
Integrative analysis of histopathological images and genomic 
data predicts clear cell renal cell carcinoma prognosis

Jun Cheng1,*, Jie Zhang2,*, Yatong Han3, Xusheng Wang2, Xiufen Ye3, Yuebo Meng4, Anil 
Parwani5, Zhi Han2,6, Qianjin Feng1,§, Kun Huang2,§

1Guangdong Province Key Laboratory of Medical Image Processing, School of Biomedical 
Engineering, Southern Medical University, Guangzhou 510515, China.

2Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.

3College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001

4College of Information and Control Engineering, Xi’an University of Architecture and Technology, 
Xi’an, China.

5Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.

6College of Software, Nankai University, Tianjin 300071, PR China

Abstract

In cancer, both histopathological images and genomic signatures are used for diagnosis, prognosis, 

and subtyping. However, combining histopathological images with genomic data for predicting 

prognosis, as well as the relationships between them, has rarely been explored. In this study, we 

present an integrative genomics framework for constructing a prognostic model for clear cell renal 

cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting 

hundreds of cellular morphological features from digitized whole-slide images and eigengenes 

from functional genomics data to predict patient outcome. The risk index generated by our model 

correlated strongly with survival outperforming predictions based on considering morphological 

features or eigengenes separately. The predicted risk index also effectively stratified patients in 

early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed 

using staging alone. The prognostic value of our model was independent of other known clinical 

and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this 

workflow and the shared software code provide building blocks for applying similar approaches in 

other cancers.
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Introduction

Histopathological images confer important information for diagnosis, staging, and prognosis 

for cancers and are being used extensively by pathologists in clinical practice. With the 

recent availability of digital whole-slide images (1), automated computational 

histopathological image analysis systems have shown great promise in diagnosis and the 

discovery of new biomarkers for cancers such as breast (2–4), lung (5,6), brain (7), and 

colon cancers (8). In comparison with human inspection, computerized image analysis has 

great potential to improve efficiency, accuracy, and consistency. Besides histopathological 

images, molecular characteristics, such as genetic alterations and gene expression signatures, 

are also widely adopted for predicting clinical outcomes for cancers (9,10). Therefore, an 

interesting scientific question is the relationship between morphological and genomic 

features while an important translational question is if the integration of these two types of 

features can lead to more accurate prediction of patient outcome. This has been previously 

explored in various cancers including breast, ovarian, and glioblastoma, and led to new 

insights into the relationship between cancer tissue morphology and genetic changes such as 

PTEN mutations (3,11–13).

To study these issues, matched histopathological images and genomic datasets for cancers 

are needed. Fortunately, The Cancer Genome Atlas (TCGA) project not only provides an 

extensive collection of genomics and clinical outcome data for large cohorts of patients of 

more than 30 types of cancers, but also hosts a large collection of matched histopathological 

images for solid tumor samples. Currently, more than 24,000 histopathological images are 

available at the TCGA data portal and can be visualized at the Cancer Digital Slide Archive 

(CDSA, http://cancer.digitalslidearchive.net/) (14).

Quantitative analysis of these images and integration with genomics data require innovation 

in integrative genomics and call for techniques from bioimage informatics, genomics, and 

bioinformatics. We previously developed a computational framework for quantifying 

morphological features from large histopathological images (4,15) as well as genomics 

visualization tools for integrating imaging, clinical, and genomic features to predict patient 

outcomes (4,16,17). Therefore, to further promote this emerging integrative genomics field 

straddling bioimage informatics and genomics and ensure wide utilization of valuable large 

datasets, we demonstrate an integrative genomics workflow on the less well-studied renal 

cancers. The analysis tools are publicly available and can be adopted as building blocks for 

other integrative genomics workflows (please see Methods section).

Renal cell carcinoma (RCC) is the most common type of malignant neoplasm arising from 

kidney in adults, responsible for approximately 90–95% of all cases (18). It can be 

categorized into the following histologic subtypes: clear cell, papillary, chromophobe, 

collecting duct, and unclassified RCC based on the Heidelberg classification system (19). In 
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this study, we focus on clear cell renal cell carcinoma (ccRCC), which is the most prevalent 

subtype, accounting for 80–90% of all RCCs (20). In clinical practice, tissue sections are 

examined under a microscope by pathologists to make a diagnosis and predict prognosis. 

The clinical behavior of ccRCC is quite diverse, ranging from slow-growing localized 

tumors to aggressive metastatic disease (9). Therefore, prognostic markers play a crucial role 

in stratification of patients for personalized cancer management, which could avoid either 

over-treatment or under-treatment (21). For instance, patients classified into high-risk group 

may benefit from closer follow-up, more aggressive therapies, and advance care planning 

(5,22). Currently, prognostic markers for ccRCC in routine clinical use consist mainly of 

tumor stage, nuclear grade, and presence of necrosis (23–25). However, cancer is a highly 

heterogeneous disease. The prediction accuracy of traditional clinical factors remains limited 

for individual patients, especially for early-stage patients, and also relies on the experience 

of pathologists. Therefore, there is a need for more effective markers for predicting 

prognosis of ccRCC.

Using the large cohort of ccRCC patients from TCGA, hundreds of cellular morphological 

features can be extracted from hematoxylin and eosin (H&E) stained whole-slide images, 

characterizing nucleus size, shape, texture, and the spatial relationship between nuclei. In 

this paper, we demonstrate how image features correlate with co-expressed gene signatures 

and developed an automated prognostic model that could predict patient’s survival risk for 

patient stratification, using a combination of quantitative image features and eigengenes. To 

the best of our knowledge, this is the first study to couple histopathological images and 

genomic data to predict ccRCC clinical outcome and our results indicate that the integration 

of imaging and genomic features can lead to improved prognosis prediction for early-stage 

(stages I and II) ccRCC patients than existing clinical markers.

Materials and methods

Data and codes availability

Processed data (extracted quantitative imaging features, combined gene expression data, 

etc.) and code with annotations, comments and instructions are available at https://

github.com/chengjun583/image-mRNA-prognostic-model.

Data source and selection

ccRCC patient samples used in our study included matched H&E stained whole-slide 

images, transcriptome, somatic mutation, and clinical information, which were acquired 

from TCGA data portal at NCI Genomic Data Commons (26). Patients with missing or too 

short (i.e., less than 30 days) follow-up were excluded. Microscopic images (20X and 40X 

magnification) were obtained from TCGA. The demographic and clinical characteristics for 

the selected 410 patients are summarized in Table 1.

One challenge for this study was the lack of other large cohorts of ccRCC with matched 

histological image and genomic data. Thus, instead of using a second dataset for validation, 

we applied cross-validation in every step of downstream of the machine learning analysis as 

described below.
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Data analysis and integration workflow

Fig. 1 outlines our data analysis workflow for both imaging and genomic data for both 

univariate and multivariate analyses with details of each major step being described in the 

following sections.

Histopathological image features

Our image feature extraction pipeline consists of three steps: nucleus segmentation, cell-

level feature extraction, and aggregation of cell-level features into patient-level features (Fig. 

1A). Rich pathological information is present in stained cell nuclei that requires 

segmentation to facilitate subsequent analyses. For this task, a recently proposed approach 

by Phoulady et al (27) was employed, which is an unsupervised segmentation method 

requiring no parameter learning or training data because the parameters are set adaptively. 

Next, ten types of cell-level features were extracted for each segmented nucleus, 

characterizing nucleus size, shape, texture, and distance to neighbors. These cell-level 

features are nuclear area (denoted as area), lengths of the major and minor axes of cell 

nucleus and the ratio of major axis length to minor axis length (major, minor, and ratio), 

mean pixel values of nucleus in RGB three channels respectively (rMean, gMean, and 

bMean), and mean, maximum, and minimum distances (distMean, distMax, and distMin) to 

neighboring nuclei in the Delaunay triangulation graph (28). The Delaunay triangulation 

graph was constructed based on the locations of segmented nuclei. In this graph, each 

nucleus was a node and connected to neighboring nuclei. Finally, for each type of cell-level 

features, a ten-bin histogram and five distribution statistics (i.e. mean, standard deviation, 

skewness, kurtosis, and entropy) were adopted to aggregate the numerous cell-level features 

extracted from a patient into patient-level features; 150 patient-level features were generated 

in total. Taking the cell-level feature, area, as an example, corresponding 15 patient-level 

features were denoted as area_bin1 to area_bin10 for the 10 histogram features, and 

area_mean, area_std, area_skewness, area_kurtosis, and area_entropy for the 5 distribution 

statistics. For other cell-level features, corresponding patient-level features were named in 

the same way. Area_bin1 represents the percentage of very small nuclei over the entire slide 

for a patient while area_bin10 indicates the percentage of very large nuclei in the patient 

sample. Skewness is a measure of the asymmetry of the data distribution around the sample 

mean, kurtosis is a measure of how outlier-prone a distribution is, and entropy is a statistical 

measure of randomness.

Additional description about aggregation of cell-level features into patient-level features is 

provided in the Supplemental Material. A qualitative example of nucleus segmentation 

results is shown in Fig. S1.

Gene co-expression analysis and summarization

mRNA expression profiles for the ccRCC tumors in TCGA were transformed from Illumina 

HiSeq 2000 RNA-seq readcounts to normalized RPKM (reads per kilobase per million). 

While our first goal was to establish the relationships between gene expression data and the 

imaging features, the large number of genes posed a challenge to obtaining sufficient 

statistical power. Therefore instead of focusing on individual genes, we first carried out gene 

co-expression network analysis (GCNA) to cluster genes into co-expressed modules and 
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summarized each module as an “eigengene” using the protocol described in (29) (Fig. 1B). 

Modules are clusters of highly interconnected/correlated genes. The eigengene of a module 

is defined as the first principle component, which can be considered a representative of the 

gene expression profiles in a module. This approach not only substantially improves 

statistical power (30), but also allows us to focus on important biological processes or 

genetic variations associated with the co-expressed gene modules, making the results more 

interpretable than individual genes as the co-expressed modules are often strongly associated 

with a specific gene group participating in the same biological process or located on the 

same chromosomal band.

While there are many algorithms for performing GCNA including the well-known WGCNA 

package (31), we applied our recently developed weighted network mining algorithm called 

local maximum quasi-clique merging (lmQCM) (32). Unlike WGCNA, which uses 

hierarchical clustering and does not allow overlap between modules, our algorithm is a 

greedy approach allowing genes to be shared among multiple modules, consistent with the 

fact the genes often participate in multiple biological processes. In addition, we have shown 

that lmQCM can find smaller co-expressed gene modules that are often associated with 

structural mutations such as copy number variation in cancers (32). The lmQCM algorithm 

has four parameters γ, α, t, and β. Among these parameters, γ is the most influential, as it 

determines if a new module can be initiated by setting the weight threshold for the first edge 

of the module as a subnetwork. In the lmQCM algorithm, we transformed the absolute 

values of the Spearman correlation coefficients between expression profiles of genes into 

weights using a normalization procedure adopted from spectral clustering for which we have 

shown to be effective in previous studies (33). In practice, we found with γ = 0.30, t = 1, α = 

1, and β = 0.4 the algorithm yielded 15 co-expressed gene modules (Table S1) with balanced 

sizes and clear biological interpretation based on enrichment analysis (Table S2).

Machine-learning methods for prognosis prediction

We built a lasso-regularized Cox proportional hazards (lasso-Cox) model (R package 

“glmnet”) to calculate the risk index of each patient (34), based on the cellular 

morphological features and eigengenes (Fig. 1C). Lasso penalty (i.e. L1 penalty) can induce 

sparsity and thus select an informative subset of features. To validate our method, we used a 

two-level cross validation (CV) strategy. After each patient was used as a test sample and 

classified into a low-risk or high-risk group, we used Kaplan-Meier estimator and log-rank 

test to test if these two groups had distinct survival.

Additional description of the training and prediction process is provided in Supplemental 

Material.

Statistical methods and enrichment analysis

To screen survival-associated features, for each patient-level feature we divided patients into 

two groups (low and high groups) where the median of each feature was used as a cut-off 

point. Kaplan-Meier estimator was used for patient stratification, and p value was calculated 

with the log-rank test, where p < 0.05 was considered significant. For the initial survival 

analysis, since our initial goal was screening, we did not apply multiple test compensation 
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such as FDR control in order to obtain more candidate features. The lasso-Cox model was 

learned on the selected survival-associated features. Cox proportional hazards regression 

model was fitted, and 95% confidence intervals were computed to determine the prognostic 

values of our lasso-Cox risk indices and other known prognostic factors. Correlation was 

computed using Spearman rank correlation coefficients. Enrichment analysis of co-

expressed gene modules was carried out using Toppgene (35). All the survival analyses were 

performed using R package “survival.”

Results

Both image and gene expression data identify poor-prognosis subtype with high 
percentage of tumor stroma

To investigate which specific image features and eigengenes are associated with patient 

survival, we tested for each feature the statistical significance of difference in overall 

survival between low and high risk groups that were stratified by the median of feature 

values. Log-rank test results revealed that 33 image features and 6 eigengenes were 

significantly related to prognosis (p < 0.05). The log-rank test results of all survival-related 

variables are listed in Table 2 and the Kaplan-Meier survival curves for some variables are 

shown in Fig. 2A–E.

After examining these survival-associated variables, we found many of them were connected 

to stroma tissue. Stromal cells such as fibroblasts are typically spindle-shaped with 

elongated nuclei and therefore characterized by long major axes and/or large ratio between 

major and minor axes. As shown in Table 2, Fig. 2A and B, image features such as 

major_bin8, major_bin9, ratio_bin8, ratio_bin9, ratio_std, and major_std, were negatively 

related to prognosis, that is, patients with large values of these variables had worse prognosis 

than other patients. Large values of these variables imply a high percentage of stromal cell 

nuclei in whole-slide images (in terms of major_std, and ratio_std, large values of these 

variables mean that the major axis length and the ratio of major axis length to minor axis 

length are spread out in a wide range, indicating a high percentage of stromal cell nuclei). In 

other words, patients with high percentage of stromal tissue are related to poor prognosis for 

ccRCC in our study.

In addition to histopathological images, gene expression data also corroborated that stroma 

played an important role in tumor prognosis. Enrichment analysis showed that gene module 

2 was enriched with extracellular matrix genes (Table S2), which is consistent with our 

knowledge that the tumor microenvironment plays critical roles in tumor development (2,3). 

Kaplan-Meier survival curves demonstrated distinctly different outcomes for low- and high-

expression groups (log-rank test p value = 0.024), where high expression of eigengene 2 was 

associated with poor prognosis.

Integrative analysis enhances prognostic prediction power

In the previous sections, we showed that many individual features derived from 

histopathological images and genomic data stratified patients with distinct prognosis. We 

next investigated if the integration of all identified survival-associated features would 
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provide better prognostic prediction. We built a lasso-regularized Cox proportional hazards 

model to select the most informative features and calculate a risk index for each patient. 

Based on the risk indices, patients were divided into a low- or high-risk group by the 

median. The lasso-Cox model provided significantly better patient stratification than that 

using individual features (Fig. 2D–F, log-rank test p values = 2.23e-5, 7.46e-6, and 8.79e-10 

for the most significant image feature, rMean_bin10, the most significant eigengene 

expression, eigengene3, and lasso-Cox model, respectively). Among the 33 survival-

associated image features and six survival-associated eigengenes, eight image features and 

five eigengenes were selected: rMean_bin6, major_bin9, area_bin5, gMean_bin10, 

ratio_bin7, ratio_bin8, ratio_bin9, major_bin1, eigengene1, eigengene3, eigengene9, 

eigengene11, and eigengene13 (Enrichment analyses of survival-related gene modules are 

listed in Table S2). Both image features and eigengenes appeared in the final selected feature 

set, and most of the pairwise mutual information values between them are smaller than the 

ones between significantly correlated image features and eigengenes (Fig. S2), suggesting 

that histopathological images and genomic data complement each other in predicting 

survival outcome.

Survival-associated image features correlate with eigengenes

Genotype is one of the three factors that determine phenotype, the other two being inherited 

epigenetic factors and non-inherited environmental factors. Therefore, tumor characteristics 

or morphology is very likely to have some relationships with gene expression data. To find 

out these relationships, we calculated Spearman rank correlation coefficients between each 

pair of 33 survival-associated image features and all eigengenes for the 15 modules. The 

heat map of the correlation matrix is shown in Fig. 3.

As can be seen from the heat map, eigengenes 2, 3, 9, and 11 significantly correlated with 

many image features (statistically significant after Bonferroni correction). The gene module 

2 was enriched with extracellular matrix genes, which explained why it positively correlated 

with image features such as ratio_bin8, ratio_bin9, ratio_std, major_bin9, and major_std that 

describe the percentage of stromal cells. Gene module 3 was enriched with acid metabolic 

process and transmembrane transporter activity. Genes in this module play a central role in 

renal functions such as organic anion transport (36). Patients with low expression of this 

eigengene were related to poor prognostic outcome (log-rank test p value = 7.46e-6, Fig. 

2E), implying impaired renal function. This eigengene also negatively correlated with 

images features representing the amount of stromal cells such as ratio_bin9, major_bin9, 

ratio_std, and major_std. Gene module 9 was highly enriched with cell cycle and mitosis 

genes. In fact, genes in this module are frequently observed to co-express in multiple types 

of cancers (37). High expression of this eigengene indicates that the tumor is more 

aggressive, and it was negatively related to patient prognosis (log-rank test p value = 

1.19e-4). Cells become bigger when they come into mitotic phase, which was in line with 

our observation that the gene module 9 was significantly and positively correlated with 

image features such as area_bin5, area_bin6, and area_std. The top molecular functions of 

gene module 11 by were frizzled binding and G-protein coupled receptor binding. G-

protein-coupled receptors (GPCRs) represent the largest family of cell-surface molecules 

involved in signal transduction. Experimental and clinical data indicate that GPCRs have a 
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crucial role in cancer progression and metastasis (38). Patients with high expression of gene 

module 11 had significantly worse outcome than other patients (log-rank p value = 1.33e-3). 

Similar to gene module 2, module 11 also significantly correlated with many image features 

that describe stroma cells, such as ratio_bin8, ratio_bin9, and ratio_std. Survival analysis 

results and enrichment analysis results for all survival-associated eigengenes are 

summarized in Table 2 and Table S2, respectively.

Lasso-Cox risk index is independent of known prognostic factors

Using univariate and multivariate Cox proportional hazards analysis, we performed a 

comprehensive comparison between the lasso-Cox risk index and other known prognostic 

biomarkers, including two clinical variables, grade (G1+G2 vs. G3+G4), stage (I+ II vs. III+ 

IV), six gene expression signatures (39,40), CSNK2A1, SPP1, DEFB1, CD31, EDNRB, 

TSPAN7, and five somatic mutation genes (26,41–46), VHL, PBRM1, BAP1, SETD2, 

TP53. Patient subtyping for gene expression signatures was carried out by using the median 

as cut-off point. In terms of genes with somatic mutation, patients were classified as mutant 

or wild-type. Of these factors, only grade, stage, lasso-Cox risk index, DEFB1, EDNRB, and 

TSPAN7 were associated with survival by univariate Cox proportional hazards analysis 

(Table 3). DEFB1 encodes beta-defensin, which belongs to a family of antimicrobial 

peptides produced by white blood cells and epithelial cells. Rabjerg (40) suggested that 

DEFB1 might be a tumor suppressor gene, but our results revealed that high expression of 

this gene predicted a worse prognosis with very weak significance (p = 4.99e-2, hazard ratio 

= 1.41, and 95% confidence interval = [1.00, 1.98]). EDNRB is a member of the endothelin 

axis, and TSPAN7 is a member of the transmembrane 4 superfamily. Wuttig (39) showed 

that EDNRB and TSPAN7 might be suppressors of tumor progression and metastatic tumor 

growth, which is in agreement with our results that high expression of these two genes 

predicted a better prognosis. Subsequently, multivariate Cox proportional hazards analysis 

demonstrated that lasso-Cox risk index was an independent prognostic factor (p = 2.31e-4, 

hazard ratio = 2.26, 95% confidence interval 1.46–3.49), as well as stage and TP53 (Table 

3).

Predicting survival in early-stage ccRCC

As shown in Table 3, tumor stage is the most effective prognostic factor, but its capability of 

stratifying early-stage (i.e. stage I and II) ccRCC patients is very limited (Fig. 4A and B). 

The Kaplan-Mejer curves of stages I and II are intertwined (log-rank test p value = 0.962), 

which may be attributed to the less significant morphological differences between stages I 

and II tumors and/or large subtyping variations among pathologists.

However, the image features and eigengenes can successfully stratify early-stage patients 

with distinct survival outcomes. Log-rank testing of each of the 165 variables (150 image 

features and 15 eigengenes) revealed that 13 image features and 2 eigengenes were 

associated with survival (Table S3). Survival curves of 3 variables are shown in Fig. 4C–E. 

In addition, we also trained a lasso-Cox prognostic model using the above 15 variables 

related to survival. Fig. 4F shows the survival curves stratified by the lasso-Cox risk index 

(log-rank test p value = 0.014). Compared to individual variables, integrating image features 

and eigengenes did not improve the accuracy of prognostic prediction for early-stage 
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patients while there indeed was a very significant improvement when using all patients. This 

is because the death rate in early-stage patients is much lower than that in all patients (18.5% 

vs 32.9%), and high death rate is key to ensuring prediction accuracy of lasso-Cox model. If 

all patients were used in the lasso-Cox model to predict early-stage patient prognosis, the 

performance was improved (log-rank test p value = 8.65e-3). The two eigengenes associated 

with the prognosis of the early-stage patients corresponded to co-expressed gene modules 3 

and 13. The gene module 3 was highly enriched with genes related to kidney functions such 

as organic acid metabolic process (p = 5.702 × 10−18), ammonium ion metabolic process (p 
= 6.612 × 10−9), and anion transport (p = 5.994 × 10−8). This observation suggests that the 

physiological functions for kidney can be potential prognostic markers for early-stage 

patients. Besides gene module 3, gene module 13 contains 10 genes. Interestingly, all the 10 

genes locate on the same chromosome, straddling chromosome 14q11 to 14q32, implying 

potential copy number variation on 14q may be related to the prognosis of kidney patients.

Sensitivity analysis

Since our analysis relies on parameters for the machine learning algorithms and choices of 

cross validation (CV) methods, we also examined the choice of various parameters, 

especially the choice of number of clusters K for the cellular features. Fig. S3 shows the log-

rank test p value as a function of the number of clusters in K-means algorithm. Fig. S3 

suggests that lasso-Cox model can achieve very low p values when K ranges from 8 to 14. 

We also compared leave-one-out CV with k-fold CV. Fig. S4 shows that as k increases, the p 

value tends to continuously decline. This is because in k-fold CV a large k means we have 

more training samples, and thus the learned model is likely to perform better especially 

when the whole data set is not very large. As a result, we chose K=10 in the K-means 

algorithm, and we used leave-one-out CV in our experiments.

Discussion

To our knowledge, this is the first study to predict the survival outcomes of ccRCC patients 

using a combination of quantitative morphological features extracted from whole-slide tissue 

images and gene expression signatures. In this study, we developed an automatic image 

analysis pipeline to extract hundreds of cellular morphological features, and found cellular 

morphology was highly linked to co-expressed gene signatures. For example, image features 

characterizing the amount of stromal cells positively correlated with extracellular matrix 

genes. Standard deviation of nuclear area correlated with genes that regulate cell cycle and 

mitosis. In addition, a powerful prognostic model was built to predict the survival outcomes 

of ccRCC patients using these two types of data. The performance of the integrated 

prognostic model significantly outperformed that of individual image or genomic features, 

which indicates that image data are complementary to genomic data for predicting patient 

prognosis. Using multivariate Cox regression, we verified that the risk index generated by 

our model was a prognostic factor independent of tumor grade, stage, and other known 

molecular markers. For early-stage patients, besides the imaging data, the genomic data 

suggests that the kidney functions and status of 14q may be predictors of the survival time 

for these patients.
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Recent studies have underscored the important contribution of stromal gene expression and 

morphologic phenotypes to cancer growth and progression for breast cancer (2,3,47). The 

implication of tumor stroma to prognosis could be different for different cancer types. For 

instance, high percentage of tumor stroma is associated with poor prognosis in triple-

negative disease but good prognosis in estrogen receptor-positive disease (48,49). Here, we 

found in this study that for ccRCC both image features and gene expression signatures 

revealed that a large percentage of tumor stroma predicted poor prognosis.

The high resolution of whole-slide tissue images poses a great computational challenge to 

researchers. For this reason, many previous studies only focused on selected views in tissue 

microarrays or a few representative image tiles in whole-slide images (2,5). Since tumor is a 

highly heterogeneous disease, image features extracted from a much larger area of the tumor 

would be more likely to ensure the robustness of the derived prognostic model. Our 

prognostic model was established on the fully automated quantitative image features that 

were extracted from whole-slide histopathological images, which could avoid biases or 

discrepancies arising from only using a small portion of the tumor.

Our study is limited to only one large ccRCC patient cohort as it is difficult to find other 

cohorts that have matched histopathological images, gene expression profiles, and survival 

information. However, the performance of our prognostic model was strictly assessed by 

cross validation. The model selection was performed by 10-fold cross validation on the 

training set, and then the selected model was applied to the held-out test samples to predict 

risk indices. Another technical contribution of this work lies in the fact that we used only the 

cryohistological images from TCGA. Usually for each TCGA solid tumor sample, two 

histopathological images are generated – the H&E stained diagnostic image and the 

cryohistological image from a slice of tissue immediately adjacent to the tissue used for 

generating the omics data. Thus, due to spatial proximity, the cryohistological image is a 

more accurate reflection of the molecular profiles of the tissue for the omics data. However, 

due to processing artifact, many of these images appear damaged and cannot be processed 

for tissue features using previous methods, preventing accurate characterization on the tumor 

morphology. Here we showed that the cell nucleic features suggestive of stromal cells indeed 

correlated well with the gene expression profiles of extracellular matrix and stromal genes, 

suggesting in such images, albeit for the artifacts affecting texture analysis, the cell nucleic 

features can still be used.

Finally, although our study focused on predicting survival for ccRCC patients, we believe 

that the workflow of integrative analysis of histopathological images with genomic data 

could be easily applied to other cancer types or to predict response of specific treatments, 

which would allow for better patient management and cancer care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data analysis and integration workflow. (A) Cellular morphological feature extraction 

pipeline. (B) Schematic diagram for gene co-expression analysis and summarization. (C) 

Integrative analysis of image features with eigengenes. Univariate survival analysis is used 

for an initial selection of survival-associated variables, and then these variables are used to 

train a lasso-Cox prognostic model. Correlation between image features and eigengenes is 

also explored.
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Figure 2. 
Image features and eigengenes predict the survival outcomes of ccRCC patients. Both image 

features (A and B) and eigengenes (C) identify poor-prognosis subtypes with high 

percentage of stroma. Gene module 2 is enriched with extracellular matrix genes. 

RMean_bin10 (D) and eigengene3 (E) are the most significant variables for image features 

and eigengenes, respectively. Integrative analysis of histopathological images and genomic 

data using lasso-Cox can significantly improve the prognosis prediction power (F).
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Figure 3. 
Pairwise correlation heat map between 33 survival-associated image features and all 15 

eigengenes, using Spearman rank correlation.
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Figure 4. 
Image features and eigengenes predict the survival outcomes in early-stage (stage I and II) 

ccRCC patients. Stage is strongly associated with survival (A) but cannot stratify early-stage 

patients (B). However, image features (C, D), eigengenes (E), and lasso-Cox model (F) are 

significantly related to survival in early-stage patients.
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Table 1.

Demographic and clinical characteristics.

Characteristics Summary

Patient No. 410

Age (years)

 Range 26–90

 Median 60

Gender

 Female 140 (34.2%)

 Male 270 (65.8%)

Follow-up (months)

 Range 1.3–112.6

 Median 37.8

Death 135 (32.9%)

Grade

 G1 7 (1.7%)

 G2 171 (41.7%)

 G3 169 (41.2%)

 G4 63 (15.4%)

Stage

 Stage I 202 (49.3%)

 Stage II 41 (10%)

 Stage III 98 (23.9%)

 Stage IV 69 (16.8%)
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Table 2.

Survival-associated image features and eigengenes, identified by Kaplan-Meier estimator and log-rank test (p 

< 0.05). For each variable, patients were stratified into low and high groups using the median as cut-off point. 

For P/N, P means positive relation to survival (i.e., patients with high feature values have good prognosis), 

whereas N means negative relation to survival.

Feature P value P/N Feature P value P/N

rMean_bin10 2.23e-5 N gMean_entropy 0.0194 N

rMean_bin6 8.55e-5 P ratio_std 0.0245 N

rMean_std 1.18e-4 N rMean_kurtosis 0.0269 P

rMean_entropy 2.45e-4 N ratio_bin8 0.0297 N

gMean_std 7.70e-4 N ratio_bin9 0.0312 N

rMean_bin5 0.0010 P area_std 0.0319 N

major_bin9 0.0022 N ratio_bin5 0.0322 N

major_entropy 0.0028 N ratio_mean 0.0324 N

area_bin5 0.0056 P major_bin1 0.0333 N

major_bin4 0.0058 P major_bin2 0.0337 N

ratio_bin6 0.0059 N bMean_bin10 0.0338 N

major_bin8 0.0060 N major_bin10 0.0366 N

major_std 0.0072 N bMean_std 0.0407 N

area_bin7 0.0089 P eigengene3 7.46e-6 P

rMean_bin9 0.0097 N eigengene9 1.19e-4 N

major_bin5 0.0113 P eigengene13 9.39e-4 P

gMean_bin10 0.0113 N eigengene11 0.0013 N

area_bin6 0.0124 P eigengene1 0.0217 N

bMean_entropy 0.0164 N eigengene2 0.0237 N

ratio_bin7 0.0176 N
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Table 3.

Univariate and multivariate Cox proportional hazards analysis of the prognostic values of lasso-Cox risk index 

and other prognostic factors. HR, hazard ratio. CI, confidence interval.

Univariate Cox regression Multivariate Cox regression

Variable HR (95% CI) P value HR (95% CI) P value

Lasso-Cox 3.06 (2.10–4.45) 5.02e-9 2.26 (1.46–3.49) 2.31e-4

Clinical

 Grade 2.38 (1.63–3.5) 8.45e-6 1.46 (0.95–2.23) 8.22e-2

 Stage 3.68 (2.57–5.27) 1.12e-12 3.00 (2.00–4.49) 9.23e-8

Gene expression

 CSNK2A1 0.90 (0.64–1.26) 5.34e-1 1.07 (0.74–1.56) 7.11e-1

 SPP1 1.15 (0.82–1.61) 4.14e-1 1.10 (0.75–1.63) 6.20e-1

 DEFB1 1.41 (1.00–1.98) 4.99e-2 1.36 (0.95–1.95) 9.71e-2

 PECAM1 0.77 (0.55–1.09) 1.40e-1 1.04 (0.69–1.58) 8.45e-1

 EDNRB 0.50 (0.35–0.71) 9.10e-5 0.96 (0.59–1.57) 8.77e-1

 TSPAN7 0.54 (0.38–0.76) 5.12e-4 1.03 (0.64–1.67) 9.07e-1

Somatic mutation

 VHL 0.99 (0.70–1.38) 9.33e-1 1.23 (0.86–1.75) 2.57e-1

 PBRM1 0.85 (0.58–1.24) 3.94e-1 1.03 (0.69–1.54) 8.85e-1

 BAP1 1.49 (0.78–2.85) 2.22e-1 1.49 (0.74–3.00) 2.60e-1

 SETD2 1.29 (0.77–2.14) 3.29e-1 1.03 (0.62–1.74) 9.00e-1

 TP53 2.26 (1.00–5.15) 5.13e-2 2.86 (1.19–6.86) 1.85e-2
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