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• Background and Aims The genus Allium L., one of the largest monocotyledonous genera and one that includes 
many economically important crops with nutritional and medicinal value, has been the focus of classification or 
phylogeny studies for centuries. Recent studies suggested that the genus can be divided into 15 subgenera and 72 
sections, which were further classified into three evolutionary lineages. However, the phylogenetic relationships 
reconstructed by one or two loci showed weaker support, especially for the third evolutionary lineage, which might 
not show the species relationships very clearly and could hinder further adaptive and evolutionary study.
• Methods In this study, a total of 39 complete chloroplast genomes of Allium (covering 12 Allium subgenera) 
were collected, and combining these with 125 species of plastomes from 19 other families of monocots, we re-
constructed the phylogeny of the genus Allium, estimated the origin and divergence time of the three evolutionary 
lineages and investigated the adaptive evolution in this genus and related families.
• Results Our phylogenetic analysis confirmed the monophyly and three evolutionary lineages of Allium, while 
new species relationships were detected within the third evolutionary lineage. The divergence time of the three 
evolutionary lineages was estimated to be in the early Eocene to the middle Miocene, and numerous positive 
selected genes (PSGs) and PSGs with high average Ka/Ks values were found in Allium species.
• Conclusions Our results detected a well-supported phylogenetic relationship of Allium. The PSGs and PSGs with 
high Ka/Ks values, as well as diversified morphologies, complicated chromosome characteristics and unique repro-
ductive modes may play important roles in the adaptation and evolution of Allium species. This is the first study that 
conducted phylogenetic and evolutionary analyses on the genus Allium combined with the plastome and morpho-
logical and cytological data. We hope that this study can contribute to further analysis of Allium for other researchers.
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INTRODUCTION

The genus Allium L.  (Amaryllidaceae, Allioideae) currently 
comprises >900 species (Herden et al., 2016), making it one 
of the largest monocotyledon genera. They are well known 
(but not always appreciated) for their specific and commonly 
intense smell and taste, and are characterized by having bulbs 
enclosed in membranous (sometimes fibrous) tunics, free or al-
most free tepals, and often a sub-gynobasic style (Friesen et al., 
2006). Many economically important species are included, 
such as garlic, leek, onion and shallot. Two centres for Allium 
species diversity were suggested in previous studies (Fritsch 
and Friesen, 2002; Nguyen et  al., 2008), one is from the 
Mediterranean Basin to central Asia and Pakistan, and the other 
is in North America. It is widely accepted that the Allium spe-
cies can be classified into 15 subgenera and 72 sections (Friesen 
et al., 2006). In addition, based on 195 representative species 
of Allium, Fritsch and Friesen (2002) suggested that the genus 
Allium was monophyletic and can be differentiated through a 
number of evolutionary steps into three evolutionary lineages. 
The taxonomy of Allium was further revised by Li et al. (2010a) 
based on morphological characters, internal transcribed spacer 

(ITS) and rps16 sequence data, and the Chinese Allium spe-
cies were further classified into 13 subgenera and 34 sections. 
Nonetheless, the phylogenetic relationships reconstructed by 
ITS sequences showed weaker support, especially for the third 
evolutionary lineage, and limited rps16 sequences were in-
cluded in the study by Li et al. (2010a), which might not show 
the species relationships of Allium very clearly.

In view of the origin and divergence of Allium, unfortunately 
only one possible Amaryllidaceae fossil that dated to the latest 
early Eocene was discovered, in Washington (Pigg et al., 2018), 
and a few fossils of the Asparagales have been reported from 
the late Eocene (Couper 1960; Herendeen and Crane 1995; 
Muller 1981); however, they are all too young to calibrate the 
crown clade of the order (Wikström et al., 2001; Janssen and 
Bremer 2004). Li et al. (2016b) estimated that the genus Allium 
originated during the late Eocene [approx. 34.26 million years 
ago (Mya), highest posterior density (HPD) 95 % 24.29–45.76 
Mya] and suggested that this genus originated from eastern 
Asia and underwent different biogeographical pathways (Li 
et al., 2010a, 2016b). This is helpful to understand and assess 
the evolutionary processes and migration history of the Allium. 
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However, the divergence time of some Allium lineages, espe-
cially for the important node branches (such as the nodes of the 
three evolutionary lineages), were not estimated, which might 
hinder further studies conducted on subgenera or sections of 
Allium.

Despite the phylogeny, origin and divergence of Allium, spe-
cies of this genus are naturally distributed only in the Northern 
Hemisphere and widely spread from the dry sub-tropics to 
the boreal zone. The habitat of Allium species varies from dry 
and well-drained soil to moist and organic soil, which can be 
even in swamps or in water (Block, 2010). Evolution of this 
genus species was also accompanied by habitat and ecological 
diversification, and their adaptation to the various habitat en-
vironments has resulted in a remarkable morphological poly-
morphism (e.g. flowers, leaves and bulbs) (Li et al., 2016a). 
Additionally, the chromosome numbers of Allium are diver-
sified, including basic chromosomes numbers x = 7, 8, 9, 10 
or 11, and thus they produce many polyploids (Friesen, 1992; 
Xu et al., 1998; Zhou et al., 2007; Zhang et al., 2009; Jones, 
2012; Li et  al., 2017; Peruzzi et  al., 2017), which are often 
considered to have many advantages compared with their dip-
loid progenitors in morphological, physiological, life history 
characteristics and rates of adaptation (Mayrose et al., 2010). 
It has been generalized that chromosomal characteristics (e.g. 
chromosome number, ploidy level, genome size, karyotype 
asymmetry, etc.) prove to be informative and significant for 
understanding the relationships, evolution and adaptation of 
taxa (Sharma and Sharma, 2014). Therefore, Allium is a suc-
cessful taxon from the point of view of its wide distributions, 
diversified morphologies and complex chromosome charac-
teristics. Recent transcriptome or genome-wide studies on 
multiple species that succeed in the evolutionary processes 
have identified various evolutionary and adaptive processes 
that may be responsible for adaptation, including for humans 
(Beall et  al., 2010; Simonson et  al., 2010; Yi et  al., 2010; 
Peng et al., 2011), animals (Savolainen et al., 2007; Qiu et al., 
2012; Ge et  al., 2013; Gou et  al., 2014) and plants (Leimu 
and Fischer, 2008; Hancock et  al., 2011; Jia et  al., 2013; 
Yates et al., 2014; Zhang et al., 2016b; Zhang et al., 2019). 
In addition, adaptation to the environment can allow popula-
tion persistence (Aitken et  al., 2008; Franks and Hoffmann, 
2012). Local adaptation has become an important component 
for species responses to changing environments (Davis and 
Shaw, 2001), and the phenotypic plasticity in a changing en-
vironment has received much attention to date (Loarie et al., 
2009; Nicotra et al., 2010; Chevin and Hoffmann, 2017; Van 
Buskirk, 2017; Oostra et al., 2018; Villemereuil et al., 2018). 
However, several challenges exist in analysing and interpreting 
the genetic basis of evolution and adaptation of Allium spe-
cies. For instance, poor genomic information is available in 
Allium because of the enormous size of the genome (approx. 
16.3 Gb) (Duangjit et al., 2013), which is 32 times larger than 
the genome of rice (Arumuganathan and Earle, 1991). The dip-
loid (2n = 16) genome sizes of garlic (A. sativum) and onion 
(A.  cepa) were estimated to be >30 Gb (Egea et  al., 2017; 
Peska et  al., 2019). Although sequencing technologies have 
undergone rapid development in the past 10 years, analysis of 
such a complex and huge genome of the Allium species, a non-
model plant, remains a Herculean task (Schatz et  al., 2012; 
Nagarajan and Pop, 2013).

Complete chloroplast (cp) genomes are known to be highly 
conserved in both gene order and gene content (Raubeson and 
Jansen, 2005), and exhibit a much lower substitution rate than 
nuclear DNA (Wolfe et al., 1987). Due to their conserved struc-
ture, small effective population size, lack of recombination and 
usually uniparental inheritance (Henry et  al., 2016), cp gen-
omes have been extensively used in phylogenetic reconstruc-
tion (especially in taxonomically complex groups) (Jansen 
et al., 2007; Moore et al., 2010; Barrett et al., 2014; Malé et al., 
2014; Shaw et al., 2014; Dong et al., 2015; Yu et al., 2017; Ye 
et al., 2018) and selection pressure analysis (Allen et al., 2011; 
Carbonell-Caballero et  al., 2015; Hu et  al., 2015; Xie et  al., 
2018b). Many cp genomes have been reported in Allium species 
(Kim and Yoon, 2010; Lee et al., 2017; Filyushin et al., 2018; 
Jin et al., 2018; Xie et al., 2019a, b; Yang et al., 2019), and it 
is necessary to performe a comprehensive cp genome analysis 
on the genus Allium. Here, a total of 39 complete cp genomes 
of Allium were collected, covering 12 of 15 Allium subgenera. 
Combining these with 125 species plastomes from another 19 
families of monocots, we wish to accomplish the following: (1) 
to reconstruct the phylogeny of the genus Allium and analyse 
lineage relationships at the cp genome level; (2) to estimate the 
origin and divergence time of Allium by using more cp genome 
regions and more fossils; and (3) to investigate the adaptative 
evolution of Allium and allied families by using selective pres-
sure analysis and morphological characteristics. Overall, this 
study will contribute to a comprehensive understanding of 
plastome evolution in Allium plants.

MATERIALS AND METHODS

Taxon sampling and DNA extraction

A total of 164 species representing 19 families of monocots 
were included in this study. Thirty-nine species from three evo-
lutionary lineages of Allium (Friesen et al., 2006; Fritsch and 
Keusgen, 2006) were selected, ranging from the basal to the top 
lineages of the whole Allium phylogenetic tree, including all 
types of inflorescences of the genus Allium, and showing the 
complicated ploidy of chromosome and other morphological 
characteristics. Thus, we think that these species to some degree 
can act as representatives of the Allium genus. Among the 164 
sampled species, the whole cp genomes of 22 Allium species 
were reported from our laboratory (Supplementary data Table 
S1), and the data of the remaining species were downloaded from 
NCBI (Supplementary data Table S2). Total genomic DNA was 
extracted from either fresh or silica gel-dried material using the 
DNeasy Plant Mini Kit following the manufacturer’s protocol 
(Biomed, Beijing, China). A  NanoDrop spectrophotometer 
(ND-1000; Thermo Fisher Scientific, USA) and agarose gel 
electrophoresis were used to determine DNA quality and purity.

Sequence assembly and annotation

All examined DNAs of 22 Allium species were sent to 
Novogene (Beijing, China) for library construction and 
sequencing. Paired-end libraries were generated on an Illumina 
Hiseq 2500 platform. The raw reads obtained from Novogene 
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were filtered using Trimmomatic 0.3.2 with default param-
eters (Bolger et  al., 2014). The program MITObim v1.7 
(Christoph et al., 2013) was used for plastome assembly, and 
the whole cp genomes of several Allium species were down-
loaded from GenBank as references. Reads were assembled 
de novo using Velvet (Zerbino and Birney, 2008) with k-mer 
sizes ranging from 27 to 145, and the coverage cut-offs were 
auto-adjusted. In order to obtain accurate plastomes, each of the 
species was assembled four times with the reference genomes 
A.  cepa (KM088014), A.  sativum (KY085913), A.  victorialis 
(NC_037240) and A.  obliquum (LT699701). Gaps that ap-
peared in the assembled cp genomes were further confirmed 
and corrected by Sanger sequencing and the primers were de-
signed using Lasergene 7.1 (DNASTAR, Madison, WI, USA). 
The primers and amplifications are shown in Supplementary 
data Table S3. The modified plastomes were annotated using 
the program DOGMA (Wyman et al., 2004), and subsequently 
corrected within GENEIOUS R11 (Biomatters, Ltd, Auckland, 
New Zealand). Finally, we used OGDRAW (Lohse et al., 2013) 
to draw circular plastome maps.

Sequence divergence analysis

The cp genomes of all 39 Allium species were aligned, and 
the alignments were visualized using mVISTA (Frazer et al., 
2004) with A. altaicum as reference to detect sequence diver-
gence. Furthermore, in order to evaluate the nucleotide diver-
sity (Pi) of each gene, DnaSP version 5.1 (Librado and Rozas, 
2009) was used to calculate the nucleotide diversity of genes 
in LSC (large single copy) regions, SSC (small single copy) 
regions and inverted repeat (IR) regions.

Phylogenetic analyses

In order to investigate the phylogeny of Allium species and 
allied families, the 22 assembled Allium species and another 
142 allied plastomes were analysed together. First, all single-
copy genes (SCGs) of the 164 taxa were extracted and then 
aligned using MUSCLE v3.6 (Edgar, 2004), manually exam-
ined and adjusted. These alignments were then concatenated 
as a super locus of single-copy genes, which were further used 
for phylogenetic analysis. Maximum parsimony (MP) was per-
formed using PAUP* version 4.10 (Swofford, 2003). All char-
acters were equally weighted, gaps were treated as missing and 
character states were treated as unordered. A heuristic search 
was performed with TBR branch swapping and the Multrees 
option, and random stepwise addition with 1000 replications. 
All analyses used the best-fitting models of nucleotide substitu-
tions selected in jModelTest v2.1.4 (Darriba et al., 2012) under 
the Akaike information criterion (AIC). Maximum likelihood 
(ML) analyses were conducted using RAxML v8.0 (Stamatakis, 
2014) based on the best-fit GTR + G model and 1000 bootstrap 
replicates. Bayesian analyses were performed with MrBayes 
v3.2 (Ronquist and Huelsenbeck, 2003). Three independent 
Markov chain Monte Carlo (MCMC) runs of different lengths, 
but under the same estimation conditions, were conducted. Each 
chain ran 1 × 108 generations with the sample frequency of 50, 

and the initial 20 % of the samples were discarded as burn-in to 
confirm the stationarity. Tracer v1.5 (Rambaut and Drummond, 
2009) was used to assess the quality of the MCMC simulations 
and stability of runs. Effective sample size (ESS) values were 
>200 for all parameters, suggesting that sufficient sampling oc-
curred. In addition, phylogenetic analyses were also performed 
for the coding sequences (CDSs) that were shared in all 164 
species.

Molecular dating and fossil calibration

The combined single-copy gene data set was used to estimate 
the origin times of Allium and other allied families. Bayesian 
searches for tree topologies and node ages were conducted in 
BEAST (Drummond and Rambaut, 2007) using a GTR + G 
substitution model selected by jModelTest 2.1.4 (Darriba et al., 
2012) and an uncorrelated log-normal relaxed clock (Drummond 
et al., 2002). A Yule process was specified as tree prior, and the 
MCMC algorithm was run for 5 × 107 generations with sam-
pling every 2000 generations, following a burn-in of 10 % of 
the initial cycles. MCMC samples were inspected in Tracer to 
confirm sampling adequacy and convergence of the chains to a 
stationary distribution. Three fossils used to calibrate time in 
BEAST were as follows. (1) According to the studies of Friis 
et al. (1994, 1997, 1999), Magallón et al. (2015), Eklund et al. 
(2004) and Li et al. (2019), 121 Ma was implemented as a min-
imum age in the penalized likelihood analysis and as the zero 
offset of a log-normal distribution with log mean of (120.7 + 10 
%), and s.d. of 1 in the uncorrelated log-normal analysis. This 
time is equal to the crown group of the Chloranthaceae. (2) 
From the references of pollen fossils (Doyle and Hickey, 1976; 
Doyle and Robbins, 1977; Hickey and Doyle, 1977), we set the 
minimum age in the penalized likelihood analysis as 112 Ma 
(calibrate the monocot crown node), and as the zero offset of a 
log-normally distributed prior with log mean of (112 + 10 %) 
and s.d. of 1. (3) Based on studies of Bell et al. (2010), Friis 
(1988) and Magallón et al. (2015), the node of Zingiberales was 
set as follows: 77.8 Ma was implemented as a minimum age in 
the penalized likelihood analysis, which equalled the minimum 
age of the Zingiberales fruits and seeds fossils, and as the zero 
offset of a log-normal distribution with log mean of (77 + 10 %) 
and s.d. of 1 in the Bayesian analysis.

Selective pressure analysis

In order to detect the sites that are under positive selection 
in the protein-coding genes in the plastid genomes of Allium 
species, an optimized branch-site model (Yang and Dos, 
2011) and Bayesian empirical Bayes (BEB) methods (Yang 
et al., 2005) were conducted. The CDSs of all 164 taxa were 
extracted and aligned using the software MUSCLE (Edgar, 
2004) and the ‘gaps’ in the alignments were further checked. 
The alignment sequences were further trimmed by Trimal 
v1.2 (Capellagutiérrez et  al., 2009) with parameters Trimal 
-in $i -out $i.fasta -fasta -noallgaps, and the bona fide align-
ments were used to perform the positive selection analyses. 
The Allium lineage was selected as a specifically designated 
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branch to assess potential positive selection in the CODEML 
program implemented in the PAML package (Yang, 2007). The 
non-synonymous (Ka) and synonymous (Ks) nucleotide substi-
tution rates and their ratio (ω = Ks/Ks) were used to measure 
the selective pressure. The ratios ω > 1, ω = 1 and ω < 1 sug-
gest positive selection, neutral selection and negative selec-
tion, respectively (Yang and Nielsen, 2002). The log-likelihood 
values were calculated and tested with a neutral model and an 
alternative model according to Yang (2007). The right-tailed χ 2 
was used to calculate P-values according to the difference in 
log-likelihood values between the neutral model and alterna-
tive model with one degree of freedom to assess the model fit. 
Afterwards, the BEB method was applied to compute the pos-
terior probabilities of amino acid sites to identify whether these 
specific sites were under positive selection (codon sites with 
a high posterior probability) (Yang, 2007; Lan et  al., 2017). 
A gene with a test P-value <0.05 and with positively selected 
sites was considered as a positively selected gene (PSG). 
Moreover, in order to compare the differences in selection 
pressure that were experienced in allied families of Allium, all 
family lineages included in this study were separately subjectd 
to positive selection analysis.

Statistics of morphological and chromosomal characteristics 

Morphological traits and chromosomal characteristics are 
important sources for analysing relationships and evolution 
of taxa (Schneeweiss et al., 2004). Our laboratory members 
have researched the genus Allium for >20 years, and accumu-
lated a lot of morphological and karyotypic data. Therefore, 
in order to understand and analyse the species relationships 
and the evolutionary processes better, we collected and ex-
hibited the morphological and karyotypic traits of the 39 
Allium species (the karyotypes are summarized according 
to previously published references), including the inflor-
escences, ploidy level, existence or absence of aneuploids 
chromosome, and so on.

RESULTS

Characteristic of the Allium chloroplast genomes

Chloroplast genome structures are conserved and similar in 
gene order across 39 Allium species. The genome size ranges 
from 145 819 to 159 125 bp, and the GC content varied from 
36.7 to 37.8 %. The length of the coding regions changes from 
64 581  bp to 81 609  bp, and the minimum and maximum 
lengths were 72 410 bp and 84 711 bp in non-coding regions. 
Information on LSC, SSC and IR regions, and gene number is 
given in Table 1 and Supplementary data Table S4.

Sequence divergence

The sequence divergence analysis showed high sequence 
similarity across the Allium plastid genomes (Supplementary 
data Fig. S1). In addition, the IR regions and coding regions 
were more conserved than the LSC, SSC and non-coding 

regions (Supplementary data Fig. S2). The nucleotide diver-
sity values of the LSC regions ranged from 0 to 0.02525 with 
a mean value of 0.00963 (the values varied from 0.00354 to 
0.02584 with an average value of 0.01493 in SSC regions), 
while the values were from 0.0000 to 0.00765 with a mean 
value of 0.00229 in the IR regions (Supplementary data Fig. 
S3). Ten genes with high nucleotide diversity (>0.02) were de-
tected, namely ndhK, ndhE, ndhA, rps16, matK, psaI, rpl22, 
ndhF, rpl32 and trnK-UUU.

Morphological and chromosomal characteristics

In order to exhibited the morphological and chromosomal 
traits reasonably and aesthetically, we combined them with 
the phylogenetic results and they are presented in Fig. 1. Most 
of the species possess an umbel inflorescence with various 
flower densities, while individual species have a spike inflor-
escence (A.  spicatum) and an inconspicuous umbel inflores-
cence (A. mairei). In view of the ploidy levels of the species, 
the basic chromosome number of 37 Allium species is x = 8, 
and only in A. macranthum and A. ursinums is it x = 7. In add-
ition to diploidy, many Allium species have multiple ploidies, 
such as A. monanthum (2–4x, x = 8), A. tuberosum (2–4x, 8x, 
x = 8), A. ampeloprasum (2–6x, x = 8) and A. nutans (2–10x, 
13x, x = 8). Moreover, some Allium species are aneuploid, such 
as A. victorialis, A. nutans, A. strictum and A. schoenoprasum 
(Fig. 1).

Characteristics of the SCG and CDS data sets and phylogenetic 
analysis

In order to test whether additional characters or taxa were 
responsible for any changes observed in resolution and support 
of the integrated phylogenies, the 48 SCGs and the 43 CDSs 
were used to perform phylogenetic analysis, respectively. 
Alignments of the SCG data set showed a length of 32 055 bp 
with 14 336 variable sites (44.72 %), and 12 025 parsimony-
informative characters (PICs; 37.51 %). The CDS data set pos-
sesses 30 093 characters with 13 276 variable sites (44.12 %) 
and 11 152 PICs (37.06 %).

Bayesian inference, MP and ML analyses of the SCG 
and CDS data sets shared between the 164 plastomes (four 
species from family Chloranthaceae were set as outgroups: 
Sarcandra glabra, Chloranthus japonicus, C.  erectus and 
C.  spicatus) generated almost identical topologies with 
generally high bootstrap support and posterior probability 
(Fig.  2; Supplementary data Fig. S4). Monophyly of each 
family was strongly confirmed, and Narcissus poeticus and 
Agapanthus coddii showed a close relationship with the 
genus Allium (Figs 1 and 2). The family Asparagaceae was 
identified as being closest to the Amaryllidaceae, and the 
Acoraceae was located at the stem of the phylogeny fol-
lowed by the Tofieldiaceae and the Araceae. Following the 
studies of Friesen et  al. (2006) and Li et  al. (2010a), the 
Allium species were divided into three lineages (L1–L3; 
Figs  1 and 2; Supplementary data Fig. S4): L1 was com-
posed of A.  monanthum, A.  macranthum, A.  paradoxum 
and A.  ursinum; L2 consisted of A.  nanodes, A.  prattii, 
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A. victorialis, A. macleanii, A. fetisowii and A. neriniflorum; 
and L3 was formed by the remaining 29 Allium species. The 
flower morphologies of 39 Allium species and the chromo-
some characteristics of all collected Allium species are shown 
in Fig. 1 and Supplementary data Table S5.

Estimation of divergence time

Divergence time analyses based on fossils indicated that 
the crown groups of monocots arose 148.989 Mya (95 % 
HPD: 108.006–166.103 Mya; Fig. 3; Table 2; Supplementary 
data Fig. S5). In addition, the divergence time of the 
Amaryllidaceae was estimated as approx. 49.399 Mya (95 
% HPD: 48.165–50.588 Mya). The genus Allium originated 
approx. 41.932 Mya (95 % HPD: 34.549–47.605 Mya) and 
then diverged into three lineages (L1–L3; Fig.  3, Table  2). 
The L1 lineage separated around 22.184 Mya (95 % HPD: 

15.232–34.812 Mya) and the divergence time of L2 and L3 
was approx. 19.655 Mya (95 % HPD: 13.491–31.145 Mya). 
From the results, we found that most of the Allium species 
differentiated in the late Tertiary to middle Miocene (approx. 
10–15 Mya).

Selective pressure analysis

A total of 43 CDSs that were shared by 164 taxa were even-
tually used for positive selection analysis, and the branch site 
model in CODEML was independently performed for Allium 
species and allied families. For the Allium lineage, ten genes 
with at least one positively selected site were detected from 
the BEB test, and seven of them showed a significant P-value 
(P < 0.05). For family Amaryllidaceae, 27 genes were found 
with positively selected sites and eight of them have significant 
P-values. Among the 19 families, the Orchidaceae possessed the 

Table 1. Summary of major characteristics of Allium plastomes, including genome size, GC content and gene number.

Taxon Total genome LSC 
length 
(bp)

SSC 
length 
(bp)

IR 
length 
(bp)

Gene 
number

Protein 
coding

tRNAs rRNAs Coding region Non-coding 
region

Length 
(bp)

GC 
(%)

Length 
(bp)

GC 
(%)

length 
(bp)

GC 
(%)

Allium altaicum 153 129 36.8 82 197 17 912 26 510 131 85 38 8 78 183 37.3 74 946 36.3
Allium ampeloprasum 152 732 36.7 81 775 17 905 26 526 127 81 38 8 77 289 37.2 75 443 36.2
Allium caeruleum 153 267 36.8 82 389 18 058 26 410 131 85 38 8 79 195 37.2 74 072 36.4
Allium cepa 153 440 36.8 82 543 17 929 26 485 132 86 38 8 79 263 37.3 74 177 36.3
Allium chinense 152 525 36.8 81 324 18 205 26 498 126 87 31 8 80 115 37.3 72 410 36.2
Allium chrysanthum 153 621 36.8 82 744 17 985 26 446 132 86 38 8 79 269 37.2 74 352 38.4
Allium chrysocephalum 153 710 36.8 82 688 17 998 26 512 132 86 38 8 79 280 37.2 74 430 38.4
Allium cyathophorum 154 174 36.8 83 359 17 881 26 467 132 86 86 8 79 382 37.3 74 792 36.3
Allium fetisowii 154 018 36.9 83 657 17 941 26 210 132 86 86 8 79 300 37.3 74 718 36.5
Allium fistulosum 152 859 36.9 81 930 17 921 26 504 132 86 86 8 79 307 37.3 73 552 36.5
Allium forrestii 153 186 36.8 82 339 17 959 26 444 132 86 86 8 79 194 37.2 73 992 36.4
Allium herderianum 153 605 36.8 82 658 17 983 26 482 132 86 38 8 79 276 37.2 74 329 38.4
Allium macleanii 152 633 36.9 82 890 17 213 26 265 131 85 38 8 78 988 37.3 73 645 36.5
Allium macranthum 152 876 37.1 83 600 18 959 25 095 132 86 38 8 78 723 37.6 74 153 36.6
Allium mairei 152 913 36.9 82 493 18 762 25 829 132 86 38 8 78 914 37.3 73 999 36.5
Allium maowenense 153 608 36.8 82 668 18 000 26 470 132 86 38 8 79 256 37.2 74 352 38.4
Allium monanthum 154 804 37.0 83 835 18 007 24 551 132 86 38 8 79 305 37.5 75 499 36.5
Allium nanodes 154 077 37.0 84 274 20 075 24 864 131 85 38 8 70 029 37.3 84 048 36.8
Allium neriniflorum 154 280 37.0 83 131 18 191 26 479 132 86 38 8 79 532 37.5 74 748 36.5
Allium nutans 153 456 36.9 82 533 17 951 26 486 132 86 38 8 79 299 37.2 74 157 36.6
Allium obliquum 152 597 36.8 81 798 18 059 26 370 132 86 38 8 79 325 37.2 73 272 36.4
Allium oschanini 153 580 36.8 82 522 18 030 26 514 132 86 38 8 79 311 37.3 74 269 36.3
Allium paradoxum 145 819 37.1 80 919 13 504 25 698 133 86 39 8 64 581 37.3 81 238 36.9
Allium platyspathum 152 529 36.8 81 544 17 955 26 515 131 85 38 8 78 514 37 74 015 36.6
Allium polyrhizum 153 086 36.9 82 438 19 188 25 730 132 86 38 8 79 127 37.3 73 959 36.5
Allium praemixtum 153 226 36.8 82 163 18 041 26 511 132 86 38 8 79 302 37.3 73 924 36.3
Allium prattii 154 482 37.0 83 428 18 056 26 499 131 85 38 8 69 771 37.3 84 711 36.8
Allium przewalskianum 153 245 36.9 82 428 18 703 26 057 132 86 38 8 79 239 37.3 74 006 36.5
Allium_pskemense 153 788 36.7 82 721 18 033 26 517 132 86 38 8 79 197 37.2 74 591 36.2
Allium rude 153 697 36.7 82 815 17 978 26 452 132 86 38 8 79 284 37.2 74 413 38.2
Allium sativum 153 118 36.7 82 048 17 986 26 542 128 83 37 8 77 808 37.2 75 310 36.2
Allium schoenoprasides 153 583 36.7 82 551 18 082 26 475 132 86 38 8 79 540 37.2 74 043 36.2
Allium schoenoprasum 153 014 36.8 82 059 17 937 26 509 132 86 38 8 79 296 37.2 73 718 36.4
Allium spicatum 153 225 36.9 82 382 17 930 26 456 132 86 38 8 79 184 37.3 74 041 36.5
Allium strictum 152 962 36.8 82 880 20 562 24 760 132 86 38 8 79 169 37.2 73 793 36.4
Allium tuberosum 157 735 36.9 86 472 19 079 26 092 132 86 38 8 81 609 37.4 76 126 36.4
Allium ursinum 159 125 37.3 88 056 18 105 26 482 131 84 39 8 77 859 37.5 81 266 37.1
Allium victorialis 154 074 37.0 83 173 17 853 26 526 131 85 38 8 78 996 37.5 75 078 36.5
Allium xichuanense 153 673 36.7 82 797 17 950 26 463 132 86 38 8 79 269 37.2 74 404 38.4

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa024#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa024#supplementary-data
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maximum number of genes (i.e. 36 genes) that had sites under 
positive selection, and nine of them had significant P-values. 
The Typhaceae possessed the minimum number of genes 
(seven genes) that have positively selected sites, but none of 
them had a significant P-value. The detailed results of positive 

selective analysis are shown in Fig. 4A and Supplementary data 
Table S6.

In terms of the gene (owning positively selected sites) 
frequency that was detected in genus Allium and the 19 
families, we found that atpA and psbC possessed the highest 
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Fig. 1. Phylogenetic relationships, flower morphologies and chromosome characteristics of Allium species collected in this study. The tree was constructed by 
maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) based on 48 shared SCGs. Support values marked above the branches follow 
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Fig. 2. Phylogenetic relationships inferred from 164 species based on 48 shared SCGs. Tree constructed by maximum parsimony (MP), maximum likelihood 
(ML) and Bayesian inference (BI) based on 48 shared SCGs. Support values marked above the branches follow the order MP (bootstrap values)/BS (bootstrap 
support)/PP (posterior probability); red circles in nodes represent maximum support in all three analyses. Accessions from different families are written using dif-
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frequency and appeared in 17 families, following by rpl11 
(15 families), rpoC2 (14 families), petA (14 families), psaB 
(12 families) and atpI (12 families). The detailed gene fre-
quencies are listed in Fig.  4A and Supplementary data 
Table S6.

The average Ka, Ks and Ka/Ks values of the 43 CDSs 
were calculated. The average Ka value of psaA (0.38991) 
was highest, following by rpoC2 (0.38348), rpoC1 (0.3581), 
atpA (0.3254), atpB (0.172), rpoA (0.15243), rps11 
(0.13878) and matK (0.13379). psaA (0.54487) possessed 
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Fig. 2. Continued.
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the highest average value of Ks, followed by petN (0.53934), 
psbI (0.5232), rpoC1 (0.46461) and rpoC2 (0.4294). The 
average Ka/Ks ratio was highest in psbC (6.31579), followed 

by rps11 (2.03818), psaI (1.27620), rpoC2 (0.89306) atpA 
(0.78090) and rpoC1 (0.77075) (Fig.  4B; Supplementary 
data Table S7).
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Fig. 3. Divergence time estimation based on 48 shared SCGs. (A) The maximum credibility tree from the divergence times estimated with BEAST. The 95 % 
highest posterior density (HPD) estimates for each well-supported clade are represented by bars, and white triangles with a black outline represent compressed 
clades. Letters (A–C) in a black circle represent fossil calibration points (see the Materials and Methods). The node ages are given for each node. (B) Phylogeny of 
three evolutionary lineages of Allium; L1–L3: the first to the third evolutionary lineages, the origin time of Allium and three evolutionary lineages are shown with 

arrows, and red background represents the main periods of time during which Allium species differentiated.
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DISCUSSION

The plastome variation of the genus Allium

Recently, cp genomes have been used to evaluate the gen-
etic variation in genera or families (e.g. Myrtaceae, Corylus, 
Podophylloideae and Apodanthaceae) (Bayly et al., 2013; Bellot 
and Renner, 2016; Ye et  al., 2018; Yang et  al., 2018). The cp 
genome size, gene order and structure of the 22 Allium species 
were similar to those reported in previous Allium plastid gen-
omes (Table 1), with sizes ranging from 145 to 160 kb (Kim and 
Yoon, 2010; Lee et al., 2017; Jin et al., 2018; Yang et al., 2019). 
Additionally, the GC contents of the Allium species varied from 
36.7 to 37.8 %, and the GC contents in non-coding intergenic 
regions were much lower than those in coding regions, which is 
similar to the case in most land plants (Bock, 2007). The overall 
cp genome assemblies obtained from 39 Allium species indicated 
that there is a high sequence similarity across the Allium cp gen-
omes (Supplementary data Fig. S2), which also suggested that 
the Allium cp genomes are relatively well conserved. In addition, 
the sequence variations were more conserved in the IR regions 
than in the LSC and SSC regions, and similar results have been 
found in most angiosperms (Khakhlova and Bock, 2006; Zhang 
et  al., 2016a; Wu et  al., 2018). Ten genes (rpl32, trnK-UUU, 
ndhF, rpl22, psaI, matK, rps16, ndhA, ndhE and ndhK) with nu-
cleotide diversity of >0.0200 were detected (Supplementary data 
Fig. S3). Among them, ndhF, rpl22, matK, rps16 and ndhE have 
been reported as highly variable regions in many plants (Fu et al., 
2017; Fan et al., 2018; Wu et al., 2018; Ye et al., 2018). These 
genes with high nucleotide diversity may be good sources for 
interspecies phylogenetic analysis in the future.

Phylogenetics of Allium

Appropriate and multiple gene combination is one of the 
most important determinants of accurate phylogenetic estima-
tion. The nuclear ribosomal DNA genes [e.g. ITS and external 

transcribed spacer (ETS)] and many cpDNA fragments (e.g. 
matK, rps16 and trnL–trnF) have been used to infer the phyl-
ogeny of Allium (Friesen et al., 2006; Li et al., 2010a, 2016b; 
Huang et  al., 2014; Herden et  al., 2016; Li et  al., 2016a; 
Hauenschild et  al., 2017). Li et  al. (2010a) reconstructed 
the phylogeny of Allium based on ITS and rps16; however, 
the phylogenetic relationships reconstructed by ITS showed 
weaker support, especially for the third evolutionary lineage, 
and limited rps16 sequences were included in that study. Here, 
our plastome phylogenomic analysis of the monocots, based 
on the shared SCGs and CDSs, provided strong support for 
the monophyly of Allium and Amaryllidaceae (Figs  1 and 2; 
Supplementary data Fig. S4), in agreement with previous mo-
lecular evidence (Friesen et al., 2006; Li et al., 2010a). This 
phylogeny also confirmed the three evolutionary lineags of 
Allium (L1, L2 and L3) that were provided by Friesen et  al. 
(2006), but detected new species relationships within the third 
evolutionary lineage with high support values. The phylo-
genetic placements of some species (such as A.  caeruleum, 
A. schoenoprasoides and A. platyspathum), however, differed 
from the results that were found in the study of Li et al. (2010a), 
and a similar phenomenon was also revealed in the species 
A. forrestii, A. strictum and A. obliquum. Notably, in previous 
phylogenetic analyses, some species of Allium formed weakly 
supported clades (bootstrap support/posterior probability <50 
%), particularly in the third evolutionary lineage (L3) (Friesen 
et al., 2006; Li et al., 2010a), which was also consistent with 
the study of Hauenschild et  al. (2017), who suggested that 
some of the subgenera in the third evolutionary clade are not 
monophyletic. Allium species possess greatly varied morph-
ologies, and, of them, flower changes are most conspicuous 
(Fig. 1). Previous studies suggested that the diversity of flower 
form can be attributed to a range of evolutionary novelties that 
change the appearance of the flower in ways that influence their 
perceptions by animal pollinators (Darwin, 1859; Moyroud and 
Glover, 2017). However, changes in flower morphologies are 
not always driven by pollinators (e.g. Polemonium viscosum) 

Table 2. Age estimates for Allium and allied families based on the combined single-copy gene data sets

Number Median (Ma) 95 % HPD Node labels

Lower (Mya) Upper (Mya)

1 49.399 48.165 50.588 Asparagaceae
2 49.399 48.165 50.588 Amaryllidaceae
3 41.932 34.549 47.605 Allium
4 22.184 15.232 34.812 Allium (Line 1)
5 19.655 13.491 31.145 Allium (Line 2–Line 3)
6 54.225 50.408 60.443 Asphodelaceae
7 62.724 58.043 67.976 Iridaceae
8 74.633 70.766 78.327 Orchidaceae
9 64.151 34.63 69.312 Poaceae

10 64.151 34.63 69.312 Typhaceae
11 78.509 76.553 81.051 Zingiberaceae
12 70.428 44.204 89.435 Liliaceae
13 46.541 34.959 65.071 Colchicaceae
14 46.541 34.959 65.071 Alstroemeriaceae
15 81.281 67.609 98.668 Campynemataceae
16 53.764 39.71 71.134 Stemonaceae
17 53.764 39.71 71.134 Cyclanthaceae
18 101.205 67.051 124.253 Nartheciaceae
19 110.645 82.94 131.2 Araceae
20 110.645 82.94 131.2 Tofieldiaceae
21 148.989 108.006 166.103 Acoraceae
22 162.446 120.369 174.875 Chloranthaceae

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa024#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa024#supplementary-data
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(Galen and Butchart, 2003), which may hint that interspecies 
relationships are not always consistent with morphologies, such 
as A. cyathophorum and A. spicatum; the inflorescence of the 
former is an umbel, and that of the latter is a spike, but they 

show close a relationship in phylogeny analysis (Figs 1 and 2) 
(Friesen et al., 2000). All these results may indicate that spe-
cies relationships of Allium are complex. Although we detected 
some new species relationships and obtained high support for 
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Fig. 4. Frequency of genes that possessed positively selected sites and the curve of the average Ka, Ks and Ka/Ks values of each gene. (A) The frequency of genes 
with positively selected sites in each family. Each grey square indicates the positively selected gene which occurs in the corresponding family, and black squares 
indicate genes whose positively selected sites are significant (P < 0.05. (B) The curve of the average Ka, Ks and Ka/Ks values of each gene; different colours of 

the bars are consistent with the curve colour of Ka, Ks and Ka/Ks.
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each branch in this study, relationships among species of Allium 
are still not well resolved (especially for species in the third 
evolutionary lineage), and more extensive geographic and gen-
omic sampling for further resolution is required in the future. 
Here, we conducted the first cp genome analysis on the whole 
of the Allium genus; we hope this study can contribute to the 
further analysis on Allium for other researchers.

Divergence time analysis

We estimated that the Amaryllidaceae origin occurred 49.399 
Mya (95 % HPD 48.165–50.588 Mya) and the genus Allium 
originated during the late Eocene [41.932 Mya (95 % HPD: 
34.549–47.605 Mya)] (Fig. 3; Table 2; Supplementary data Fig. 
S5), which was roughly the same time scale as in the study of 
Li et al. (2016b), who estimated that Allium originated during 
the late Eocene [34.26 Mya (95 % HPD: 24.29–45.76 Ma)]. 
This time was also consistent with the possible fossil time of 
Allium or Amaryllidaceae (49.42 ± 0.54 Mya) that was found in 
Washington (Pigg et al., 2018). Although the divergence time 
of many subgenera in Allium has been estimated (Herden et al., 
2016; Li et al., 2016b; Xie et al., 2018a), hitherto no study has 
been conducted on the origin times of the three evolutionary 
lineages. In this study, we first detected the divergence times 
of three evolutionary lineages, which are in the early Eocene 
to the middle Miocene, and most of the Allium species differ-
entiated in the late Tertiary to middle Miocene (approx. 10–15 
Ma). Many species divergence or speciation events occurred 
during this time (Li et al., 2010b; Xu et al., 2010; Zhang and 
Fritsch, 2010; Gao et al., 2013; Qin et al., 2013; Yu et al., 2014; 
Zhang et al., 2015) due to factors such as orogeny and climatic 
oscillations; this may suggest that these factors also play im-
portant roles in species divergence of Allium during that time. 
Moreover, our study suggests that crown group monocots arose 
in the lower Cretaceous [148.989 Mya (95 % HPD: 108.006–
166.103 Mya)]; this estimate is generally congruent with sev-
eral estimates from other relaxed molecular clock analyses, for 
example 156 Mya (139–167 Mya) (Smith et  al., 2010), 161 
Mya (141–176 Mya) (Foster et al., 2017) and 154 Mya (131–
184 Mya) (Li et  al., 2019), although younger estimates such 
as 134 Mya (125–145 Mya) (Magallón et al., 2013) and 138 
Mya (127–149 Mya) (Zeng et al., 2014) have also been sug-
gested. Despite possible limitations, this analysis provided new 
insights into the divergence and origin of the genus Allium and 
other allied families. The detected divergence time of Allium 
and three evolutionary lineages (L1–L3) may contribute to fu-
ture studies on subgenera or sections of the genus Allium.

Evolution and positive selection of Allium

Adaptative evolution is a process enabling an organism to 
fit its habitat better by means of natural selection (Lan et al., 
2017). By positive selection analysis, we detected seven signifi-
cant PSGs (P < 0.05) in the Allium lineage, which is just lower 
than in the Orchidaceae (nine PSGs) (Fig. 4A; Supplementary 
data Table S6). As we know, the Orchidaceae have success-
fully colonized almost every habitat on Earth; the number of 

its species accounts for approx 10 % of flowering plant species 
and it has been regarded as a taxon which is highly evolutionary 
and with great adaptability (Roberts and Dixon, 2008; Givnish 
et al., 2015). In consideration of the numerous PSGs found in 
the Allium lineage, its wide species distributions (De Wilde-
Duyfjes, 1976; Choi and Oh, 2011; Govaerts et al., 2016), di-
versified habitat and morphologies (Fig. 1) (Fritsch and Friesen, 
2002; Friesen et al., 2006; Block, 2010) and complex chromo-
some characteristics (Friesen, 1992; Xu et  al., 1998; Zhou 
et al., 2007; Zhang et al., 2009; Jones, 2012; Li et al., 2017; 
Peruzzi et al., 2017), it may be suggested that Allium is also 
a successful taxon (the same as the Orchidaceae) in evolution 
and adaptation, and underwent strong positive natural selection.

By analysing the functions of these PSGs, we found that 
three significant PSGs (rpoA, rpoB and rpoC2) are associated 
with RNA polymerase, one gene rpl20 is associated with the 
large subunit of ribosomal proteins (LSU), and another three 
genes, petD, rbcL and matK, are related to the subunits of the 
cytochrome b/f complex, the large subunit of Rubisco and 
maturase, respectively (Fig. 4A; Supplementary data Table S4). 
A  previous study revealed that RNA polymerase can control 
the process of gene transcription and affect the pattern of gene 
expression, thereby allowing species to adapt to a changing en-
vironment, and maintain basic metabolic processes necessary 
for survival (Ishihama, 2000). Furthermore, petD and rbcL are 
essential in the electron transport chain for generation of ATP 
and play important roles in plant photosynthesis (Weiss et al., 
1991; Allahverdiyeva et al., 2005; Cramer et al., 2011; Xiao 
et al., 2012). rpl20 is involved in translation, which is an im-
portant part of protein synthesis (Krause, 1995), and the matK 
gene encodes a maturase that is involved in splicing type II in-
trons from RNA transcripts and has been recommended fre-
quently in phylogenetics and barcoding (Hilu, 2000; Hilu et al., 
2003; Dunning and Savolainen, 2010). Most of the genes men-
tioned above have been reported to be under positive selection 
in previous studies (Dong et  al., 2013; Carbonell-Caballero 
et al., 2015; Ivanova et al., 2017; Xie et al., 2018b; Ye et al., 
2018). We also found that most of the genes in Allium with 
non-significant (P  >  0.05) positively selected sites are asso-
ciated with photosynthesis (e.g. psbC, psbE, petG, petL and 
atpB) and self-replication (e.g. rps11, rps14 and rps18), which 
are extremely important processes for plant growth and devel-
opment (Bryant and Frigaard, 2006; Ewaschuk and Turney, 
2006). Therefore, all these genes with positively selected sites 
may have played key roles in the adaptation of Allium species 
during the evolutionary process.

Additionally, we found that most of the genes with higher fre-
quencies in these 19 families tend to possess higher average Ka/
Ks values (Fig. 4; Supplementary data Table S7). For instance, 
psbC is present in 17 families and has the highest value (Ka/
Ks = 6.31579), followed by rps11, which appeared in 15 fam-
ilies and had the second highest Ka/Ks value (2.03818). Such 
genes were also detected in the Allium lineage (e.g. psbC, rps11 
and rpoC2). A previous study suggested that adaptive evolution 
may preferentially occur at the molecular level, expressed by an 
increased value of Ka/Ks (Bakewell et al., 2007). Many studies 
have confirmed that the higher the Ka/Ks ratio, the stronger the 
positive selection that species underwent (Hurst, 2002; Fay and 
Wu, 2003; Ai et al., 2015; Yang et al., 2015). Thus, those genes 
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with high a Ka/Ks rate may play important roles in the adapta-
tion and evolution of Allium.

Moreover, what needs to be pointed out are the chromosome 
characteristics of Allium species. It has been generalized that 
chromosome characteristics (chromosome number, ploidy 
level, karyotype asymmetry, etc.) are crucial to investigate 
the species relationships and evolution (Sharma and Sharma, 
2014). According to previous studies (see the statistical results 
of Fig. 1 and Supplementary data Table S5), polyploidization 
is a common karyological feature for Allium species (Ohri 
et  al., 1998; Jones, 2012; Peruzzi et  al., 2017). Wu et  al. 
(2010) suggested that the tetraploids of A.  przewalskianum 
arose independently from diploids at least eight times, and 
that those in A. mairei arose at least three times (Yang, 2010). 
It has been considered that polyploids possess many advan-
tages compared with their diploid progenitors in morpho-
logical, physiological, and life history characteristics, and 
rates of adaptation (Ramsey and Schemske, 2002; Mayrose 
et al., 2010). In addition, it has been reported that about 20 
out of 97 Allium species with B chromosomes are polyploids 
(Vujošević et al., 2013), and the B chromosomes were con-
sidered to play important roles for species to adapt to harsh 
environments (e.g. cold, drought or high elevation) (Plowman 
and Bougourd, 1994, Chen et al., 2005, Wu et al., 2010). Hong 
(1990) considered that the growth habit and breeding system 
are the main factors that influence the polyploid frequency of 
a species. However, a reduction in fertility or even infertility 
may have occurred when changes in chromosome number 
generated aneuploids or odd chromosomes (e.g. triploid and 
pentaploid) (Hong, 1990). Species in Allium are perennial and 
bulbiferous herbs, and sometimes possess well-developed rhi-
zomes, which can combine asexual and sexual propagation 
very well (Xu and Kamelin, 2000), and thereby overcome the 
disadvantages from their chromosomal abnormalities (Zhang 
et al., 2009). Therefore, the polyploidization, B chromosome 
and unique breeding system are very important for Allium 
species to adapt to various environments in the evolutionary 
processes.
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