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The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in 

chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental 

disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of 

these disorders, we performed bioinformatics analyses that demonstrated a high level of functional 

convergence, during fetal cortical development, between BAZ2B and genes known to cause autism 

spectrum disorder and neurodevelopmental disorder. We also found an excess of de novo BAZ2B 
loss-of-function variants in exome sequencing data from previously published cohorts of 

individuals with neurodevelopmental disorders. We subsequently identified seven additional 

individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. 

All of these individuals have developmental delay, intellectual disability and/or autism spectrum 

disorder. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a 

neurodevelopmental disorder whose cardinal features include developmental delay, intellectual 

disability and autism spectrum disorder.
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MANUSCRIPT

The bromodomain adjacent to zinc finger (BAZ) gene family consists of four members: 

BAZ1A [MIM# 605680], BAZ1B [MIM# 605681], BAZ2A [MIM# 605682] and BAZ2B 
[MIM# 605683] (Jones, Hamana, Nezu, & Shimane, 2000). None of these genes are 

currently associated with a specific human disease. However, BAZ1A has been shown to act 

as a regulator of cellular senescence in both normal and cancer cells (Li et al., 2019), 

BAZ1A and BAZ1B each promote survival after DNA damage (Oppikofer et al., 2017), and 

BAZ2A is involved in epigenetic alterations in prostate cancer and its overexpression 

predicts disease recurrence (Gu et al., 2015). BAZ1A may also play a role in 

neurodevelopment (Zaghlool et al., 2016), and BAZ1B haploinsufficiency contributes to 

Williams syndrome-related phenotypes through transcriptional dysregulation of 

neurodevelopmental pathways (Lalli et al., 2016).

Members of the BAZ gene family encode proteins that are integral components of chromatin 

remodeling complexes, which have been implicated in the disruption and reformation of 

nucleosomal arrays resulting in modulation of transcription, DNA replication, and DNA 

repair (Clapier & Cairns, 2009). Although the molecular function of BAZ2B has not been 

fully defined, it has been postulated to function similarly to the Drosophila Acf1 protein, 

which regulates nucleosome mobilization through the ATP-dependent chromatin remodeling 

factor ISWI (Eberharter, Vetter, Ferreira, & Becker, 2004). Additionally, the BAZ2B 

bromodomain has been shown to bind to acetylated H3K14 (H3K14ac), whose presence at 

promoter regions is generally associated with gene activation (Charlop-Powers, Zeng, 

Zhang, & Zhou, 2010; Philpott et al., 2011; Pokholok et al., 2005; Wang et al., 2008). This 

suggests a potential role for BAZ2B in transcriptional activation.
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Data from the genome aggregation database (gnomAD v2.1.1; https://

gnomad.broadinstitute.org/) suggests that BAZ2B is likely to be loss-of-function intolerant 

(pLI = 0.98) with 109.2 loss-of-function variants expected but only 22 observed (observed 

(o)/expected (e) score = 0.2 [90% CI 0.14–0.29]) (Karczewski et al., 2019). This is 

consistent with BAZ2B’s revised residual variation intolerance score (RVIS) of −1.0079, 

which places it amongst the top 13.1% of the most functional-variation-intolerant of human 

genes (Petrovski et al., 2015; Petrovski, Wang, Heinzen, Allen, & Goldstein, 2013).

BAZ2B was recently prioritized as a potential candidate gene for autism spectrum disorder 

(ASD) by Guo et al. based on the analysis of exome sequencing data from large, family-

based, exome sequencing studies (De Rubeis et al., 2014; Fischbach & Lord, 2010; Guo et 

al., 2019). Loss of BAZ2B function has also been postulated to contribute to the 

development of neurodevelopmental disorders in humans (Deciphering Developmental 

Disorders, 2017; Iossifov et al., 2014; Krupp et al., 2017; Lelieveld et al., 2016) based on the 

identification of de novo and mosaic BAZ2B variants in individuals with these disorders.

To further evaluate BAZ2B as a candidate gene for neurodevelopmental disorders, we 

performed bioinformatics analyses to determine whether BAZ2B is co-expressed with 

known ASD or neurodevelopmental disability (NDD) genes (Supporting Information 

Materials and Methods) (Basu, Kollu, & Banerjee-Basu, 2009; Stessman et al., 2017). First, 

using the developing human brain RNA-Seq data (Kang et al., 2011), we found that BAZ2B 
exhibits higher expression in prenatal cortical samples than in postnatal cortical samples 

(fold change = 1.6; P = 2.2e-24; one-sided Wilcoxon rank sum test), suggesting that BAZ2B 
might play a more important role during prenatal cortical development than post-natal 

function (Figure 1A).

We then calculated the Spearman’s correlation with genes associated with ASD for all genes 

expressed in prenatal cortex, and found that BAZ2B is highly positively correlated with 

ASD genes (Figure 1B and Supp. Table S1). Similarly, BAZ2B is also highly positively 

correlated with genes associated with NDD (Figure 1C and Supp. Table S2). As expected, 

ASD genes are highly correlated with each other, NDD genes are highly correlated with 

each other, and these gene sets are distinguishable from the other prenatal cortex-expressed 

genes with area under the receiver operating characteristic curve (AUC) values of 0.71 and 

0.73 respectively (data not shown). These results indicate that BAZ2B is a highly promising 

ASD and NDD candidate gene.

To find additional evidence in support of BAZ2B’s role in neurodevelopmental disorders, we 

leveraged data from large-scale, next generation sequencing studies. Among 10,927 

individuals with ASD, intellectual disability (ID) or developmental disorders, we identified 

five individuals with de novo germline mutations affecting the coding region of BAZ2B; 

three individuals with loss-of-function variants, and two individuals with conserved 

missense variants (Supp. Table S3, Supp. Figure S1) (Deciphering Developmental Disorders 

Study, 2017; Iossifov et al., 2014; Lelieveld et al., 2016; Turner et al., 2017). Some of these 

individuals carry variants in other genes that may represent alternative explanations for their 

neurodevelopmental phenotypes—particularly the CTCF c.1102C>T, p.(Arg368Cys) 

[NM_006565.3] variant in DDD4K.00342—or modifiers. Using a statistical model (O’Roak 
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et al., 2012) and denovolyzeR (Samocha et al., 2014; Ware, Samocha, Homsy, & Daly, 

2015), we found an excess of de novo BAZ2B loss-of-function variants within this cohort (p 

= 0.00045 and p = 0.0032, respectively) based on a single, hypothesis-driven test. However, 

this finding did not meet the criteria for genome-wide significance.

As a next step, we searched a clinical database of >80,000 array-based copy number variant 

(CNV) analyses performed at Baylor Genetics. We found two individuals (Subjects D1 and 

D2) who carried small (<1 Mb) deletions involving BAZ2B (Figure 2A, Supp. Table 4). The 

minimal deletion in Subject D1 affects the entire BAZ2B coding region, and the minimal 

deletion in Subject D2 includes exons that code for both the bromodomain and zing finger 

domain of BAZ2B (Figure 2B). Population data suggest that it is unlikely that the effects of 

these deletions on WDSUB1 and TANC1 expression are contributing significantly to the 

ASD and ID documented in these individuals (Supp. Table S4), although that possibility 

cannot be excluded.

We then used GeneMatcher (Sobreira, Schiettecatte, Valle, & Hamosh, 2015) to identify six 

individuals (Subjects V1-V6) who carry rare, BAZ2B stop-gain or conserved missense 

variants with high Combined Annotation Dependent Depletion (CADD) scores (26.7–27.7) 

(Supp. Table S4, Supp. Figure S1) identified in exome/genome sequencing studies. All 

BAZ2B variants in this manuscript are described based on BAZ2B transcript variant 1 

(GenBank: NM_013450.4). One of these individuals, Subject V1, was previously reported 

by Lelieveld et al. (Patient 418) without detailed clinical information (Lelieveld et al., 2016). 

All of these individuals had developmental delay (DD), ID and/or ASD (Supplemental 

Information Case Reports). Developmental regression was clearly documented in Subjects 

V4-V6. These subjects were diagnosed with ASD, and the timing of their developmental 

regression is consistent with the regression that has been described in association with ASD 

(Ozonoff & Iosif, 2019; Rogers, 2004; Tammimies, 2019).

Individuals carrying heterozygous, high confidence, loss-of-function BAZ2B variants and 

BAZ2B missense variants with high CADD scores (NM_013450.4) have also been reported 

in the gnomAD v2.1.1 database. Since subjects included in this database were not assessed 

for neurological phenotypes, it is possible that these individuals have milder versions of the 

phenotypes reported here. Alternatively, the DD, ID and ASD associated with BAZ2B 
haploinsufficiency may be incompletely penetrant. Indeed, it seems likely that genetic, 

environmental and/or stochastic factors play a role in determining the type and severity of 

neurodevelopmental phenotypes seen in individuals with reduced levels of BAZ2B function. 

It follows, that some of the copy number and sequence variants identified in previously 

published individuals in Supp. Table S3 and the subjects described here (Supp. Table S4) 

may be acting as modifiers of their BAZ2B-related phenotypes.

While neurodevelopmental issues were documented in all subjects, brain anomalies were 

noted in only one of the four (25%) subjects who had a brain MRI. Similarly, no consistent 

pattern of additional medical problems was seen among subjects, with the possible exception 

of vision problems which were seen in 5/6 (83%) of the individuals who were fully 

phenotyped (Supp. Table S4). Epicanthal folds (3/6, 50%) and macrocephaly (2/6, 33%) 

were the only recurrently reported dysmorphic features that were found in subjects from 
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different families. The identification of additional affected individuals will be needed in 

order to determine whether these features are truly associated with BAZ2B deficiency.

Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a 

neurodevelopmental disorder whose cardinal features include DD, ID and ASD. The 

phenotype associated with this disorder is not sufficiently distinct to be suspected on clinical 

grounds alone. The identification of additional individuals with BAZ2B haploinsufficiency 

may help to clarify the spectrum of neurodevelopmental phenotypes and additional medical 

problems associated with this disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Functional convergence of BAZ2B with ASD and NDD genes during human fetal 
neocortical development.
A) The expression of BAZ2B during human neocortical development. The expression values 

of BAZ2B across cortical samples were grouped and sorted by developmental time points. 

NCX, neocortex; pcw, post-conceptional weeks; mos, months; yrs, years. B) Scatter plot 

shows the distribution of Spearman’s correlation with ASD genes in prenatal cortical 

samples for all prenatal cortex-expressed genes. Dots represent individual genes. The dashed 

horizontal line at 3.2% indicates the top percentile among which the correlation between 

ASD genes and BAZ2B is ranked. C) Scatter plot shows the distribution of Spearman’s 

correlation with NDD genes in fetal cortical samples for all the prenatal cortex-expressed 

genes. Dots represent individual genes. The dashed horizontal line at 3.9% indicates the top 

percentile among which the correlation between NDD genes and BAZ2B is ranked.
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Figure 2: Molecular changes in individuals with BAZ2B deletions and deleterious variants.
A) Schematic representing the minimum (red) and maximum (orange) deletions seen in 

Subjects D1 and D2. BAZ2B and other genes in the region are represented by blue arrows 

whose direction indicates the direction of transcription. B) The predicted locations of 

domains within BAZ2B are presented along with the locations of the BAZ2B changes 

predicted to occur in previously reported individuals (black) and additional subjects 

described here (D1-D2, V2-V6; red).
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