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Quantitative proteomics by mass spectrometry is widely
used in biomarker research and basic biology research
for investigation of phenotype level cellular events. De-
spite the wide application, the methodology for statistical
analysis of differentially expressed proteins has not been
unified. Various methods such as t test, linear model and
mixed effect models are used to define changes in pro-
teomics experiments. However, none of these methods
consider the specific structure of MS-data. Choices be-
tween methods, often originally developed for other types
of data, are based on compromises between features
such as statistical power, general applicability and user
friendliness. Furthermore, whether to include proteins
identified with one peptide in statistical analysis of differ-
ential protein expression varies between studies. Here we
present DEqMS, a robust statistical method developed
specifically for differential protein expression analysis in
mass spectrometry data. In all data sets investigated
there is a clear dependence of variance on the number of
PSMs or peptides used for protein quantification. DEqMS
takes this feature into account when assessing differen-
tial protein expression. This allows for a more accurate
data-dependent estimation of protein variance and inclu-
sion of single peptide identifications without increasing
false discoveries. The method was tested in several data
sets including E. coli proteome spike-in data, using both
label-free and TMT-labeled quantification. Compared with
previous statistical methods used in quantitative pro-
teomics, DEQMS showed consistently better accuracy in
detecting altered protein levels compared with other sta-
tistical methods in both label-free and labeled quantitative
proteomics data. DEqMS is available as an R package in
Bioconductor. Molecular & Cellular Proteomics 19:
1047-1057, 2020. DOI: 10.1074/mcp.TIR119.001646.

Mass spectrometry (MS)-based proteomics is widely used
for identification and quantification of proteins from complex

Lukas M. Orret**, Yan Zhou Trani, Georgios Mermelekast,
Simon Andersq], and Janne Lehti6g||

biological samples (1). In a typical proteomics experiment,
proteins are digested into peptides using a proteolytic en-
zyme, commonly trypsin, prior to MS-analysis. Peptides are
usually fragmented multiple times, thus generating multiple
peptide spectrum matches (PSMs)! for the same peptide
sequence. Peptide identification and quantification is subse-
quently performed in data analysis workflows using either
label-free or labeled approaches. Both quantitative ap-
proaches rely on a hierarchical data structure: PSMs are
nested into peptides which are then nested into proteins.
Protein level quantification is subsequently generated through
summarizing peptide or PSM level information.

In previous quantitative proteomics analysis, Student t
test, ANOVA (2), Limma (3) and linear mixed models (2,
4-6), have been used to detect differentially expressed
proteins (DEPs). In addition, other methods have been de-
veloped specifically for quantitative proteomics as exempli-
fied by empirical Bayesian random censoring threshold
model (EBRC) (7) and reproducibility-optimized test statistic
(ROTS) (8). EBRC, developed for label-free MS-data, ap-
plies a random censoring threshold to achieve more accu-
rate protein abundance estimates in the presence of miss-
ing values. ROTS is a modified form of t-statistics with a
bootstrapping procedure to maximize the reproducibility of
top ranked DEPs. In a previous analysis, ROTS was shown
to outperform many statistical methods including Limma, t
test, SAM and mixed models (9).

Limma, originally developed to analyze RNA microarray
data, performs “moderated” ANOVA, i.e. it uses an empiri-
cal-Bayes approach to shrink gene-wise sample variance
toward a common estimate based on all experimental data
(3). In an evaluation performed by Kammers et al., Limma
detected more truly differentially expressed proteins com-
pared with t test at the same false discovery rate (FDR) (10).
Further, in a comparison between generalized linear model
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(GLM), mixed effects models and Limma in a tandem mass
tag (TMT) 10-plex labeled proteomics data set, mixed ef-
fects models showed better specificity when combined with
median sweeping normalization compared with the other
two methods, whereas Limma had better statistical results
independent of normalization methods (11).

However, there are problems in current methods. For pro-
teins identified with a single PSM/peptide, the estimation of
parameters in mixed effect models is less accurate, and in
addition, it requires users to understand the correct random
effects and to use appropriate statistical tests (11). In Kam-
mers et al.’s study, proteins quantified with a single peptide
were excluded from the Limma analysis (10), and D’Angelo et
al. showed that omitting proteins quantified by a single pep-
tide reduced false discovery findings (11). In a typical shotgun
proteomics experiment, 10-20% of proteins are identified
with only one peptide or PSM. Most of these are low abundant
proteins that are potentially central in regulation of biological
processes or contribute as biomarker candidates and are
therefore important to keep in the analysis. Further, t test,
ANOVA and Limma do not consider the difference in quanti-
tative variation for proteins identified by different numbers of
peptides/PSMs. It has previously been shown by us and others
that the accuracy of protein abundance estimates varies by the
number of peptides quantified (12—14). In microarray and RNA-
seq data analysis, probe intensity and read counts are used to
estimate the mean-variance relationship instead of using a com-
mon prior variance for all genes, resulting in improved perform-
ance over Limma (15, 16). Inspired by this approach, we have
developed DEgMS (Differential Expression analysis of quantita-
tive Mass Spectrometry data), to get a more accurate data-de-
pendent estimation of protein variance based on the number of
peptides or PSMs used for quantification.

MATERIALS AND METHODS
Experimental Design and Statistical Rationale

DEgMS is a statistical method for identification of differen-
tially expressed proteins in MS-data, that takes into acount
the dependence of variance on the number of PSMs or pep-
tides used for protein quantification. The data sets used to
evaluate the method and the statistics behind the method is
presented in detail below.

Data Set D1 - A431 Cells Treated with EGFR Inhibitor Gefitinib

Search results of this data set was downloaded from Pro-
teomeXchange with identifier PXD006291 (17). PSM raw inten-
sity table (combining all four IPG strips in the experiment) filtered

" The abbreviations used are: PSM, peptide spectrum matches;
DEP, differentially expressed proteins; EBRC, empirical Bayesian ran-
dom censoring threshold model; ROTS, reproducibility-optimized test
statistic; TMT, tandem mass tag; DEgMS, Differential Expression
analysis of quantitative Mass Spectrometry; HiRIEF, High Resolution
Isoelectric Focusing; vsn, variance stabilization normalization.

at 1% PSM and protein level FDR (gene symbol centric search;
1,263,974 PSMs; 203,640 unique peptides; 10,166 genes), was
used to calculate protein relative abundance by median sweep-
ing method (18). First, raw intensity values are log2 transformed.
Second, for each PSM, the median of log2 intensity is sub-
tracted to get relative log2 ratio. Third, for each protein, its
relative log2 ratio is calculated as the median of log2 ratio of all
PSMs belonging to this protein. At last, the medians of protein
log2 ratios in different samples are subtracted to get equal
protein level in all samples, with the assumption that the treat-
ment does not impact the total amount of proteins in different
conditions. The generated protein table with log2 ratios without
missing values (10,124 proteins) was used for t test, Limma, and
DEgMS analysis. Biological triplicates of untreated and gefitinib
treated (24 h) cells were used in the analysis for differential
protein expression.

Data Set D2 - E. coli Spike-in Label-free Data Set—Search results
of this data (50,016 unique peptides; 6566 proteins) were downloaded
from the ProteomeXchange repository (PXD000279) (19). E. coli pro-
teome was prepared into two conditions with 1:3 ratio (10 ng versus
30 ng) in triplicates and added into equal amount of human proteome
background (50 ug Hela cells protein extract), see detailed sample
preparation in (19). LFQ intensities in “proteinGroups.txt” table, for
proteins with quant values in at least two samples per condition (5022
proteins), were log2 transformed and used as input matrix for all
methods. To evaluate intensity-based Bayesian approach, trend =
TRUE option was enabled in eBayes function provided in Limma. For
variance stabilization normalization analysis, original protein LFQ in-
tensity values were normalized by justvsn function in R package vsn
before using Limma. ROC analysis was restricted to proteins unique
to E. coli or human, with higher ratios in samples spiked-in with the
higher amount of E. coli proteins.

Data Set D3 - E. coli Spike-in TMT Data Set

Sample Preparation—One MCF-7 and one E. coli K-12 cell pellet
were lysed and sonicated in a buffer containing 4% SDS, 25 mm
HEPES pH 7.6 and 1 mm DTT. Total protein amount was estimated
(DC protein assay, Bio-Rad, Hercules, California). Samples with
different spiked in amounts of E. coli protein extract (3 replicates
with 7.5 ug, 4 with 15 pg and 3 with 45 ug) in MCF-7 background
(70 ng of protein extract) were prepared. Protein digestion (LysC
and trypsin, sequencing grade modified, Thermo Scientific, Wal-
tham, Massachusetts) was performed using a modified SP3-proto-
col (20). In brief, each sample was reduced with 1 mm DTT and
alkylated with 40 mm Chloroacetamide. Sera-Mag SP3 bead mix (20
wnl) was transferred into the protein sample together with 100%
Acetonitrile to a final concentration of 70%. The mix was incubated
under rotation at room temperature for 18 min. The mix was placed
on the magnetic rack and the supernatant was discarded, followed
by two washes with 70% ethanol and one with 100% acetonitrile.
The beads-protein mixture was reconstituted in 100 ul LysC buffer
(0.5 m Urea, 50 mm HEPES pH: 7.6 and 1:50 enzyme (LysC) to
protein ratio) and incubated O/N. Finally, trypsin was added in 1:50
enzyme to protein ratio in 100 ul 50 mm HEPES pH 7.6 and
incubated O/N. The peptides were eluted from the mixture after
placing the mixture on a magnetic rack, followed by peptide con-
centration measurement (Bio-Rad DC Assay). Before labeling, sam-
ples were pH adjusted using TEAB pH 8.5 (50 mwm final concentra-
tion). Thirty-five micrograms of each sample were labeled with an
isobaric TMT-tag (Thermo Scientific). Labeling efficiency was de-
termined by LC-MS/MS before pooling of samples. Sample
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clean-up was performed by solid phase extraction (SPE strata-X-C,
Phenomenex, Torrance, California). Purified samples were dried in
a SpeedVac.

High Resolution Isoelectric Focusing (HiRIEF)— After pooling and
sample clean-up by solid phase extraction (SPE strata-X-C, Phe-
nomenex), the sample pool were subjected to peptide IEF-IPG (iso-
electric focusing by immobilized pH gradient) in pl range 3-10 (350
Q). Freeze dried peptide samples were dissolved in 250 ul rehydra-
tion solution containing 8 M urea and 1% IPG pharmalyte pH 3-10 and
allowed to adsorb to the 24 cm linear gradient IPG strip by swelling
overnight. Peptides were focused on the IPG strip as described in
(21). After focusing, the peptides were passively eluted into 72 con-
tiguous fractions with MilliQ water using an in-house constructed IPG
extractor robotics (GE Healthcare Bio- Sciences AB, Uppsala, Swe-
den, prototype instrument) into a 96-well plate (V-bottom, Corning,
Hickory, North Carolina product #3894), which were then dried in a
SpeedVac. The resulting fractions were freeze dried and kept at
—20 °C.

LC-MS/MS Analysis—Online LC-MS was performed using a hybrid
Q-Exactive - HF mass spectrometer (Thermo Scientific). For each
LC-MS/MS run, the auto sampler (Dionex UltiMate™ 3000 RSLCnano
System, Thermo Scientific) dispensed 20 ul of solvent A to the well in
the 96 V plate, mixed, and proceeded to inject 10 ul.

FTMS master scans with 70,000 resolution (and mass range 300—
1700 m/z) were followed by data-dependent MS/MS (35,000 resolu-
tion) on the top 5 ions using higher energy collision dissociation (HCD)
at 30-40% normalized collision energy. Precursors were isolated
with a 2 m/z window. Automatic gain control (AGC) targets were 1e6
for MS1 and 1e5 for MS2. Maximum injection times were 100 ms for
MS1 and 150-200 ms for MS2. The entire duty cycle lasted ~2.5 s.
Dynamic exclusion was used with 60 s duration. Precursors with
unassigned charge state or charge state 1 were excluded. An underfill
ratio of 1% was used.

Spectra data was converted to mzML files using ProteoWizard
release: 3.0.10827 (2017-5-11) and searched with MS-GF+
(2016.10.26) (22) and Percolator (23). Precursor mass tolerance used
was 10 ppm, fragment mass tolerance 0.11 Da, fixed modifications
were TMT-10plex on lysines and peptide N termini, and carbamidom-
ethylation on cysteine residues, oxidation on methionine was used as
a variable modification. The protein database used for search was
Uniprot (2018_04) human protein databases with E. coli protein da-
tabase concatenated (78807 protein sequences) allowing for one
tryptic miss-cleavage. PSMs and proteins were filtered at 1% FDR
resulting in 308,001 PSMs; 122,235 unique peptides and 11,216
proteins.

The PSM table was aggregated into protein log2 ratio by median
sweeping method described in the section of Data Set D1. The
protein matrix of log2 ratios for proteins with no missing quant values
(11,188 proteins) was used as input for subsequent t test, ROTS,
Limma and DEgQMS analysis. For Limma (vsn) method, PSM raw
intensity table was first treated by variance stabilization normalization
and then aggregated into protein ratio matrix. The statistical analysis
was focused on the comparison between the 3 replicates with 7.5 ug
and the 4 replicates with 15 ug of spiked in E. coli protein extract (the
group with 45 ug spike-in had substantial global impact on protein
ratios after normalization). The mass spectrometry proteomics data
for data set D3 have been deposited to the ProteomeXchange Con-
sortium via the JPOST partner repository with the data set identifier
PXD013277.

Data Set D4 - U1810 Cells Treated by microRNA Mimics—Quan-
titative proteomics data of lung cancer cell line U1810 treated with
miRNA mimics as previously described (24). Search results of the
associated data (gene symbol centric search; PSMs and proteins
filtered at 1% FDR; 369,273 PSMs; 107,509 unique peptides; 8,677

proteins) was downloaded from ProteomeXchange with identifier
PXD004163. Same as data set D1, median sweeping method was
used to summarize PSM level intensities to protein log2 ratio. The
data was filtered to remove proteins with missing quant values
(resulting in 8625 proteins), and analysis was performed using
biological triplicates of miR-372 mimics and control siRNA treated
cells.

Data Set D5 - Breast Cancer Cell Line Data Set—Quantitative
proteomics data in triplicates of breast cancer cell lines (SKBR3,
MCF7labA, MCF7labB, LCC2, HCC70, HCC1954, HCC1937,
HCC1569, HCC1187, BT549, T47D, MDAMB157, CAL51,
SUM149PT, HCC1143, BT20, HCC38, HCC1419) were generated
and searched as for data set D3, except that MS data was searched
gene centric and matched to human Ensembl version 75 (104,763
protein entries). A pool of all samples was used in one TMT tag as
linker (denominator) between TMT sets. Labeling scheme can be
found together with raw and search result data with identifier
PXD013276. The intensity of internal reference (TMT tag 131) was
used as denominator to calculate peptide ratios, the median of pep-
tide ratios was taken as protein ratios. Protein ratios were then log2
transformed before DEqMS analysis. PSMs and proteins were filtered
at 1% PSMs and protein level FDR resulting in 3,403,191 PSMs;
265,957 unique peptides and 11,408 proteins. Only proteins quanti-
fied in all TMT experiments were included in the analysis (9222
proteins). The minimum number of quantified PSMs across multiple
TMT sets was used in DEgMS. The mass spectrometry proteomics
data for data set D5 have been deposited to the ProteomeXchange
Consortium via the JPOST partner repository with the data set iden-
tifier PXD013276.

Data Set D6 - Clinical Proteomics Human Brain—Search results of
this data was downloaded from ProteomeXchange with identifier
PXD006122 associated with a previous study (25). The mean intensity
of two internal references (TMT tag 126 and 131) was used as de-
nominator to calculate peptide ratios, the median of peptide ratios
was taken as protein ratios. Protein ratios were then log2 trans-
formed. PSMs and proteins were filtered at 1% PSMs and protein
level FDR. The minimum number of quantified PSMs across multiple
TMT sets was used in DEgQMS. The cohort included samples from 8
Parkinson’s disease dementia patients, 7 dementia with Lewy bodies
patients, 9 patients with Alzheimer’s disease and 8 elderly non-
neurological controls.

Data set D7 - Phospho Proteomics— Search results of HelLa cells
untreated (four biological replicates), treated with pervanadate or
arrested in mitosis (three biological replicates each) were downloaded
from ProteomeXchange with identifier PXD005410 (26). Same as data
set D1, median sweeping method was used to summarize PSM level
intensities to peptide log2 ratio. PSMs and peptides were filtered at
1% PSMs and peptide level FDR. The number of quantified PSMs per
phosphorylated peptides was used in DEQMS.

The R scripts used to perform the analyses are provided as an
R.markdown file (supplemental Data S1).

Statistical Methods—Log?2 value of the relative intensity of protein
i in sample j is denoted as ;.

The way to calculate y; for isobaric labeled and label-free data are
described in the method section of data set D1 and data set D2.

In the following, we illustrate statistics calculations for the compar-
ison of two groups for simplicity

Student t Test—Ordinary t-Statistics Is Calculated as

Vo~V
5t , 2 )
ny N,

ny, N, is the number of replicates in group 1 and group 2
S1, S, is standard deviation in group 1 and 2
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G1, G2 are the two groups
Ys1, Yao are the mean of two groups

ERVAY
v Dy = Vo) 2

n—1

ANOVA F-test—

F:nw(yim_%z"‘znz(yiez_?f ®

Sp

(ny = DSt + (n, — 1)s3

s2= 4

ny+n,—2

o N

Y denotes the overall mean of the data

sg is pooled variance, which is a weighted within-group variance
estimated using all samples in all groups.

Limma (Moderated t-Statistics)—

Yor — Yeo
= G1 G2 (5)

1 1
Sp[moderated] a + f772

S o) 1S POSterior variance, a weighted average of pooled variance
and prior variance. s> is calculated as fit$post.var using eBayes()

plmoderated]

function from Limma package.

2 2
) dpSp + doSy

S e ®)
p[moderated] dp + do

s? is pooled variance, sj is prior variance

d, is the prior degrees of freedom, d, is the degree of freedom of
the experiment

DEQMS Algorithm (spectraCounteBayes) Explained Compared with
Limma(trend = T)—We want to emphasize here that DEqMS is de-
veloped on top of Limma. A core part of limma is its calculation of a
so-called empirical-Bayesian prior variance, which describes one’s
prior expectation of the variance for a gene from the variance ob-
served for all the other genes. By default, limma estimates a fixed
prior distribution for all genes, but it has been shown by Sartor et al.
(16) that it is advantageous to let the priors mean depend on further
covariates, specifically on the genes’ expression strength (averaged
over all samples), if the variance seems to depend on it. Sartor et al.
provided an R function, called “intensity-based moderated t-statistic”
(IBMT), which could be used within an analysis with the limma pack-
age to modify limma’s workflow and include such an intensity-de-
pendent prior variance. A similar functionality, dubbed “limma-trend”
was later added natively to limma by the limma package’s authors
(15).

In proteomics, a major determinant of quantification accuracy per
sample, and therefore also of effective within-group variance, is the
number of PSMs or peptides detected for a protein. We therefore
modified the IBMT function of Sartor et al. (16) by changing the regres-
sion covariate from intensity to PSM or peptide count. In our DEQMS
package, this modified IBMT function is called “spectraCounteBayes.”
For TMT or iTRAQ labeled data, the number of PSMs is used to estimate
prior variance as the quantification is done at MS2 level. For label-free
data, the protein abundances are summarized from peptides and there-
fore the number of peptides per protein is used to estimate prior
variance. The remainder of the package provides wrapper functions to
conveniently tie in this function with the necessary calls to limma’s
functions.

For the reader’s convenience, we provide in the following the
mathematical details of the aprpoach. To this end, we follow closely
the original exposition as given by Smyth (3), reproducing that publ-

ication’s equations. We then show (in Equation (13)) the local (“loess”)
regression on PSM count, which parallels the corresponding formula
by Sartor et al. (16).

Definition of variables

logVAR: log transformed sample variance

dp: prior degree of freedom

sg: prior variance

dy: degree of freedom of the experiment

logVAR is distributed as the sum of a constant and Fisher’s Z
distribution with the expected mean and variance calculated as:

E(logVAR) = log s§ + y(d,/2) — llf(%) + log(dy/dj) 7)

var(logVAR) = {/'(dy/2) + ¢/'(dy/2) (8)

y and ¢ are the digamma and trigamma functions
Define g, as the non-constant part of formula (7) for each gene after
s5 solved.

ey = logVAR — (d,/2) + log(dy/2) 9)
The expected mean of g,

E(e,) = log s§ — ¢(dy/2) + log(dy/ 2) (10)

Based on this, s2 can be calculated as

Sg — eE(eg)Jrnb(do/Z)flog(do/Z)

(11

Substituting E(e,) with the predicted e,, which is calculated as

pred(e,) = fitted(IogVAR) — i(d,/2) + log(d,/2) 12)

In DEgMS, x in equation 13 is defined as the log2 value of protein
peptide or PSM count—

fitted(logVAR) = loess(logVAR ~ x)$fitted (13)

Based on formula (8), d, can be estimated by solving

d, 1
W (5) = Dle, — pred(e;) F — v/(dy/2) (14)
Y'(y) = x,x > 0 can be solved by deriving a Newton iteration of
guaranteed and rapid convergence. Initial value of d; is set to 0.1, by
iterating do;, = i/10. Convergence is reached when the value diff
stops decreasing. d, = k/10 when diff reaches its smallest value at
k-th iteration.

diff = mean[e, — pred(e,)l* — ' (dy/2) — /' (%) (15)

In Limma (trend = T), x In Equation 13 Is Defined As the log2 Value
of Protein Intensity—In analysis of proteomics data, the difference
between Limma (trend = T) and DEgMS is what value logVAR is fitted
against in formula (13).

Estimation of hyperparameters s3 and d, in DEqQMS and Limma-
(trend = T) follows the same procedure as detailed above.

Multiple Testing Correction—All p values were corrected using
Benjamini-Hochberg method (27) in DEgMS.

RESULTS

Dependence of Protein Variance On the Number of Quan-
tified PSMs or Peptides—To demonstrate the dependence of
variance on the number of quantified PSMs we used an
in-depth proteomics data set (TMT 10-plex labeled) of A431
cells sampled at different time points after treatment with the
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A Standard deviation in EGFR-TKI experiment B Estimation of variance in EGFR-TKI experiment (D1)

(TMT-labelled, dataset D1)
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Fic. 1. Association between protein variance and the number of PSMs per protein used for quantification in MS proteomics data. A,
Boxplot showing the standard deviation of protein ratios within sample groups for proteins quantified with 1-20 PSMs in data set D1. B,
Dependence of variance on the number of PSMs for all quantified proteins in data set D1. Gray and red curves indicate prior variance estimated
by Limma and DEgMS respectively. Scatter points represent the pooled variance for individual proteins. PSM: peptide spectrum matches, (In):

natural logarithm.

EGFR inhibitor gefitinib (17) (data set D1). As shown in Fig. 1A,
for proteins quantified with 1-20 PSMs, the standard devia-
tion (s) gradually decreases as the number of PSMs used for
quantification increases. Similar dependence of variance (s?)
on the number of quantified peptides or PSMs per protein is
evident in other examples of label-free and labeled MS-data
(supplemental Fig. S1A-S1C). Using a common prior variance
on this data, Limma underestimates the variance for proteins
quantified with few PSMs, and overestimates variance for
proteins quantified with many PSMs (Fig. 1B). Therefore, the
false positive rate for proteins quantified with few PSMs and
the false negative rate for proteins quantified with many PSMs
may increase. To reduce the false positive rate, proteins with
a low number of PSMs/peptides are commonly removed from
the analysis as discussed above. To salvage these proteins,
and to correct the bias in the prior variance estimate, DEqQMS
estimates prior variances of proteins based on the number of
quantified PSMs using non-parametric local regression (28) as
shown in Fig. 1B. After performing the modified prior variance
estimation, DEQMS uses Limma to perform the subsequent
analysis steps, i.e. the moderated ANOVA calculation. With
DEgMS, all proteins can be included in the statistical analysis
with the number of PSMs/peptides used for quantification
taken into account.

Subsequently, we investigated the impact on p values using
DEgMS for DEP analysis between gefitinib treated cells and
untreated controls (triplicates in both conditions), showing
that lower p values were produced by DEQMS compared with
Limma and t test (supplemental Fig. S2). In order to test if the
increased sensitivity of DEQMS is accompanied with an in-
creased false positive rate, we generated a simulated pro-
teomics data set comprising nine samples and 6000 proteins
(supplemental Fig. S3A). For each gene and each sample in
the simulated data set, the log2 ratio was randomly sampled

from a normal distribution. To keep the dependence of vari-
ance on PSM count like that observed in a real data set, the
simulated data was generated separately for 6000 genes di-
vided into 30 groups, quantified by 1-30 PSMs respectively.
The number of genes in each group matches to that in a real
data set (D4). The variance for genes in each group was
determined by the fitted regression curve from the real data
set D4 and the mean for all genes is centered at 0. The
variance distribution of the simulation data mimics that of a
real data set (supplemental Fig. S3B). Based on the simulated
data we performed null comparisons by permutation of sam-
ples into two groups of three samples each, resulting in 84
possible comparisons without repetition. Importantly, this
analysis showed that the false positive rate in DEQMS is
slightly lower than that seen in Limma, whereas t test produce
fewer false positives as expected, which is also evident form
the p value distribution of the different methods (supplemental
Fig. S3C and S3D).

Benchmarking of DEqQMS in Label-free and Labeled
Spike-in Data Sets—To systematically benchmark our
method, we used two spike-in data sets (data set D2 and D3)
for evaluation of the performance of DEQMS compared with
Limma, t test, EBRC and ROTS. In addition, variance stabili-
zation normalization (Limma(vsn)) (29) and intensity-based
moderated t test (Limma(trend = T)) (16) were also included in
the comparison as previous studies have shown that variance
is dependent on peptide intensity (29).

In the label-free data set (D2), either 10 or 30 ug of E. coli
protein extract was spiked into human protein extracts (50 ug)
in triplicates (19). In the TMT 10plex-labeled data set (D3,
supplemental Table S1), either 7.5 (3 replicates), 15 ug (4
replicates) or 45 ug (3 replicates) of E. coli peptides was
spiked into 70 ug of human peptides. The analysis below is
performed comparing samples spiked in with 7.5 ug and 15
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Fic. 2. Performance of DEqMS in spike-in MS proteomics data. A, ROC curves for different methods used to analyze label-free (left) and
TMT-labeled (right) E. coli spike-in data. Absolute value of t-statistics reported by different methods was used to compute area under curve.
Indicated in the parentheses for each method is the partial area under curve (pAUC, in the range specificity>95%) expressed as a percentage
relative to the maximum value in the specified range. Limma(vsn) shows the result of applying Limma on intensities normalized by variance
stabilization method. B, True positive and false positive (adjusted p value<0.01) findings in label-free (left) and TMT-labeled (right) spike-in data
using different analysis methods. Limma (trend = T) was not evaluated for TMT data because all other methods use protein log ratio matrix
as input, and Limma (trend = T) requires estimation of protein intensity from PSM intensity, which is not a common practice to analyze TMT
data. Associated data and results are available in supplemental Tables S1-S3.

ng of E. coli proteins. In the label-free and labeled experi-
ments, 6566 (1902 E. coli, 4664 human) and 11,188 (2474
E. coli, 8764 human) proteins were identified and quantified,
respectively. To evaluate the performance of different meth-
ods, receiver operating characteristic (ROC) curve analysis
was used (Fig. 2A). Comparing partial area under curve
(PAUC, 95% specificity), DEQMS performs better or at least as
well as all other methods tested. Next, we applied a 1% FDR
cutoff to investigate the number of significant genes reported
by the different methods. In the label-free spike-in data set,
EBRC failed to generate any significant findings after multiple
testing correction despite having competitive result in the
ROC analysis. Filtered by adjusted p value <0.01, DEgMS
reported in total 1237 true differentially expressed E. coli pro-
teins, and 11 falsely detected human proteins (Fig. 2B, sup-
plemental Table S2). The second best method was Limma-
(trend = T), reporting 1230 true positives and 13 false
positives. In comparison, variance stabilization normalization
(vsn) did not improve the result. Although generating the same
pAUC value, ROTS missed more true positives than DEqMS.
t test detected the lowest number of true positives, which is
not unexpected because of its low statistical power. In the

TMT labeled data, median sweeping normalization, which
showed better accuracy over quantitle normalization in a pre-
vious study’”, was used to summarize the PSM intensity table
to protein log2 ratio table. In our analysis, median sweeping
normalization performed better when compared with variance
stabilization normalization in Limma(vsn) (Fig. 2B, supplemen-
tal Table S3). Considering both the total number of significant
findings and the percentage of false positives for each
method, DEQMS performs better or as well as all other meth-
ods tested in both the label-free and the labeled data sets
(Fig. 2B).

Application of DEQMS in Real World MS Proteomics Data—
The two spike-in data sets (D2 and D3) represent simplified
versions of normal quantitative proteomics data sets because
all DEPs have equal, and quite large fold changes (2-fold or
3-fold in the tested labeled and label-free data set respec-
tively), whereas there is no biological variation between rep-
licate samples. To challenge the best performing methods
further, we therefore applied them on a previously published
data set where the impact of three different microRNA mimics
on U1810 cells was investigated using quantitative proteom-
ics and TMT 10-plex labeling (24). This data set (D4) is rep-
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Residual sum of squares (RSS) analysis for DEQMS and Limma
in Breast Cancer Cell line dataset (D5)
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Fic. 4. Comparison of different PSM count metrics for data sets based on more than one TMT-experiment. For data sets based on
more than one TMT-experiment, proteins are usually quantified with a different number of PSMs in different TMT experiments. In DEqMS these
numbers has to be unified to a single PSM count metric for each protein. The plots show the residual sum of squares (RSS) analysis for different
PSMcount metrics. Shown in the figure are RSS plots for breast cancer cell line data set (D5) for DEgMS using minimum, median, maximum,

mean and sum PSMcount and for Limma.

resentative of an in-depth quantitative proteomics analysis
with 8625 proteins (PSM and protein FDR<1%) quantified
(see supplemental Fig. 4A for distribution of number of PSMs/
protein). Here we focus on the comparison between cells
treated with control siRNA and cells treated with miR-372
mimics, both present as ftriplicates in the proteomics data.
The effects of microRNAs on protein levels are often relatively
small, and the low number of expected direct targets of each
microRNA makes it challenging to find biologically relevant
significant hits. To evaluate the output of the DEP analysis,
corresponding mRNA level analysis by RNA-Seq as well as
microRNA target prediction algorithms were used as support
for direct microRNA targets as previously described (24).
Comparing miR-372 mimic treated cells and controls, t test
identified a single significant DEP after correction for multiple
testing (1% FDR), whereas 21 DEPs were identified using
ROTS. DEgMS and Limma generated 201 and 120 DEPs
respectively, with 109 DEPs in common (Fig. 3A, supplemen-
tal Fig. 4B). Importantly, both the 92 DEPs exclusively identi-
fied by DEgMS and the 109 DEPs identified by both methods
were enriched in proteins where the corresponding mRNAs
were downregulated and supported as direct miR-372 targets
by prediction algorithms compared with the background (all
proteins quantified in the experiment). In contrast, this was
not true for the 11 proteins exclusively identified by Limma
(Fig. 3A). To explain the improved performance of DEqQMS
over Limma, we plotted the residual sum of squares and the
posterior variance of the two methods. This analysis shows
that the error of the estimated protein variance in Limma is
dependent on the number of PSMs used for quantification

(Fig. 3B), whereas DEgMS was able to correct this bias (Fig.
3C). Consequently, this leads to differences between meth-
ods in posterior variance, where DEQMS eliminates false sig-
nificant proteins quantified by one or two PSMs because of
stochastic extreme low variance (Fig. 3D, 3E). In addition,
DEgMS rescues many proteins quantified by multiple PSMs
that were missed by Limma because of overestimated vari-
ance (supplemental Fig. S4C).

Using DEQMS in Data Sets with Multiple TMT Experi-
ments—To investigate the performance of DEqMS in a larger
data set based on multiple TMT experiments, we used a data
set where 18 different breast cancer cell lines were analyzed
in triplicates (D5, supplemental Table S4). In total six TMT-
10plex experiments were performed to analyze the 54 sam-
ples as detailed in Materials and Methods. Importantly, repli-
cate samples from each cell line were placed in three different
TMT experiments to avoid confounding biological effects with
batch effects. As more than one TMT-experiment was per-
formed we first investigated what PSM metric to use for each
protein when performing the DEQMS analysis; minimum,
mean, median, sum or maximum number of PSMs/protein for
quantificaiton across TMT-experiments. In all cases, the vari-
ance showed a dependence on the number of PSMs (supple-
mental Fig. S5). To identify the metric generating the best fit
for prior variance we calculated the residual sum of squares
(RSS) as a measure of the deviation between the predicted
and the actual variance. This analysis showed that the best fit
(smallest RSS) was produced when the minimum number of
PSMs across experiments was used (Fig. 4). This result indi-
cates that it is important to consider the weakest TMT-exper-
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Fic. 5. Application DEgMS in a data set based on multiple TMT-experiments. A, Distribution of p values (not adjusted) from statistical
analysis using different methods for comparing breast cancer cell lines MCF7 and T47D. Indicated in parenthesis for each method are the
number of DEPs identified with p value<0.01 after correcting for multiple testing by Benjamini-Hochberg method. B, Output from in total 153
different comparisons between breast cancer cell lines in data set D5. Left figure indicate for each comparison the method that identified the
highest number of DEPs. Right figure indicate for each comparison the method that identified the highest proportion of DEPs with low (1-2)

number of PSMs used for quantification.

iment for each protein, i.e. the one relying on the lowest
number of PSMs, when performing DEQMS analysis in data
sets consisting of multiple TMT experiments. As a compari-
son, RSS for Limma was also plotted, clearly indicating the
bias in the estimated prior variance (Fig. 4).

For comparisons between methods, we used a common
matrix design (with all 18 cell lines as one factor) when using
DEgMS, Limma and ANOVA. As an example of the output of
the analysis, comparing two of the luminal breast cancer cell
lines (MCF7 and T47D) resulted in a large number of signifi-
cant DEPs for DEQMS (5825) as well as Limma (5811, Fig. 5A).
In this setting, ANOVA also generated a similar number of
significant DEPs (5799), whereas t test generated much fewer
significant DEPs (2747). Overall, the differences in the total
number of DEPs identified were small between DEgQMS,
Limma and ANOVA. This is not a surprise because in larger
MS-data sets with more samples (i.e. replicates and/or sam-
ple groups), the influence of the estimated prior variance on
the posterior variance becomes smaller (see formula (6) in
Materials and Methods) and the degree of variance shrinkage
in Limma and DEgQMS is decreased. Importantly, all these
methods calculate pooled variances for each protein using all

samples in all sample groups, whereas t test use only the
samples in the two groups compared. Therefore, the statisti-
cal power is inferior in t test compared with the other meth-
ods, which is clearly indicated by the p values generated by
the different methods (Fig. 5A, supplemental Fig. 6).

We then summarized the number of significant DEPs be-
tween all 18 cell lines and among them how many were
quantified with 1-2 PSMs. DEqQMS identified the highest num-
ber of DEPs in 82 of 153 comparisons, and Limma identified
the highest number in 67 comparisons (Fig. 5B and supple-
mental Table S5). The major difference between the two
methods was that Limma detected a higher proportion of
DEPs quantified by 1-2 PSMs than DEQMS in all comparisons
but one (Fig. 5B). Such consistent results emphasize the fact
that DEQMS is a more stringent method when testing the
significance of differential expression for proteins quantified
by 1-2 PSMs.

DEqMS Application in Clinical Proteomics and PTM Analy-
sis—In cell line studies as described above, the sample vari-
ance is relatively low compared with that in clinical samples.
In order to demonstrate that the dependence of variance on
the number of PSMs holds true also for clinical samples, we

Fig. 3. Application of DEqQMS in real world MS proteomics data. a. Overlap of significant findings in the analysis of miR-372 mimic treated
U1810 cells using different methods. Indicated in the figure is the number of significantly regulated proteins (DEPs) as identified by DEQMS only,
Limma only, by both methods or by ROTS. Also indicated in piecharts for different sets of DEPs is the support of the corresponding mRNAs
as miRNA targets. Support (yellow) indicates proportion of proteins where the corresponding mRNA was downregulated as evaluated by
RNA-seq analysis, as well as predicted as being miR-372 targets by microRNA target prediction algorithms. For comparison, the overall
background support in the entire data set is also shown. B-E, Comparison of variance estimate between Limma and DEqMS showing residual
sum of squares (RSS) analysis of the prior variance estimate (B, C) and the relation between posterior variance and PSM count (D, E). The red
circles in (D) indicate the 11 significant genes uniquely found by Limma, whereas these were rejected in DEQMS after adjusting the variance
based on the number of quantified PSMs.

Molecular & Cellular Proteomics 19.6 1055


http://www.mcponline.org/cgi/content/full/TIR119.001646/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001646/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001646/DC1

DEqMS: A Statistical Method for Quantitative Proteomics

used a proteomics data set (D6, TMT-labeled) containing 32
post-mortem human brain samples from a study of dementia
(25). Samples in this study included; Parkinson’s disease with
dementia; dementia with Lewy bodies; Alzheimer’s disease;
and older adults without dementia. As demonstrated in sup-
plemental Fig. S7A, even though variance within sample
groups in the clinical samples is much larger than that in cell
line studies, we could still see that protein variance gradually
decreases with an increasing number of PSMs used for quan-
tification. This result indicates that the benefits of DEQMS
would apply also in clinical proteomics data, however not as
pronounced as in cell-line data.

Another quantitative proteomics field where large sample to
sample variation makes statistical analysis challenging is post
translational modification (PTM) analysis. The reason for this
is that the analysis relies on quantification of specific modified
peptides and almost all quantifications are therefore based on
a single unique peptide. This results in high sample-to-sample
variation in the quantitative analysis. To evaluate the depend-
ence of variance on the number of PSMs in a typical PTM
analysis, we analyzed an in-depth phospho-proteomics data
set (D7) where samples were either untreated, treated with a
tyrosine-phosphatase inhibitor or arrested in mitosis (TMT-
labeled, four, three and three replicates respectively) (26). This
analysis showed again a dependence, where variance de-
creased with increasing number of PSMs per phospho-site
(supplemental Fig. S7B), indicating that DEQMS could im-
prove the output of statistical analysis in quantitative PTM
proteomics experiments.

DISCUSSION

Until a few years ago, lack of convenient statistical tools
impeded RNA- level differential expression analysis in the
transcriptomics field for biologists with limited knowledge in
statistics. Acknowledgment of this problem spawned re-
search and development of methods by us (DESeq (30) and
DESeq2(31)) and others (edgeR(32) and Limma(33, 33)). These
methods are optimized for the specific transcriptomics data
structure, to allow accurate and powerful analysis of signif-
icant differences in RNA levels. Today, such methods form
a standardized backbone for analysis of transcriptomics
data. Although MS-based methods have similarly become
widely used for protein quantification, the statistical meth-
ods for quantitative proteomics analysis are less well estab-
lished.

As has been noticed before and can be seen also from our
results, Limma performs well for proteomics data even though
it has been developed for expression microarrays. Impor-
tantly, we show here that the performance can be further
improved by modifying Limma’s variance prior estimation to
consider the dependence of variance on the number of de-
tected peptides/PSMs per protein. Our tool, DEQMS, per-
forms this modified variance estimation (Fig. 1B), thus achiev-
ing better performance as shown in multiple data sets. In

other words, DEgMS considers the actual MS-proteomics
data structure to improve accuracy of DEP detection. Fur-
ther, our method allows for inclusion of proteins quantified
with low number of PSMs without increasing false positive
rates, thus salvaging a large portion of low abundant pro-
teins for the downstream analysis. This increases the
chance of important biological findings. On all here tested
data sets both label or label-free quantification, DEGMS
consistently provides leading performance. The other two
recently proposed method, EBRC and ROTS both have their
own limitations. For instance, EBRC is developed only for
label-free data, and whereas ROTS has competitive results,
it is limited to two group comparisons only, lacking the
flexibility to analyze multiple group experiments. Compared
with Limma, DEgMS clearly performs better in small sample
size experiments (shown in data set D4) because of im-
proved protein variance estimate (Fig. 3). This advantage of
DEgMS gradually decreased with increased sample size
and sample variance (illustrated in data set D5, D6 and D7),
but never results in inferior performance compared with
Limma.

As an R package developed for quantitative proteomics
analysis, DEQMS also provides functions (such as median
sweeping normalization) to aggregate peptide or PSM inten-
sities to protein abundance and auxiliary functions to visualize
fitting curves and raw peptide intensities in different samples.
Further, it is a computationally fast method as the analysis of
10,000 proteins finishes in a second with a standard PC. Taken
together, DEQMS is a robust, universal and highly competitive
statistical method for differentially expressed protein analysis of
both labeled and label-free proteomics data.

DEgMS improves over current methods by more accurate pro-
tein variance estimation, thus achieving better accuracy and sta-
tistical power. The tool is available as user-friendly R package.
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