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Abstract

Megalencephaly-capillary malformation syndrome (MCAP) is an overgrowth disorder 

characterized by cerebrocortical malformations, vascular anomalies, and segmental overgrowth 

secondary to somatic activating mutations in the PI3K-AKT-MTOR pathway (PIK3CA). Cases of 

growth failure and hypoglycemia have been reported in patients with MCAP, raising the suspicion 

for unappreciated growth hormone (GH) deficiency. Here we report an observational multi-center 

study of children with MCAP and GH deficiency. Eleven participants were confirmed to have GH 

deficiency, all with very low or undetectable circulating concentrations of insulin-like growth 

factor-1 and insulin-like growth factor binding protein-3. Seven underwent GH stimulation testing 

and all had insufficient responses with a median GH peak of 3.7 ng/ml (range 1.1-8.6). Growth 

patterns revealed a drastic decline in length z-scores within the first year of life but then stabilized 

afterward. Five were treated with GH; one discontinued due to inconsolability. The other four 

participants continued on GH with improvement in linear growth velocity. Other endocrinopathies 

were identified in seven of the 11 participants in this cohort. This study indicates that GH 

deficiency is associated with MCAP and that children with MCAP and hypoglycemia and/or 

postnatal growth failure should be evaluated for GH deficiency and other endocrinopathies.
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INTRODUCTION

The megalencephaly-capillary malformation syndrome (MCAP; OMIM#602501) is a 

pediatric overgrowth disorder characterized by brain overgrowth (i.e. megalencephaly), 

macrosomia, cutaneous vascular malformations, digital anomalies (polydactyly, syndactyly) 

and cortical brain malformations (typically bilateral perisylvian polymicrogyria) (Clayton-

Smith et al., 1997; Mirzaa et al., 2012; Moore et al., 1997). As an overgrowth disorder, 

MCAP is characterized by several distinctive features that are typically recognizable at birth 

including macrosomia, megalencephaly with or without overlying cortical malformations, 

and cutaneous vascular malformations (Mirzaa, Riviere, & Dobyns, 2013). MCAP is most 

commonly caused by mosaic (i.e., postzygotic) gain-of-function mutations in the PIK3CA 
gene on the long arm of chromosome 3. These mutations lead to activation of the PI3K-

AKT-MTOR pathway, a critical cell-signaling pathway that regulates various cellular 

functions including growth, proliferation, and metabolism (Cantley, 2002; Engelman, 

Mukohara, et al., 2006; Mirzaa et al., 2013; Riviere et al., 2012).

While growth failure has not been reported as a key finding in classic MCAP, we have 

identified a subset of children with MCAP and postnatal growth failure. Furthermore, 

several children with this syndrome have been reported to have hypoglycemia, usually of 

unknown etiology (Kinross et al., 2015; McDermott, Byers, & Clayton-Smith, 2016). Both 
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postnatal growth failure and hypoglycemia can be presenting signs of GH deficiency, yet 

there is only one published report to date of a child with MCAP and confirmed growth 

hormone (GH) deficiency (Minagawa et al., 2005). This prompted us to launch this 

observational study describing the phenotypes, growth trajectories, and endocrinological 

manifestations of children with both MCAP and GH deficiency to facilitate early 

identification and better management approaches for children with MCAP and 

endocrinopathies.

METHODS

Participants were enrolled at one of two tertiary care referral centers under the appropriate 

institutional research protocols. The first site is the Center for Integrative Brain Research 

(CIBR) at the Seattle Children’s Research Institute (SCRI) that recruited nationally and 

internationally for a study of megalencephaly and other developmental brain disorders. The 

second site is the University of Colorado/Children’s Hospital Colorado that recruited 

participants with MCAP and growth failure seen in the pediatric endocrinology clinic. To 

avoid duplicate enrollment, initials and birth year were cross-compared between sites. One 

participant was identified to have participated in studies at both sites, and data were 

therefore merged for analysis. The local institutional review boards at both institutions 

approved these studies with written informed consent provided from all enrolled families.

Children with clinically and/or molecularly confirmed MCAP who also had confirmed GH 

deficiency were included in this study. The diagnosis of MCAP was confirmed by clinical 

geneticists, and when genetic testing results were available, by molecular diagnostic testing 

(i.e., the identification of a disease-causing PIK3CA variant). Relevant data regarding 

clinical phenotypes, comorbidities, and genetic findings were collected from medical 

records. Growth parameters were obtained from clinical growth charts. To standardize 

growth assessments, growth data were converted to age and sex-specific z-scores based on 

the Fenton curves for birth parameters and Center for Disease Control (CDC) for postnatal 

growth parameters (Fenton & Kim, 2013; Grummer-Strawn, Reinold, & Krebs, 2010). 

Annual growth velocity was calculated by dividing the change in linear growth in 

centimeters by the time between visits and normalizing it to 12 months. Due to expected age 

differences in growth velocity, calculations were analyzed separately for age 0-1 years, 1-2 

years, 2-4 years, 5-10 years, and 10+ years. Data on thyroid function, insulin-like growth 

factor-1 (IGF-1), insulin-like factor binding protein-3 (IGFBP-3) concentrations, GH 

response to hypoglycemia and/or stimulation tests, pituitary structure on brain magnetic 

resonance imaging (MRI), and management of GH deficiency were collected, when 

available. All laboratory data were measured clinically using different assays. Therefore, the 

normal ranges for these assays vary and the data were not statistically compared. All records 

were reviewed by a pediatric endocrinologist who confirmed the diagnosis of GH deficiency 

(clinical symptoms plus laboratory criteria diagnostic of GH deficiency). Descriptive 

statistics were used to summarize outcomes of interest using mean and standard deviation 

unless otherwise specified.
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RESULTS

Eleven children had confirmed GH deficiency. The clinical characteristics of each 

participant are presented in Table 1. All participants with GH deficiency who underwent 

genetic testing (N=9) had a pathogenic variant in PIK3CA; for the other two, the diagnosis 

of MCAP was made clinically but genetic testing was not pursued.

In our cohort, the mean gestational age was 36.0±1.4 weeks, mean birth weight z-score was 

2.7±1.1 and mean birth length z-score was 2.3±0.8. Length or height z-scores from birth 

through 5 years of age and growth velocities through 10 years of age are presented in Figure 

1 and Figure 2, respectively. For most participants, there was a sharp decline in height z-

scores in the first year of life. After the first year of life, growth velocity remained stable and 

in the low-normal range. However, there were individuals who did not follow this pattern 

and seemed to grow normally until later in childhood. One participant (LR11-418) did not 

have growth faltering at all and a diagnostic evaluation was only pursued due to anecdotal 

knowledge of other cases of GH deficiency associated with MCAP (see Table 1 for 

laboratory results).

The mean age at the time of GH deficiency diagnosis was 4.2±3.0 years. At the time of 

diagnosis, circulating IGF-1 and IGFBP-3 concentrations were low or undetectable in all 

participants. Four underwent GH stimulation testing and/or had GH measured at the time of 

hypoglycemia, and all had insufficient responses with mean peak GH concentration of 3.7 

ng/ml (normal response >10 ng/ml). Of the 10 participants with brain MRIs, nine had 

structurally normal pituitary glands and one had an incidental finding of a pars intermedia 

cyst. Five participants (102, 105, LR11-230, LR12-037, and LR15-337) were treated with 

subcutaneous recombinant human GH. Participant 102 discontinued GH after one week of 

treatment due to symptoms of headache and inconsolability, although the etiology of his 

irritability was not confirmed (more specifically, no papilledema or MRI changes were 

noted). This child’s irritability resolved after discontinuing GH treatment. The other four 

participants continued on GH with robust increases in linear growth velocity and no reported 

side effects, including no clinical worsening of macrocephaly or hemihypertrophy. Five 

(45%) participants with GH deficiency also had confirmed hypoglycemia. In four, the 

occurrence of hypoglycemia preceded the diagnosis of GH deficiency. Notably, 

hypoglycemia was attributed to several etiologies among these children, including 

hypoglycemia secondary to GH deficiency (N=2), hyperinsulinism (N=1), and ketotic 

hypoglycemia (N=2). Additional endocrine diagnoses observed in the participants with GH 

deficiency included cryptorchidism (N=2), central hypothyroidism (N=1), central adrenal 

insufficiency (N=1), antibody-positive type 1 diabetes (N=1), and osteoporosis with 

pathologic fractures (N=1).

DISCUSSION

In this study, we describe the clinical presentation and management of 11 children with 

MCAP and GH deficiency. Most participants presented with growth failure leading to a 

diagnostic evaluation for GH deficiency. Four of the five participants treated with 

recombinant human GH had an excellent response. This report of GH deficiency as well as 
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other endocrinopathies, including hypoglycemia and other pituitary deficiencies, should 

raise clinicians’ suspicion of these disorders in children with MCAP.

GH is secreted by the pituitary gland and has systemic effects, especially on bone and 

muscle growth, as well as indirect effects through hepatic production of IGF-1 (De Luca, 

2018). GH deficiency can result in poor linear growth, increased adiposity, decreased muscle 

bulk, decreased bone mineralization, unfavorable lipid profiles, and occasionally fasting 

hypoglycemia due to an inadequate counter-regulatory response (Chinoy & Murray, 2016). 

While low IGF-1 is a sensitive but not specific screening test for GH deficiency, low 

IGFBP-3 is recognized as the more specific but less sensitive biomarker of GH deficiency 

(Trivin et al., 2006). One of the unique features found in this cohort of children with MCAP 

is the universally low IGFBP-3 concentrations. Whether this is reflective of the severity of 

GH deficiency or due to a unique mechanism in MCAP is unknown.

We also suspect that postnatal growth retardation may be more common than previously 

appreciated in MCAP. In one of the first papers describing 13 children with MCAP, 

macrosomia at birth was nearly universal (Moore et al., 1997). However, at the time of 

follow up, seven of these individuals had lengths <10th%ile and all but one had a decrease in 

their length percentile from birth to the most recent follow up. The first published case of 

MCAP and GH deficiency demonstrated postnatal growth retardation and developed 

hypoglycemic seizures at seven months of age (Minagawa et al., 2005). His IGF-1 

concentration was very low, and he had a low GH (1.1 ng/ml) at the time of hypoglycemia. 

However, the patient had a normal response to GH releasing hormone (GHRH) stimulation 

testing with a peak GH of 21 ng/dl. The management and clinical course of this patient were 

not further described. Another report of a child with MCAP (megalencephaly, 

polymicrogyria, hydrocephalus requiring shunt, and a mosaic gain-of-function mutation 

p.Met1043Ile found in 16% in blood and 37% in saliva) also may have had GH deficiency. 

He had hypoglycemia and low GH, IGF-1, and IGFBP-3 but there was no mention of 

growth; he was briefly treated with GH but this did not resolve the hypoglycemia and he was 

not given a diagnosis of GH deficiency (Stutterd et al., 2018). Finally, another child with 

megalencephaly due to a germline mutation in AKT3 (p.Glu40Lys) has also been reported to 

have GH deficiency and hypoglycemia. He was treated with recombinant GH around 15 

months of age and hypoglycemia resolved. He did not have polymicrogyria, seizures, or 

developmental delays (Takagi et al., 2017). This large case series substantially adds to the 

literature describing GH deficiency among children with MCAP with PIK3CA mutations.

The underlying mechanisms of GH deficiency in MCAP are not well-understood. Classic 

childhood GH deficiency has been attributed to inadequate GH production by the anterior 

pituitary due to genetic mutations involved in pituitary gland development or signaling, 

tumors, or brain malformations (especially optic nerve hypoplasia sequence) (Chinoy & 

Murray, 2016). Given that a few of the children in our series had multiple pituitary hormone 

deficiencies, congenital or acquired pituitary dysfunction is a potential etiology of GH 

deficiency in MCAP as well. While the pituitary glands in our participants appeared 

structurally normal on MRI, this does not exclude anterior pituitary dysfunction. 

Furthermore, hydrocephalus is a known feature of MCAP and was present in 73% of our 

cohort, and hydrocephalus has been associated with anterior pituitary deficiencies including 
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GH deficiency (Cholley et al., 2001; Mirzaa et al., 2012; Moin, Bergsneider, Vespa, & 

Heaney, 2012).

The normal physiologic role of the PI3K-AKT pathway in downstream signaling for the 

IGF-1, insulin and to a lesser extent, GH receptors, suggests alternative possible mechanisms 

for the findings in our patients (Grimberg & DiMeglio, 2018). Gain-of-function mutations in 

PIK3CA may mimic over- or constitutive activity of these 3 hormone receptors and 

depending on the location of the post-zygotic mutations in patients with MCAP, determine 

the pathophysiologic mechanisms and clinical features involved. If such gain-of-function 

mutations occur centrally, they can mimic increased negative feedback on the hypothalamus 

and pituitary, leading to reduced GH production and secretion. If the PIK3CA mutation is 

not present in hypothalamic or pituitary tissues, individuals would be expected to have 

normal GH releasing hormone (GHRH) and GH production and not exhibit symptoms of 

GH deficiency. If instead the post-zygotic gain-of-function mutation occurs in target tissues, 

direct negative feedback may inhibit growth factors through any number of known or 

unknown regulatory feedback loops (Engelman, Luo, & Cantley, 2006). With GH and IGF-1 

production downregulated, tissues that do not harbor the PIK3CA gain-of-function mutation 

would not have this pathway activated, leading to symptoms of GH deficiency including 

poor linear growth and hypoglycemia. Therefore, knowing which tissues the PIK3CA 
mutation is present in would determine the phenotype. Finally, augmented clearance of GH, 

IGF-1 and IGFBP-3 could be a mechanism of these low serum concentrations found in our 

cohort. Given the complexity of the interactions that the PI3K-AKT-MTOR pathway has in 

various tissues, further investigation of the underlying molecular mechanisms leading to GH 

deficiency in MCAP are needed.

The management of GH deficiency in MCAP is particularly challenging. Treatment of GH 

deficiency in several reported cases appeared to improve hypoglycemia and normalize linear 

growth velocity. However, it potentially could lead to worsened asymmetric overgrowth in 

tissues with the activating PIK3CA mutation, particularly the brain. Although our sample 

size is small, four of five children treated with GH had a positive response with no apparent 

side effects, however one participant developed irritability and a concern for possible 

intracranial hypertension, a known side effect of GH treatment. An additional consideration 

with GH therapy is the theoretical concern for tumorigenesis. According to Pediatric 

Endocrine Society, while data are insufficient to suggest that GH causes tumorigenesis, 

children on GH treatment should be monitored closely if they have an increase risk of cancer 

(Allen et al., 2016; Grimberg & Allen, 2017; Raman et al., 2015). Unlike several other 

overgrowth syndromes, the risk of tumorigenesis in MCAP does not appear to be 

significantly elevated (Mirzaa, Conway, Graham, & Dobyns, 1993; Swerdlow et al., 2017). 

Overall, given the risk for death and neurodevelopmental issues with untreated 

hypoglycemia that can be associated with GH deficiency, we recommend treatment with 

conservative doses of GH in children with MCAP confirmed to have GH deficiency and 

hypoglycemia. In the absence of hypoglycemia, the risks and benefits of management are 

less clear and need to be evaluated on an individual basis. As there is little urgency to treat 

for the purpose of increasing linear growth, waiting until after a child is two years of age 

when the most rapid period of brain growth has ended is reasonable. Additional longitudinal 

studies are needed to better delineate the safety and efficacy of GH in this context.
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This study had several limitations. First, this is an observational study based on clinical data, 

therefore, not all relevant data were uniformly available for review. Furthermore, detailed 

endocrine data were specifically collected from those children with suspected or confirmed 

endocrine dysfunction. Therefore, the prevalence of GH deficiency and other 

endocrinopathies in all individuals with MCAP is difficult to determine with certainty, due to 

ascertainment bias of this cohort. Finally, although it would be useful to fully understand the 

mechanisms underlying GH deficiency in MCAP to enable an optimal therapeutic approach, 

the role of PIK3CA mutations in various tissues to cause GH deficiency is currently unclear, 

as mentioned above.

In summary, we report a series of children with MCAP and GH deficiency, suggesting that 

GH deficiency is an underappreciated and clinically relevant feature of this megalencephaly 

overgrowth disorder. Therefore, we recommend that children with MCAP and either 

hypoglycemia and/or postnatal growth failure be evaluated for GH deficiency and treatment 

considered on a case-by-case basis. This study includes a large sample size for this rare 

genetic syndrome, however additional research is needed to accurately determine the overall 

prevalence, mechanisms, and best management for GH deficiency in children with MCAP.
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Figure 1. Growth trajectory (length or height z-scores) from birth to five years for each 
participant with MCAP and confirmed GH deficiency.
Dotted lines for participants 105 (purple diamond) and LR11-230 (pink circle) indicate 

growth trajectory following the initiation of GH treatment.
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Figure 2. Growth velocity from birth to ten years of age for participants with MCAP and 
confirmed GH deficiency.
Normal growth velocity is shown in grey. Growth velocity is notably lower in the first year 

of life.
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Figure 3. Possible mechanisms for growth hormone (GH) deficiency in children with mosaic 
gain-of-function mutations in the PI3K-AKT-MTOR pathway:
1) Hypopituitarism associated with other central nervous system abnormalities (classic GH 

deficiency); 2) negative inhibition of GHRH from the IGF-1R signaling pathway being 

constitutively activated at the level of the hypothalamus; 3) negative feedback from cell 

growth signaling products of the constituently active PI3K pathway in target cells; and 4) 

increased clearance of growth factors. GHRH = growth hormone releasing hormone; GH = 

growth hormone; IGF-1 = insulin-like growth factor 1; R=receptor; IGFBP-3 = insulin-like 

binding protein 3
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Table 1.

Summary of the clinical and genetic data of patients with MCAP and confirmed GH deficiency (N=11).

ID PIK3CA 
variant Sex Race/

Ethnicity Phenotype Neurodevelopment
†

Birth 
weight 
(kg, z-

score
‡
)

Birth 
length 
(cm, z-

score
‡
)

Age at 
diagnosis 

of GH 
deficiency 

(yrs)

IGF-1 
(ng/mL, 
normal 
range)

IGFBP-3 
(mg/L, 
normal 
range)

GH 
stimulation 
maximum 

peak 
(ng/mL)

Free 
T4 

(ng/d
L) 

Ref: 
0.8-2.0 
ng/dL

Pituitary 
gland on 

MRI

Other 
endocrine 
diagnoses

103 p.Asn345Ile F White/
Hispanic

H+, M, 
CCM, 
HEMI

Moderate delays 4.6, 3.2 54.0, 
2.6

0.8 <25 
(55-327)

0.6 
(0.7-3.6)

7.3 1.2 Normal Hypoglycemia

LR11-418 p.Cys378Tyr M White/
Caucasian

H-, M, 
CCM, PM, 
DA, ChM

Mild delays 3.6, 2.7 - 7.4 49 
(18-307)

1.8 
(1.8-5.0)

5.3 - Normal Type 1 diabetes

LR12-037 p.Glu726Lys M White H+, M, 
DA

Severe delays, 
seizures

3.8, 3.1 - 4 32 
(49-351)

0.8 
(1.8-7.1)

1.1 1.0 Normal

LR11-230 p.Gly1049Ser M Unknown H+, M, 
DA

Moderate delays 4.0, 3.0 54.5, 
3.1

3.7 24 
(30-155)

0.8 
(0.9-4.3)

8.6 - Normal Hypoglycemia; 
cryptorchidism

102 p.Gly914Arg M White
H-

§
, M, 

CCM

Moderate delays, 
seizures

2.5, 0.5 49.5, 
1.9

0.6 <10 
(30-22)

<0.5 
(0.7-3.6)

- 0.8 Normal Central 
hypothyroidism; 
cryptorchidism

LR15-337 p.Gly914Arg M White/
Caucasian

M, HEMI, 
ChM

Moderate delays 3.4, 1.7 49.0, 
0.8

2.2 16 
(18-176)

N/A 3.4 - Normal

105 p.Met1043Ile F White H+, M, 
CCM

Moderate delays 3.0, 0.3 53.3, 
2.3

1.8 <25 
(55-327)

0.6 
(0.7-3.6)

2.5 0.8 Normal Hypoglycemia

LR14-100 p.Met1043Ile M White/
Caucasian

M, CCM, 
DA, PM

Severe delays 4.0, 3.7 52.7, 
2.8

- <10 
(16-233)

<0.5 
(1.8-5.0)

- - Normal

LR18-218 p.Met1043Ile M White/
Ashkenazi 

Jewish

M, PM, 
DA, CCM, 
CA, HEMI

Moderate delays 4.8, 3.8 - 3.5 18 
(49-283)

0.78 
(1.6-4.6)

3.7 1.5 Pars 
intermedia 

cyst

Hypoglycemia; 
central adrenal 
insufficiency

101 Not 
performed

F White/
Hispanic

H+, M, 
CCM

Mild delays 4.4, 2.1 53.5, 
1.7

3.8 <25 
(49-283)

<0.5 
(0.8-0.3)

- - Normal

104 Not 
performed

F White H+, M, 
CCM

Profound delays, 
seizures

4.2, 3.2 52.7, 
2.4 9.2

¶ <25 
(88-452)

<0.5 
(1.8-7.1)

- 1.1 N/A Hypoglycemia; 
osteoporosis

Abbreviations: M = megalencephaly; H+ = hydrocephalus with shunt; H− = hydrocephalus without a shunt; CCM = cutaneous capillary 
malformation; PM = polymicrogyria; DA = digit abnormalities (syndactyly or polydactyly); CA = cardiac arrhythmia; HEMI = hemihypertrophy; 
ChM = Chiari malformation.

†
Based on clinical review.

‡
Based on Fenton growth charts.

§
Participant underwent a ventriculostomy.

¶
Growth failure occurred by age 6 but was not evaluated due to more significant health concerns.

Am J Med Genet A. Author manuscript; available in PMC 2021 January 01.


	Abstract
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.

