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Abstract
Hematopoietic stem cell transplantation has become a curative choice of many
hematopoietic malignancy, but graft-vs-host disease (GVHD) has limited the
survival quality and overall survival of hematopoietic stem cell transplantation.
Understanding of the immune cells’ reaction in pathophysiology of GVHD has
improved, but a review on the role of macrophages in GVHD is still absent.
Studies have observed that macrophage infiltration is associated with GVHD
occurrence and development. In this review, we summarize and analyze the role
of macrophages in GVHD based on pathophysiology of acute and chronic
GVHD, focusing on the macrophage recruitment and infiltration, macrophage
polarization, macrophage secretion, and especially interaction of macrophages
with other immune cells. We could conclude that macrophage recruitment and
infiltration contribute to both acute and chronic GVHD. Based on distinguishing
pathology of acute and chronic GVHD, macrophages tend to show a higher
M1/M2 ratio in acute GVHD and a lower M1/M2 ratio in chronic GVHD.
However, the influence of dominant cytokines in GVHD is controversial and
inconsistent with macrophage polarization. In addition, interaction of
macrophages with alloreactive T cells plays an important role in acute GVHD.
Meanwhile, the interaction among macrophages, B cells, fibroblasts, and CD4+ T
cells participates in chronic GVHD development.
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Core tip: Macrophages tend to show a higher M1/M2 ratio in acute graft-vs-host disease
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(GVHD) and a lower M1/M2 ratio in chronic GVHD. Influence of cytokines on GVHD
is controversial. Macrophages interact with alloreactive T cells in acute GVHD, and the
interaction among macrophages, B cells, fibroblasts, and CD4+ T cells participates in
chronic GVHD development.
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INTRODUCTION
As a therapy to cure hematopoietic malignancy, allogeneic hematopoietic stem cell
transplantation  has  greatly  improved  the  survival  rate  of  many  malignant
hematologic  diseases.  However,  graft-vs-host  disease  (GVHD)  can  occur  after
transplantation as a major complication and cause non-relapse mortality principally[1].
GVHD is  classified into  acute  GVHD and chronic  GVHD. It  is  not  the  temporal
relationship to transplantation, but clinical features that should be considered to
identify acute or chronic GVHD syndromes[2].  Three classic target organs of acute
GVHD, including skin, gastrointestinal (GI) tract and liver, and eight essential organs
of chronic GVHD, including skin, mouth, eyes, GI tract, liver, lung, joint and fascia,
and genital tract, are recommended to calculate the score of chronic GVHD based on
the global  scoring system evaluating targeted organs and general  status.  GVHD
severity is described as mild, moderate, and severe[3,4].

The mechanism of GVHD is not clearly understood. Tissue damage caused by
conditioning regimens,  chemotherapy,  and total  body irradiation is  essential  in
GVHD biology[5]. Recipient human leukocyte antigen mismatching is a great risk of
GVHD[6-8] because it can prime the alloreactive T cell reaction with the help of antigen
presenting cells. Alloreactive T cells recognize the recipient as non-self, attack the
target organs of recipients, and initiate GVHD[9]. Antigen presentation, naive T cell
differentiation,  evoked  cytolytic  machinery,  and  cytokine  regulation  network
establish the process of acute GVHD[10-13]. The final effect of these mechanisms in acute
GVHD is apoptosis caused by cytolytic effector and cytokine storms from adaptive
and innate immune cells, whereas end-organ fibrosis is a prominent feature of chronic
GVHD[12].  Characteristic  chronic  GVHD  is  caused  by  impaired  thymic  damage,
reaction of pathogenic germinal center (GC) B cells and macrophages, unbalanced T
cells differentiation with accumulation of Th17/Tc17 and T follicular helper (Tfh) cells
and suppression of T regulatory (Treg) cells, antibody disposition and concomitant
cytokine production (e.g., increased transforming growth factor (TGF)-β, interleukin
(IL)-17 from Th17, IL-21 produced by Tfh driving GC B cell formation and antibody
secretion)[14,15]. Therapies have worked via targeting T cells or B cells, infusing immune
regulatory cells, and using cytokine antagonists[11,16-18]. The process of GVHD manifests
an aberrant homeostasis of immune response.

Studies have reviewed the mission of many adaptive and innate immune cells, such
as B cells, Treg cells, natural killer T cells, dendritic cells, and innate lymphoid cells in
GVHD, but the role of macrophages in GVHD has not been reported before[19-23]. In
this  review,  we  outlined  the  role  of  macrophages  in  GVHD,  focusing  on  the
macrophage infiltration, cytokine production, and their interaction with other cells.

FUNCTIONS OF MACROPHAGES IN IMMUNE RESPONSE
Macrophages show great heterogeneity and plasticity that it is able to activate and
polarize  to  different  phenotypes  through  the  stimulation  of  multiple  signaling
molecules  in  the  same  or  different  microenvironment [24-26].  Tissue-resident
macrophages  participate  in  many  pathologies,  such  as  microglia  in  neuro-
degeneration, osteoclasts and macrophages in osteoporosis, cardiac or vasculature
macrophages in atherosclerosis, Kupffer cells in liver disease, alveolar macrophages in
pulmonary disease and so on[27,28].  Macrophages can be categorized as classically
activated macrophages with microbicidal activity, wound-healing macrophages with
tissue repair function, and regulatory macrophages with anti-inflammatory activity[29].
Another traditional classification divides macrophages into M1 macrophages and M2
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macrophages[25].  Notably,  reciprocal  switch  between  M1  macrophages  to  M2
macrophages can be induced[30]. Macrophage-targeted therapies were used in clinical
trials,  based  on  macrophage  functions,  such  as  self-renewal,  phagocytosis,
chemotaxis, inflammatory response, pro-tumor response, and therapeutic protein
secretion[31,32].

INFILTRATION OF MACROPHAGES CONTRIBUTES TO
GVHD
Studies about the relationship between macrophages and GVHD in recent years were
summarized and presented in Table 1. We found that macrophage infiltration is an
important feature in GVHD pathogenesis.

Macrophage infiltration is a biomarker for GVHD occurrence and development.
Both free and clustered macrophages are important in GVHD pathogenesis. In the
study by Nissen et al[33], an increased number of macrophages was detected in 11 out
of 30 patients. Ten of these eleven patients developed GVHD. A remarkable difference
was noted between the 10 out of 14 patients who showed the macrophage pattern
before bone marrow transplantation, and there was only one patient among the 19
without GVHD. Also, Terakura et al[34] indicated that heavier macrophage infiltration
is correlated with a higher severity of cutaneous GVHD. Piérard et al[35] also illustrated
that biopsies from the liver, gut, and skin of patients with lethal GVHD showed a
striking preponderance of CD68+ macrophages in the inflammatory infiltration. These
findings  showed  that  macrophage  infiltration  is  positively  correlated  with  the
occurrence  and  development  of  GVHD.  Furthermore,  macrophages  polarize  to
different  populations  and infiltrate  in  different  target  organs  (Table  1),  and the
dominant macrophage population in acute GVHD differs from that in chronic or
refractory GVHD.

Taken together,  macrophage regulation in  GVHD can be considered from the
following directions, including macrophage polarization, regulation of cytokines and
interaction with other cells such as T cells, B cells, and mesenchymal stem cells, and
fibrosis.

MACROPHAGE POLARIZATION IN GVHD
As mentioned above, macrophage infiltration contributes to GVHD, but macrophage
populations vary in different phases, tissues, and conditions of GVHD. Macrophages
infiltrating in acute GVHD tend to be pro-inflammatory M1 macrophages, whereas it
is M2 macrophages that are predominant in chronic and refractory acute GVHD.
Studies demonstrated that the recruitment of macrophages is one of hallmarks in the
initiation of acute GVHD, and a higher ratio of M1 macrophage/M2 macrophage
(M1/M2) correlates to a higher incidence of grade 2-4 acute GVHD[36,37].

During  acute  GVHD  pathogenesis,  except  in  immune  responses,  there  is  a
cytostatic effect to inhibit cellular proliferation via  releasing iron from target cells
induced by macrophage-producing nitric oxide (NO)[38]. Infiltration of inducible NO
synthase (iNOS)positive M1 macrophages was found in oral mucosal acute GVHD[39].
It means that M1 macrophage polarization can modulate acute GVHD by producing
NO.

Although the association between M1 macrophages and acute GVHD have been
reported,  Holtan et  al[40]  observed more CD4+ activated memory T cells  and M0
macrophages in  onset  GI  acute  GVHD, increased M1 macrophages in  onset  and
steroid-refractory acute GVHD but higher M2 macrophages in steroid-refractory GI
acute GVHD. For the diversity between macrophage polarization in acute GVHD and
refractory GI acute GVHD, it might be due to the phases and complicated mechanism
of  steroid-refractory  GVHD  that  refractory  GVHD  was  more  associated  with
thrombotic  system[41,42].  In  addition,  as  a  scavenger  receptor,  CD163  is  mostly
expressed on M2 macrophages[43]. Nishiwaki et al[44] also demonstrated that CD163
macrophage infiltration was the only predictor for refractory acute GVHD when the
number of CD163(+) macrophages, CD8(+) T cells, and CD1a(+) dendritic cells was
counted. Meanwhile, a higher plasma soluble CD163 concentration at day 80 is related
to the incidence of de novo-onset chronic GVHD[45]. Donor-derived M2 macrophage
phenotype contributes to chronic GVHD, not only manifesting CD163+ macrophage
population,  but  also  CD11b+  monocyte/macrophages  and  F4/80+CSF-
1R+CD206+iNOS-  populations [46-50].  Therefore,  we  could  conclude  that  M1
macrophage polarization is  predominant in acute GVHD, while M2 macrophage
polarization is dominant in refractory acute GVHD and chronic GVHD.
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Table 1  Studies about macrophages in graft-vs-host disease

Function of macrophage Macrophage in GVHD Ref.

Infiltration Macrophage infiltration contributes to GVHD
[33-36,39,40,44-50,54,56-58,64,65,86,115-118]

Polarization M1/M2 ratio is increased in acute GVHD
[37,39,61]

M1/M2 ratio is decreased in chronic GVHD
[45,49,50,86]

M2 macrophage infiltration contributes to steroid
refractory acute GVHD

[40,44]

Recruitment; migration Recruitment of macrophage to target organs
contributes to GVHD

[36,39,48,49,54,117-119]

Cytokine secretion Macrophage activation with an upregulated
expression of cytokines contributes to GVHD

[46,49,55-60,114,116]

Interaction with T cells Interaction between macrophages and T cells
regulates GVHD directly or indirectly

[56,57,60,61,63-66]

Participating in fibrosis Macrophages attribute to fibrosis in chronic
GVHD

[46-50,54,60,86]

GVHD: Graft-vs-host disease; M2: M2 macrophage; M1/M2 ratio: The ratio of M1 macrophage and M2 macrophage.

RECRUITMENT OF MACROPHAGES
Chemokines regulate macrophage infiltration in GVHD. On the basis of cysteine
residues,  four  subfamilies  of  chemokines,  including C,  CC,  CXC,  and CX3C are
defined, which are able to bind to XCR, CCR, CXCR and CX3CR, respectively, with
the  ability  to  regulate  recruitment  of  leukocytes[51,52].  CXCL2  is  also  known  as
macrophage inflammatory protein-2. CXCL2 played an important role in recruitment
of macrophages and T cells to target organs in GVHD, and the severity of GVHD was
decreased by blocking CXCL2 and its receptor CXCR2[53]. In addition, by binding to
CC  chemokine  receptor  2,  monocyte  chemoattractant  protein  (MCP)-1  can  also
regulate the recruitment of monocytes/macrophages, T cells, and other target cells
and engage in the inflammatory response.  An accumulation of iNOSpositive M1
macrophages was found in oral mucosal acute GVHD via  both laminin/CD29 β1
intern and MCP-1/CC chemokine receptor 2 pathways[39]. Macrophage migration is
mediated  by  laminin/CD29  β1  intern,  meanwhile,  macrophage-derived  matrix
metalloproteinase-2 contributed to basement membrane degradation and activated
macrophages interacted with oral epithelium via the MCP1/CC chemokine receptor 2
adhesive pathway directly[39].

On the other hand, in chronic GVHD, Du et al[54] indicated that CCL9 showed a
biological  relevance  for  chronic  GVHD  by  promoting  macrophage  infiltration,
increasing lung immunoglobulin deposition, and upregulating splenic GC B cells and
Tfh cells and the Tfh/T follicular regulatory cells ratio. They also observed that the
mouse homolog of human CCL15 was a prognostic and diagnostic biomarker for
chronic GVHD in clinical cohorts. In brief, previous studies showed that macrophage
recruitment could be regulated by chemokines and results in modulation of GVHD
severity. Notably, most chemokines or chemokine inhibitors are not professional, but
pleiotropic.

MACROPHAGE-RELATED CYTOKINES IN GVHD
Cytokines secreted by macrophages and receptors play an important role in GVHD.
The research of Hyvärinen et al[55] focused on gene expression related to GVHD. They
found that  genes  regulating  IL-1β,  interferon  (IFN)-γ,  and  IL-6  responses  were
associated to  GVHD; moreover,  IL-1,  IL-23R,  TLR9,  TNF,  and NOD2  genes were
associated  to  the  immunological  response  by  monocytes/macrophages  that  can
precede GVHD in intestinal lesions. In other words, macrophages could regulate
GVHD by secreting cytokines. Here, we focus on several cytokines.

As shown in Figure 1, TNF-α, IL-12, and IL-6 increased in acute GVHD, whereas
TGF-β and IL-6 were upregulated in chronic GVHD[56-58]. By analyzing forty-seven
consecutive  patients,  Hueso  et  al[59]  found that  IL-10  (reflects  monocyte-derived
macrophage reactivity), citrulline, and myeloablative conditioning are independent
factors of acute GVHD development and that IL-10 was increased in acute GVHD. A
preponderance of macrophage infiltration with production of TNF-α was observed in
acute GVHD[58]. Using a human IL-6 transgenic humanized mouse model, Ono et al[60]
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demonstrated that elevated human IL-12p40, IL-18, M-CSF, and IFN-α2 produced by
monocytes/macrophages might facilitate GVHD in chronic GVHD humanized mice.
However, most cytokines are not professional but pleiotropic and may present an
inverse effect on GVHD in different states.

It is worth noting that macrophages in GVHD can be regulated by cytokines. Th17-
production of IL-17 participates in GVHD by modulating the interaction between
macrophages  and  CD4+  T  cells.  IL-17  can  reduce  macrophage  infiltration,
downregulate IL-12 and IFN-γ production, repress Th1 responses, and alleviate acute
GVHD[56]. Reducing infiltration of macrophages that migrated to MCP-1 and IL-17A
and  TGF-β  production  could  be  therapeutic  targets  for  GVHD [49].  Also,  M1
macrophage  polarization  and  effector  T  cell  infiltration  can  be  suppressed  by
expanded Tregs by using IL-33 for acute GVHD[61]. IL-33 also has a paradoxical effect
because  administration  of  IL-33  after  allogeneic  hematopoietic  stem  cell
transplantation aggravated acute GVHD by engaging in the augmentation of donor T
cells[62]. The opposite effect may be due to the complicated cytokine network, which
shows a balance of synergetic and antergic effect.

Notably,  via  MHC class II  molecules,  intestinal  epithelium cells  could present
antigen, activate CD4+ T cells, and initiate lethal gut GVHD, and macrophages could
interact with intestinal epithelium cells and regulate MHC class II  expression on
intestinal epithelium cells via IL-12-IFN-γ cytokine axis in addition to the required
microbiota[63].  Overall,  macrophage-produced cytokines participate in interaction
between macrophages and other cells, and this role will be described further in the
following sections.

INTERACTION BETWEEN MACROPHAGES AND T CELLS
In GVHD pathogenesis, the alloreactive T cell response is essential. It is demonstrated
in Table 1 and Figure 1 that infiltration of both T cells and macrophages correlate to
GVHD.

T  cells,  primarily  T  helper  cells,  regulate  macrophage  activation.  Using  a
humanized model and in vitro experiment, an infiltration of F4/80+ macrophages and
human effector memory T helper cells was observed in lymphatic tissues and skin
GVHD.  Their  interaction  revealed  that  macrophages  in  humanized  mice  were
activated  by  human  T  helper  2-type  inflammatory  cytokines[64].  Meanwhile,
macrophages influenced the alloreactive T cell response to host antigen. In the study
by Haniffa et al[65], persistent recipient dermal CD1a-/CD14+/FXIIIa+ macrophages
were detected in GVHD lesions and further showed the ability to influence allogeneic
CD8+ T cells on proliferation, secretion of cytokines, and expression of activation
antigens. Furthermore, low macrophage infiltration reduced the percentage of Th1
and Tc1 lineages but upregulated the percentages of Th2, Tc2, and Treg lineages that
can suppress effector T cell infiltration and eventually alleviate acute GVHD[37,56,60,61].
Additionally, chronic lung GVHD is IL-17 and CSF-1/CSF-1R dependent[49]. Activated
macrophages can induce donor T cells to polarize toward Th17 with an elevation of
IL-6, IL-1β, and IL-23. Finally, accumulated IL-17–producing CCR6+/CCR4+ Th17
cells exacerbate lung GVHD[66].  This means that macrophages contribute to T cell
differentiation and affect the homeostasis of the immune response. Interestingly, host
macrophages are opposite to donor macrophage in terms of their interaction with
donor T cells (i.e. host macrophages enable the inhibition of donor T cell expansion).
Hashimoto et al[67] observed that reduced host macrophage pool can increase donor T
cell  expansion  and  aggravate  GVHD  mortality  via  a  CD47-dependent  manner,
whereas persisting host macrophages can engulf donor allogeneic T cells and inhibit
proliferation[67].

Further work to understand the interaction between macrophages and T cells in
GVHD models is limited, but complicated interactions between macrophages and T
cells have been reported in other models. M1 macrophages can enhance cytolytic and
immunomodulatory  functions  of  CD107a+/CD8+ T  cells  in  healthy  individuals
through  a  contact-dependent  manner  with  cytokine-  and  antigen-independent
induction[68]. In contrast, Liu et al[69] observed that M1 macrophage polarization and
macrophage-derived CXCL10 cannot recruit CD4+ and CD8+ T cells, but DCs are
recruited, which then promote CD4+ T cells migration. Therefore, macrophages can
also regulate  T cells  indirectly with the help of  other  immune cells[69].  However,
macrophage-derived  CXCL10  contributed  to  T  cell  recruitment.  Petty  et  al[70]

demonstrated that M2 macrophage polarization can mediate immunosuppression
through tumor-associated macrophages, which mostly exhibit an M2-like phonotype.
These macrophages suppress CD8+ T cell recruitment by inhibiting chemokines of
CD8+  T  cells  produced  by  macrophages,  such  as  CXCL9  and  CXCL10[70].  It  is
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Figure 1

Figure 1  Macrophage regulation of graft-vs-host disease. Macrophages can polarize to M1 macrophages and M2
macrophages and regulate both acute and chronic graft-vs-host disease through migration, cytokine secretion,
interaction with T cells in acute graft-vs-host disease, and interaction with T cells, B cells, and fibroblasts in chronic
graft-vs-host disease. M0: M0 macrophage; M1: M1 macrophage; M2: M2 macrophage; NO: Nitric oxide.

noteworthy that cytokine efficacy differs in these two studies may be explained with
the different macrophage subsets interacting with T cells.

These results provide a clue that M1 macrophages tend to prime CD8+ T cells in the
immune response while M2 macrophages keep the balance by suppressing CD8+ T
cells infiltration. Bouchlaka et al[71] also demonstrated that mesenchymal stem cell-
educated anti-inflammatory immunophenotype macrophages, presenting increased
CD206, CD163, IL-6, TGF-β, arginase-1, etc expression and decreased IL-12 and TNF-α
expression, can attenuate GVHD with the help of reduced human T cell proliferation
and enhanced fibroblast proliferation[71]. Notably, T cells can reciprocally regulate
macrophage polarization. T cell Ig mucin-3 on activated T effector cells promotes
differentiation  of  M2  macrophage[72-74].  In  addition,  M2  macrophages  may  be
converted into M1 macrophages and contribute to T cell function. Stimulated by low-
dose  irradiation,  M2-like  phonotype  macrophages  can  differentiate  towards  an
iNOS+/M1 phenotype macrophage, produce NO, and promote infiltration of CD3+,
CD8+,  and  CD4+  intratumoral  T  cells  with  an  increased  expression  of  Th1
cytokines[75,76].  But  it  is  still  incompletely  consistent  in  the  interaction  between
macrophages  and  T  cells.  A  study  by  Wood  et  al[77]  indicated  that  increased
macrophage-derived nitrite production could suppress peritoneal cavity T cells.

Macrophages can interact with T cells and subsequently influence T cell activation
and function via macrophage polarization, cytokine release, and activating antigen
presentation[28,78,79]. However, macrophages may promote immunological tolerance via
attenuating effector T cell activation and promoting regulatory T cell differentiation
using macrophage-derived complement  receptor  of  immunoglobulin  family  (an
immune  checkpoint  molecule)[80].  Also,  granulin  derived  from  macrophages
contributes  to  the  exclusion  of  cytotoxic  CD8+  T  cells  through  its  resistance  to
inhibition  of  immune  checkpoints,  which  may  provide  new  strategies  to  treat
GVHD[81].  Notably,  binding of  the Fcγ-receptor  expressed by macrophages to Fc
domain glycan of drugs that target alloreactive T cells may be considered for GVHD
therapy[82]. Other molecules expressed by macrophages can also be alternative targets,
such as scavenger receptor MARCO[83].

MACROPHAGES ATTRIBUTE TO FIBROSIS IN CHRONIC
GVHD
Autoantibody production, immunoglobulin deposition, and fibrosis are characteristic
features of chronic GVHD[84,85].  CD4+ T cells, fibroblasts, and B cells interact with
macrophages and this interaction plays an important role in chronic GVHD. Reduced
infiltration of CD4+ T cells and CD11b+ monocytes/macrophages and suppressed
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fibroblast  proliferation  attenuate  severity  and  fibrosis  of  chronic  cutaneous
sclerodermatous GVHD[47,48]. Du et al[49] also indicated that treatment with pirfenidone
can reduce infiltration of macrophages and TGF-β production, impair GC reaction,
and inhibit  antibody production of  B cells  and fibrosis,  thus attenuating chronic
GVHD. In brief, macrophage infiltration, macrophage-production of TGF-β, B cell
reactivity, fibroblast proliferation, and CD4+ T cell infiltration contribute to chronic
GVHD development.

Another effort to ameliorate fibrosis in chronic GVHD is to use 4-phenylbutyric
acid. There are elevated endoplasmic reticulum stress markers in chronic GVHD.
Chronic  GVHD-elicited  endoplasmic  reticulum stress  in  macrophages  could  be
mitigated  by  administrating  4-phenylbutyric  acid,  leading  to  M1  macrophage
differentiation and dysfunctional fibroblasts[86]. In other words, M2 macrophages and
fibroblasts contribute to fibrosis in GVHD. As mentioned before,  CCL9 works in
chronic GVHD by regulating macrophage infiltration, immunoglobulin deposition,
splenic  GC B  cell  reaction,  and CD4+ T  cell  polarization[54].  In  other  words,  the
alloreactivity and interaction of macrophages, B cells, and T cells are regulated by
cytokines. Therefore, we conclude that macrophage infiltration, interactions between
macrophages and other cells,  and the cytokine network should be considered in
chronic GVHD.

Macrophage infiltration has been observed in many fibrotic diseases. Meanwhile,
apoptosis  and  autophagy  of  macrophages  attenuates  fibrosis[87-89].  Membrane
molecules  expressed  on  macrophages  and cytokines  produced by  macrophages
participate in this fibrogenesis process.  CD14,  which is  a co-receptor of  Toll-like
receptor 4 and is expressed on macrophages, may be stimulated by Toll-like receptor
exposure and activate macrophages with an induction of TGF-β production, resulting
in a profibrotic effect via a myeloid differentiation factor 88-dependent manner in
systemic sclerosis[90]. Macrophage receptors with collagenous structure containing
arginine residues is another scavenger receptor expressed on macrophages, and it can
induce the polarization of macrophages to a profibrotic M2 subtype and contribute to
fibrosis[91]. As for cytokines, increased TGF-β signaling promotes fibrosis[92-94].

Macrophage polarization is another factor that can be modulated to reduce fibrosis.
M2  macrophages  are  infiltrated  in  fibrosis  predominately  following  TGF-β
secretion[95-98]. Also, myofibroblasts transited from M2 macrophages could be a source
of interstitial fibrosis in chronic allograft rejection[99]. Furthermore, macrophages are
able to drive fibroblast recruitment and contribute to fibroblast activation, which is
also associated with the development of fibrosis[100,101]. Macrophage polarization to
alternative macrophage subgroups stimulates fibroblasts and attributes to fibrosis.
Meanwhile, macrophage polarization to M2 macrophages in fibrosis can be mediated
by fibroblasts and cytokines, such as IL-4 and TGF-β1[102,103]. Interestingly, the M2c
macrophage subset may reduce lung fibrosis by increasing IL-10 levels[104]. Regulatory
macrophages can inhibit alternative macrophage activation and regulate alternative
macrophage-mediated fibrosis[105]. Therefore, the balance between M1 macrophages
and M2 macrophages and the balance among subgroups of M2 macrophages and
regulatory macrophages as well as the dominant effect of the complicated cytokine
network should be taken into account in terms of the role of macrophage polarization
in fibrosis.

B  cell  activation  regulated  by  B  cell  receptor–associated  pathways  and B  cell
activating  factor  plays  an  important  role  in  the  pathology  of  chronic  GVHD[22].
Targeting the B cell reaction, especially by blocking some B cell receptor–associated
pathways, such as BTK, ITK, and JAK1/2, has been an effective treatment mechanism
for chronic GVHD[106].As an important feature of chronic GVHD, the deposition of
antibodies from donor B cells augments cutaneous chronic GVHD by damaging the
thymus and interacting with CD4+ T cells, especially the pathogenic Th17 and Th2
cells differentiated from Tfh cells[84,107].  The deposition of antibodies also plays an
important role in fibroblast activity and the pathogenesis of systemic sclerosis[108]. In
chronic GVHD, which is similar to fibrosis disease, macrophages play an important
role to regulate B cells. Fantastic reciprocity was found in the relationship between
macrophages and B cells. On one hand, CD19-/- donor B cells could augment GVHD
severity and fibrosis by increasing splenic IL-6–producing monocyte/macrophage
expansion during the early stage of the disease and by increasing TGF-β–producing
monocyte/macrophage infiltration in the later  stage of  chronic  sclerodermatous
GVHD[46]. On the other hand, increased macrophage density is related to antibody
mediated  rejection[109].  Macrophages  can  modulate  antibody  production,  and
macrophage  depletion  inhibits  anti-graft  antibody  production [110 ,111].  Also,
macrophages increase B cell autoantibody production in autoantibody-dependent
systemic  autoimmune disease[112].  Reciprocally,  recipient  B  cells  and MHC class
II–reactive  donor-specific  antibodies  promote  macrophage  infiltration [113 ].
Interestingly, macrophage-depletion decreased TGF-β levels and worsened GVHD
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but increased B cell infiltration, while B cell-depletion led to higher levels of TGF-β
and less severe GVHD, especially liver fibrosis[114].A potential explanation is that
depleting macrophages can lead to the misbalance of homeostasis in the immune
response, whereas the regulation of B cells, which are primary actors, lead to direct
and explicit results.

CONCLUSION
Despite advances in GVHD pathogenesis and therapy, GVHD is still a threat to limit
administration of hematopoietic stem cell transplantation. Essentially, it is immune
cell responses that contribute to GVHD. Macrophage infiltration correlates to GVHD
occurrence and development with a functional regulation of macrophage polarization,
production  of  cytokines,  and  interaction  with  other  cells.  Therapies  targeting
macrophages to regulate macrophage infiltration have been reported.
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