine mRNA 
or extracellular concentrations of cytokines like IL-6, 
expression of proteins including COX2 or iNOS, activation 
of key inflammatory signaling molecules MAP kinases and 
transcription factors NF-kB, and AP1, as well as histological 
measures like leukocyte infiltration.

Typical assays to detect changes in protein concentra-
tion, phosphorylation, or localization include ELISA (El-
Saghire et al. 2013; Partridge et al. 2010; Siva et al. 2014), 
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Western Blot (Chai et al. 2013b; Ha et al. 2010), electro-
phoretic mobility shift assay or EMSA (Haase et al. 2003), 
or immunostaining (Chai et al. 2013b; Wang et al. 2015). 
Immunostaining can also detect infiltration of immune cells, 
a marker for inflammation (Ebrahimian et al. 2018; Monceau 
et al. 2013; Moravan et al. 2011). Changes in gene transcrip-
tion are detected using PCR (Azimzadeh et al. 2011; Bou-
chet et al. 2013; Moravan et al. 2011; Snijders et al. 2012; 
Wang et al. 2014b). Other methods include histopathologi-
cal examination of tissue for indicators of inflammation 
(Haddadi et al. 2017), or measurements of leukocyte adhe-
sion (Arenas et al. 2006; Rodel et al. 2008).

EPA’s ToxCast has a range of assays measuring inflam-
mation-related outcomes (Houck et al. 2009). All of these 
assays stimulate cells with inflammatory stimuli in addition 
to the test reagent, so it is possible (though not so reported) 
that these are more sensitive to reduction than induction of 
inflammatory pathways.

No specific test is recommended for chronic inflam-
mation. Like GI, the above assays may be applied at vari-
ous time points after exposure as an indicator of chronic 
response. We support the development of methods opti-
mized for chronic inflammation. These methods would 
likely require long-term or repeated exposures. Addition-
ally, since inflammation is a tissue response and not a cell 
response alone, such an assay would ideally capture tissue 
interactions.

The above methods are readily applied to mammary tis-
sue (Barcellos-Hoff et al. 1994; Bouchard et al. 2013; Datta 
et al. 2012a; Snijders et al. 2012; Wang et al. 2015). Since 
it is not well established how inflammatory responses in a 
different tissue might apply to mammary tissue, validation 
studies should be conducted to establish the tissue varia-
tion in assay responses to inflammatory stressors, or studies 
should be conducted in mammary gland.

Epigenetic changes

Epigenetic changes occur and are measured in several dif-
ferent ways. Shifts in global methylation are measured using 
the [3H]dCTP extension assay (Koturbash et  al. 2016), 
HPLC for 5mdC (Wang et al. 2014a), or quantitative immu-
noassay for 5-mc (Nzabarushimana et al. 2014). Gene-spe-
cific changes in methylation can be measured using MeDIP-
on-chip (Hsu et al. 2015), methylation-sensitive/dependent 
restriction enzymes and qPCR (Nzabarushimana et al. 2014; 
Oakes et al. 2006a) and bisulfite sequencing and PCR (Wang 
et al. 2014a). Changes in miRNA expression are measured 
using qRT-PCR (Stankevicins et al. 2013; Szatmari et al. 
2017), hybridization (e.g., microarray, etc.) (Aypar et al. 
2011; Jacob et al. 2013), and sequencing (Mestdagh et al. 
2014), while histone methylation is measured using ChIP 

(Prior et al. 2016) or immunohistochemistry (Kutanzi and 
Kovalchuk 2013).

The most consequential outcome of epigenetic changes 
is changes in gene expression, which can be measured using 
western blot (Wang et al. 2014a), qRT-PCR (Prior et al. 
2016), or whole transcriptomics, e.g., RNA microarray and 
RNA-seq (Hrdlickova et al. 2017; Manzoni et al. 2018).

These methods can be and have been applied to breast and 
mammary gland (Kutanzi and Kovalchuk 2013; Loree et al. 
2006; Luzhna et al. 2015; Stankevicins et al. 2013). Con-
sidering the tissue, sex, and temporal variability reported 
in epigenetic effects, experiments that differ in one of these 
contexts should not be extrapolated to mammary gland and 
instead the study should directly examine mammary tissue.

Weight of evidence for essentiality of key 
events

The evidence was evaluated for the essentiality of each 
key event to downstream events and to breast cancer and is 
summarized in Table 2. IR appears to be a “complete” car-
cinogen in the mammary gland in that it acts as an initiator 
through the formation of oxidative stress and pro-mutagenic 
DNA damage (the MIEs) and as a promoter through increas-
ing inflammation and proliferation, similar to many chemical 
carcinogens (Russo and Russo 1996). We have high con-
fidence in the evidence linking stressor (IR) with adverse 
outcome (breast cancer). The weight of evidence for breast 
carcinogenesis arising from RONS and DNA damage lead-
ing to GI, mutation, proliferation, and hyperplasia is high, 
while the weight of evidence for the second pathway from 
RONS and DNA damage to GI, inflammation, prolifera-
tion, hyperplasia, and breast cancer is moderate based on 
the moderate confidence in the inflammation key events. The 
weight of evidence for epigenetics in these pathways is low 
based on the current evidence.

Discussion

Context

DNA damage and mutation events correspond to the clas-
sical mechanism of carcinogens as mutagens first identified 
over 50 years ago, while the role of RONS and inflammation 
is in alignment with the tissue-oriented field theory which 
elevates the importance of tissue environment (Baker 2015). 
Modern conceptions for carcinogenesis marry these models 
and recognize that most carcinogens act on multiple bio-
logical targets. For example, IARC’s review of biological 
activity for known human carcinogens led to the listing of 
ten “characteristics of carcinogens” that include inducing 
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genotoxicity, GI, oxidative stress, and chronic inflamma-
tion, among others (Smith et al. 2016), and the 2012 IARC 
monograph on carcinogenicity of ionizing radiation reflects 
many of the same key events which we have highlighted here 
(IARC 2012). The interaction of key events in this AOP with 
hormonally driven development and proliferation contrib-
utes additional complexity for breast and other hormonally 
mediated cancers. Because a single agent often has more 
than one of these characteristics, and host susceptibility 
and co-exposures also influence these pathways, a simple 
linear AOP will not adequately represent the underlying 
processes. For example, experiments suggest that the likeli-
hood of mammary cancer after IR is lower when ovaries are 
removed and that both mutation and estrogen exposure (via 
effects on proliferation and other key events) contribute to 
breast carcinogenesis allowing for additive or synergistic 
effects (Broerse et al. 1987; Clifton et al. 1985; Cronkite 
et al. 1960).

Dose–response and low‑dose epidemiology 
and animal studies

Although this paper describes a qualitative AOP, an overview 
of dose–response observations from low-dose studies provides 
useful context.

Comprehensive and authoritative reviews of ionizing 
radiation consistently conclude that the linear no threshold 
dose–response (sometimes with slope adjustments for low 
dose or low-dose rate) is the most appropriate and protective 
model for cancers following exposure to IR (Ruhm et al. 2016; 
Shore et al. 2018). Low power limits precise estimations of the 
dose–response in people exposed to low doses (below approxi-
mately 0.1 Gy) of mixed or low LET IR like the atomic bomb 
or medical radiation (Grant et al. 2017; Ozasa et al. 2012; 
Ruhm et al. 2016; Shore et al. 2018; Suzuki and Yamashita 
2012), but solid cancer dose–response in the atomic bomb Life 
Span Study (LSS) cohort is not significantly different from 
linear (Furukawa et al. 2016; Grant et al. 2017; Preston et al. 
2007). Multiple epidemiological studies of specific cancer 
sites and total solid cancer following in utero and childhood 
exposure and in atomic bomb, nuclear worker, and population 
studies also support significant effects at low doses (Cohen 

Table 2   Weight of evidence for essentiality of key events to the breast cancer pathway

Key events Essentiality

Increase in reactive oxygen and nitrogen 
species (RONS)

Essentiality is high. A large number of studies using antioxidants or other interventions to reduce 
RONS show a reduction in DNA damage, GI, mutations, and inflammation. Additional sup-
port comes from experiments increasing external oxidants like H2O2, which show that RONS 
are independently capable of causing DNA damage, mutations inflammation, and epigenetic 
changes. Uncertainties arise from the smaller effects of RONS on DNA damage compared with 
ionizing radiation. Mammary gland relevance is less certain due to the relatively few experi-
ments in breast tissue

Increase in DNA damage, GI, and mutation Essentiality is high. The increase in DNA damage and GI precedes mutations, proliferation, and 
tumorigenesis, while antioxidants that reduce DNA damage and GI also reduce mutations and 
chromosomal damage. Knock-out and knock-in experiments show that mutations in certain 
key genes increase tumorigenesis. However, an ongoing debate fueled by transplant studies 
that show the importance of tissue environment for tumorigenesis questions the necessity of 
mutations as the singular driver of tumorigenesis, since mutation also follows the other tumor-
promoting events like inflammation and proliferation

Increase in Proliferation and Hyperplasia Essentiality is high. Evidence comes from transplant experiments showing that non-proliferating 
tissue is less tumorigenic than proliferating lesions, and from interventions that reduce both 
proliferation and tumors. Further evidence comes from animals that are resistant to both mam-
mary gland proliferation and tumors from ionizing radiation. Uncertainty arises from conflicting 
evidence on the tumorigenicity of hyperplasia, and the absence of hyperplasia observed before 
some tumors

Increase in inflammation Essentiality is moderate. Evidence comes from using genetic modifications, antibodies, and anti-
oxidants to reduce inflammatory and anti-inflammatory factors. These interventions reduce DNA 
damage, mutations, and mechanisms contributing to tumorigenesis and invasion. Uncertainty 
arises from conflicting effects in different genetic backgrounds and in different organs, and the 
pro-apoptotic effect of TGF-β

Epigenetic changes Essentiality is low. The strongest evidence shows that blocking miRNAs and DNMTs reduces 
bystander DNA damage and GI. The remainder of the evidence correlates epigenetic changes 
with downstream effects. Uncertainty arises from the tissue dependence of epigenetic effects 
combined with the low number of studies in mammary gland, and from the discontinuity 
between epigenetic changes and changes in gene and protein expression
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et al. 2018; Little et al. 2014; Mathews et al. 2013; Meulepas 
et al. 2019; Pearce et al. 2012; Preston et al. 2007; Ruhm et al. 
2016; Shore et al. 2017), although a metanalysis of these stud-
ies reports that IR does pose a greater cancer risk per unit dose 
at high-dose rates than at low-dose rates (less than 0.0001 Gy/
minute) (Shore et al. 2017).

Although total solid cancers have a linear dose–response, 
dose–response shape differs by tumor site and sex (Grant 
et al. 2017; Ozasa et al. 2012; Shore et al. 2018; Suzuki and 
Yamashita 2012). In males, total tumors and some specific 
tumor sites have upwardly curving dose–responses with shal-
lower dose–response at low vs high doses, while total tumors 
in females and sex-specific tumors (combined across sexes) 
have linear dose–responses (Grant et al. 2017; Sasaki et al. 
2014). Studies in animals support overall linearity and show 
variation in dose–response between affected tissues (Little 
2018; Tran and Little 2017).

Available data suggest that breast cancer dose–response is 
linear. A pooled analysis of eight breast cancer cohorts found 
no evidence to contradict linear dose–response for breast 
cancer, although they did find lower excess risk for low-dose 
rates (Preston et al. 2002). Cancer data from women exposed 
as infants (mean dose 0.186 Gy) show a linear increased 
risk of breast cancer (Eidemuller et al. 2015). More recent 
examinations of LSS data using updated dose estimates sup-
port this conclusion, finding no significant non-linearity of 
breast cancer over the whole or 0–2 Gy dose range (Preston 
et al. 2007), but the most recent dose and incident LSS data 
have not yet been reported for breast cancer.

Like breast cancer in people, the dose–response for 
mammary gland tumors in rodents is linear (Gragtmans 
et al. 1984; Imaoka et al. 2013), but has not been widely 
investigated in the low-dose range (< 0.1 Gy). One low-dose 
experiment reporting mammary tumors did not find a sig-
nificant change (increase or decrease) in mammary tumors 
at chronic low doses, all of which were below 0.021 Gy/day 
(Tanaka et al. 2007). Although each group contained 500 
animals, this study was performed in B6C3F1 mice which 
do not carry the mouse mammary tumor virus and are not 
otherwise particularly susceptible to mammary tumors, so 
the power to detect changes may still have been insufficient 
(Bennett and Davis 2002).

Animal and in vitro studies suggest that high LET radia-
tion (alpha particles from cosmic radiation and radioactive 
decay of isotopes such as plutonium from nuclear materials 
or radon gas) has a linear or even supralinear dose–response 
at low doses (Azzam et al. 2016; Little 2018; Tran and Lit-
tle 2017).

Generalizability to other agents

Breast carcinogenesis from IR and other DNA-damaging 
agents has more similarities than differences (Imaoka et al. 

2009). Both IR and other DNA-damaging agents form ade-
nocarcinomas in rodents with similar pathology and gene 
expression, although IR also creates a much larger fraction of 
fibroadenomas than the other DNA-damaging agents (Ima-
oka et al. 2009). Carcinogenicity for IR and chemical mam-
mary carcinogens NMU and DMBA varies consistently with 
age and exposure to ovarian hormones (Imaoka et al. 2009; 
Medina 2007; Russo 2015). Breast carcinogenesis from IR 
and chemical carcinogens depends strongly on developmen-
tal or ongoing exposure to ovarian hormones (Nandi et al. 
1995; Russo 2015), and estrogen status of IR and chemical 
carcinogen-induced tumors increases with ovarian hormone 
exposure in rats (Imaoka et al. 2009; Nandi et al. 1995). 
The mammary gland is especially susceptible to both IR and 
mammary carcinogens DMBA and NMU around puberty. 
This is presumably because puberty is when undifferentiated 
cells are present in large numbers and poised to undergo 
subsequent proliferative expansion, although additional fac-
tors including metabolism and expression of DNA damage 
repair genes contribute to variations in the age of maximal 
susceptibility between agents (Imaoka et al. 2009, 2013, 
2011; Medina 2007). IR has an additive effect in combina-
tion with NMU (Imaoka et al. 2014), consistent with general 
accepted risk assessment assumptions of additivity in car-
cinogenesis (National Research Council 2009). Some dif-
ferences between mammary carcinogens appear around the 
protective role of breast maturation: pregnancy appears to 
be more protective in rats exposed to chemical carcinogens 
than in rats exposed to IR (Imaoka et al. 2009).

The role of DNA damage, mutation, and proliferation out-
lined in this AOP would presumably apply to other DNA-
damaging agents, while the role of RONS and inflammation 
is more likely to vary between DNA-damaging and other 
agents based on their ability to induce these key events. 
DNA-damaging agents differ in the degree, type, and repa-
rability of the DNA damage which they cause. Mammary 
carcinogens NMU, DMBA, PhIP, and urethane mostly cause 
adducts with single-nucleotide substitutions (Committee to 
Assess Health Risks from Exposure to Low Levels of Ion-
izing Radiation 2006; Imaoka et al. 2009; Nik-Zainal et al. 
2015; Sherborne et al. 2015; Westcott et al. 2014). Like 
ionizing radiation, mammary carcinogen PhIP can cause 
amplifications and NMU can cause GI (Goepfert et al. 2007; 
Imaoka et al. 2009). While IR also induces adducts, it char-
acteristically generates complex damage and double-strand 
breaks leading to deletions and inversions as well as amplifi-
cation and GI (Behjati et al. 2016; Datta et al. 2012b; Mavra-
gani et al. 2017; Mukherjee et al. 2012; Pazhanisamy et al. 
2011; Snijders et al. 2012; Yang et al. 2015). The prevalence 
of complex damage and double-strand breaks is likely due 
to the density of damage delivered by ionizing radiation, 
but is also attributable to oxidative activity, since IR cre-
ates an oxidative state and H2O2 and other oxidizing agents 
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can also cause complex damage, double-strand breaks and 
mutations (Cadet et al. 2017; Seager et al. 2012; Sharma 
et al. 2016). Radiomimetic compounds (used in chemother-
apy) also cause double-strand breaks and simple complex 
damage. Agents like bleomycin cause double-strand breaks 
through oxidized lesions (Regulus et al. 2007), while agents 
like etoposide and cisplatin cause double-strand breaks by 
interfering with DNA replication forks (Kawashima et al. 
2017).

Proliferation and inflammation are also implicated in 
chemical carcinogenicity. The aforementioned pubertal 
susceptibility to carcinogen exposure implies an important 
role for proliferation, as does the fact that tumorigenesis 
following NMU depends on proliferation during treatment 
(Medina 2007). Like IR, NMU and DMBA promote hyper-
plasia in terminal-end buds and ducts and ductal carcinoma 
in situ leading to carcinogenesis (Goepfert et al. 2007; Ima-
oka et al. 2009; Medina 2007; Russo 2015). In terms of 
inflammation, like IR, some chemical carcinogens increase 
inflammatory reactions in mammary stroma and also show 
a tumor-promoting effect of exposed stroma (Barcellos-Hoff 
and Ravani 2000; Maffini et al. 2004; Nguyen et al. 2011b; 
Russo and Russo 1996) and although bleomycin has not 
been characterized for its effects on mammary stroma or 
mammary carcinogenesis, it causes lung fibrosis (an inflam-
matory reaction) so consistently that it is used as a research 
model for that endpoint (Moeller et al. 2008).

Other key events

This review does not address a large number of biological 
processes that would be expected to interact with the key 
events described here. For example, changes in the tissue 
microenvironment such as increased breast density are asso-
ciated with increased risk of cancer. Multiple changes occur 
in the tissue microenvironment following IR and inflamma-
tion that may increase density, but insufficient data are avail-
able to characterize these changes as a separate key event 
after IR. Subsequent experiments should examine the time 
course, dose-dependence, and essentiality of changes to the 
breast microenvironment including breast density after IR 
and consider whether these factors should be considered a 
separate key event. Other important biological effects of 
IR that would be expected to interact with this pathway 
include immune surveillance which may change with the 
inflammatory environment after IR (Barcellos-Hoff 2013; 
Lumniczky and Safrany 2015; Schreiber et al. 2011); IR 
effect on survival/apoptosis and interactions of apoptosis 
with inflammation, mutation, compensatory proliferation, 
and selection process; changes to DNA repair or the many 
possible influences on those events. The interaction of these 
key events with hormonally driven development and prolif-
eration represent a critical aspect of breast carcinogenesis 

with significant implications for sensitivity of experimental 
models as well as dose–response.

Data gaps

Guideline tests are not established for important cancer-
related endpoints such as RONS, GI, proliferation, hyper-
plasia, and inflammation. In addition, assessment of mam-
mary gland effects in guideline studies is limited, and so, 
important changes can be missed (Makris 2011; Rudel et al. 
2011). Adopting standardized methods for these key events 
and ensuring that the methods are either applied in mam-
mary gland or that results in different tissues are relevant 
to mammary gland would better capture the potential of a 
chemical to act as a breast carcinogen. Improved assays are 
needed to measure genomic instability and chronic inflam-
mation, as well as the interaction with hormonally driven 
development and proliferation.

An important gap relates to knowledge of the interactions 
between the key events in this AOP and hormonally driven 
development and proliferation in the breast, and this gap is a 
particular barrier to developing a quantitative AOP. Because 
stressors often activate multiple parts of this pathway, we 
caution against generalizing the dose–response across differ-
ent stressors. We expect a different dose–response relation-
ship depending on if a stressor only increases one part of the 
pathway (such as increasing mutations) or affects multiple 
parts (such as RONS, mutation and proliferation). In addi-
tion, individuals live in a complex mixture of environmental 
and genetic influences, some of which act on one or more 
events in the same carcinogenesis pathway to increase the 
overall risk of breast cancer. As a result, dose–response rela-
tionships for a particular stressor will also vary depending 
on host susceptibilities and co-exposures.

Evidence suggests that breast cancer increases linearly 
with dose even at lower doses, and that breast cancer inci-
dence is elevated at doses relevant to diagnostic radiation 
(0.001 to 0.1 Gy), but greater power is needed to determine 
the precise shape of the breast cancer dose–response at 
these doses. DNA damage appears to increase linearly even 
at low doses, but even for this well-studied key event, there 
are insufficient studies with multiple low doses and suffi-
cient power to enable the estimate of the lower end of the 
dose–response relationship in mammary gland. For other 
key events, a few studies inform the dose–response in any 
tissue. For example, although many studies support the link 
between IR, RONS, and DNA damage, a few RONS stud-
ies use mammary tissue, multiple doses, doses below 1 Gy, 
or explicitly measure RNS presenting an addressable data 
gap. Given these uncertainties, a better characterization of 
the low-dose end of the dose–response for the key events 
would give a more complete picture of the relative contri-
bution of these different events and pathways to the breast 
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cancer outcome across a range of doses. If more evidence is 
needed, it would be helpful to measure the dose–response 
of DNA damage and other key events in breast tissue using 
the highest possible power in this lower dose range and test 
multiple doses.

Conclusions

This paper extends the characteristics of mammary car-
cinogens beyond DNA damage, highlighting the important 
role in breast cancer of agents that increase RONS, GI, cell 
proliferation, and inflammation. The interaction of these 
key events with hormonally driven development and prolif-
eration represent a critical aspect of breast carcinogenesis. 
The AOPs which we have described for ionizing radiation 
leading to breast cancer are consistent with recent enumera-
tion of characteristics of many known human carcinogens 
by IARC and other scientists (IARC 2012; Smith et al. 
2016). Standardized assays are needed to measure RONS, 
GI, proliferation, and chronic inflammation, and breast can-
cer-related effects may be missed unless mammary gland 
is more consistently included in testing and assays in other 
tissues are evaluated to see if they can be generalized to 
breast. Adopting standardized methods for these key events 
would better capture the potential of a chemical to act as a 
breast carcinogen.
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