Skip to main content
. 2020 Mar 16;125(7):1113–1126. doi: 10.1093/aob/mcaa044

Table 3.

Results from multiple regression on distance matrices (MLM) and generalized dissimilarity modelling (GDM) analyses demonstrating the proportion of genomic variation explained by geographical distance, environmental distance (bioclimatic variables) and two resistance surfaces

Models Linear (MRM) Non-linear (GDM)
R 2 Significant variable (coefficient) Deviance Percentage of variance explained Important variable (importance)
1 (Full model: GEO + ENV + ALT + ANT) 0.119 GEO (0.176) 72.73 28.45 PC1 (21.62)* ALT (82.67)*
2 (GEO) 0.042 GEO (0.204) 98.05 3.53 GEO
3 (ENV) 0.059 NA 96.96 4.61 PC1 (70.42) PC3 (29.91)
4 (ALT + ANT) 0.156 NA
5 (GEO + ENV) 0.046 GEO (0.206) 92.89 8.61 PC1 (48.30) GEO (53.21)*
6 (GEO + ALT) 0.098 GEO (0.169) ALT (−0.269) 80.33 20.97 ALT (33.27)* ANT (2.24)
7 (GEO + ANT) 0.109 GEO (0.175) ANT (−0.309)
8 (ENV + ALT) 0.076 ALT (−0.305) 72.79 28.38 PC1 (21.62) ALT (87.67)*
9 (ENV + ANT) 0.087 ANT (−0.343)

*Variable significance at P < 0.05.

GEO: geographic distance; ENV: three PC axes of the bioclimatic variables – PC1 (Minimum temperature of the coldest month), PC2 (Maximum temperature of the warmest month), PC3 (Mean diurnal range); ALT (altitude), ANT (human global footprint).