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The phenotypic variation of living organisms is shaped by genetics, environment, and their interaction. Understanding phe-

notypic plasticity under natural conditions is hindered by the apparently complex environment and the interacting genes

and pathways. Herein, we report findings from the dissection of rice flowering-time plasticity in a genetic mapping popu-

lation grown in natural long-day field environments. Genetic loci harboring four genes originally discovered for their pho-

toperiodic effects (Hd1, Hd2, Hd5, and Hd6) were found to differentially respond to temperature at the early growth stage to

jointly determine flowering time. The effects of these plasticity genes were revealed with multiple reaction norms along the

temperature gradient. By coupling genomic selection and the environmental index, accurate performance predictions were

obtained. Next, we examined the allelic variation in the four flowering-time genes across the diverse accessions from the

3000 Rice Genomes Project and constructed haplotypes at both individual-gene and multigene levels. The geographic dis-

tribution of haplotypes revealed their preferential adaptation to different temperature zones. Regions with lower temper-

atures were dominated by haplotypes sensitive to temperature changes, whereas the equatorial region had a majority of

haplotypes that are less responsive to temperature. By integrating knowledge from genomics, gene cloning and functional

characterization, and environment quantification, we propose a conceptual model with multiple levels of reaction norms to

help bridge the gaps among individual gene discovery, field-level phenotypic plasticity, and genomic diversity and

adaptation.

[Supplemental material is available for this article.]

Understanding the genetic and environmental mechanisms of
phenotypic plasticity has been a long-term challenge (Marais
et al. 2013; Josephs 2018). Advances in genomics and molecular
biology allowed further exploration of the genetic architecture of
complex traits under natural field conditions (Marais et al. 2013;
Blackman 2017; Li et al. 2018; Millet et al. 2019). Rice (Oryza sativa
L.), with a large number of genes cloned for agronomic traits, is
well positioned to bridge the gap among genomic diversity, indi-
vidual genes, and field-level phenotypic plasticity dissection
(Nicotra et al. 2010; Chen et al. 2019). Rice accounts for about
one-fifth of the world’s caloric intake. Population growth drives
up the global demand for food, which is expected to increase for
the next several decades (Godfray et al. 2010). Producing more
rice from less arable land under fluctuating climatic conditions re-
quires a concerted effort from both public and private sectors.
Although advances in genomics, breeding, and precision agricul-
ture have been recognized as solution components for global
food security (McCouch et al. 2013; Huang et al. 2015; Zeng
et al. 2017; Wang et al. 2018), enriched knowledge of the varied
performance of genotypes across environments, or phenotypic
plasticity (Nicotra et al. 2010), is required to design and implement
the best genetic deployment and agronomic management
practices.

Flowering time plays a critical role in rice adaptation and pro-
duction, and modification of flowering time is determined by ge-
netic pathways that integrate endogenous and exogenous signals
(Hori et al. 2016). Theworldwide distributionof rice is themanifes-
tation of the large genetic diversity adapted to varying environ-
mental conditions (Wang et al. 2018). Because flowering time
also affects other agronomic traits, genetic improvement in rice of-
ten involves the selection of flowering time for yield optimization.

Molecular mechanisms underlying the timing of transition
from vegetative to reproductive growth have been extensively
studied in rice (Xue et al. 2008; Huang et al. 2012b; Yano et al.
2016), a model crop species. Heading date 1 (Hd1), a homolog of
CONSTANS from Arabidopsis, is a central regulator of flowering
time in rice, a facultative short day–length (SD) plant (Yano et al.
2000). Hd1 promotes Heading date 3a (Hd3a; a florigen-coding
gene) expression in SD and suppresses the expression of Hd3a in
long day–length (LD) conditions (Hayama et al. 2003; Tamaki
et al. 2007; Nuñez and Yamada 2017). OsGIGANTEA (OsGI) acts
as an activator of Hd1 under SD. In addition to the OsGI-Hd1-
Hd3a photoperiodic pathway branch, a second branch, Ghd7-
Ehd1-RFT1, also affects rice flowering time (Hayama et al. 2003;
Shrestha et al. 2014; Zhang et al. 2017). Ehd1 promotes flowering
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by activating the expression of Hd3a and RFT1 (another florigen-
coding gene). Ghd7 acts as a LD-preferential repressor by blocking
the expression of Ehd1 (Xue et al. 2008). Hd2 and Hd5 are key reg-
ulators in the Ehd1 pathway, whereas Hd6 plays a critical role in
regulating Hd1 activity (Takahashi et al. 2001; Wei et al. 2010;
Koo et al. 2013). In addition, as in Arabidopsis, flowering in rice
is induced by the coincidence of circadian and solar rhythms for
Hd1 and Ehd1, consistent with the external coincidence model
(Yeang 2013).

Although natural variants of these genes were associated with
flowering time in diverse rice accessions (Zhao et al. 2011; Huang
et al. 2012b; Yano et al. 2016), integration of these findings to
explain and predict complex phenotypic plasticity observed in
natural fields has received limited attention. A recent review high-
lighted the research need to examine gene–environmental interac-
tion and gene–gene interaction (Chen et al. 2019). An earlier study
examined the flowering-time plasticity in a sorghum biparental
population (Li et al. 2018), but how findings froma narrow genetic
background can be connected with diverse germplasm remains
unclear. Herein, we show that the key flowering-time genes
(Hd1, Hd2, Hd5, and Hd6), originally discovered for their photo-
periodic responses, are the major loci responding to the varied
temperature at nine different environments for a genetic mapping
population. Their dynamic effects and interactions shape the
complex phenotypic plasticity landscape. Reaction norms of
gene effects can be obtained along the temperature gradient differ-
entiating these environments. Moving into a broader genetic con-
text, we constructed the multigene haplotypes for the diverse
accessions from the 3000 Rice Genomes Project. By leveraging
the known functional polymorphisms of these well-studied genes,

we assigned the slope parameter values obtained from the biparen-
tal population to these haplotypes. A clear preferential distribution
pattern emerged for haplotypes with different sensitivity to tem-
perature zones. Finally, wepropose a conceptualmodel to illustrate
phenotypic complexity using the multiple levels of reaction
norms along an environmental gradient.

Results

Rice flowering-time plasticity in natural long-day environments

Complex flowering-time (heading date) variation was observed in
a rice genetic mapping population grown in nine natural environ-
ments (Fig. 1A,B; Supplemental Table S1). This population is a
group of 174 backcross inbred lines (BILs) derived from crossing
two parents. One parent is a japonica cultivar, Koshihikari, and
the other parent is an indica cultivar, Kasalath. The latitudes of
field sites range from 21°01′N (Vietnam) to 36°01′N (Japan), and
planting time ranged from March to June. The environmental
mean, the average flowering time of the whole population within
each environment, varied from 68 to 121 d after planting (DAP).
Trait correlation and prediction of flowering time for each pair of
environments ranged from 0.20 to 0.99 and from 0.17 to 0.91, re-
spectively (Supplemental Fig. S1). Flowering time expressed asDAP
showed a pattern that can be readily modeled, unlike using grow-
ing degree days (GDD) as the flowering-time unit (Supplemental
Fig. S2).

We first conducted several analyses to understand the overall
phenotypic variation and genotype by environment interaction
(G×E) (Malosetti et al. 2013). Variance component analysis
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Figure 1. Flowering-time plasticity in rice. (A) Nine natural field environments. (B) Reaction norm for flowering time based on average day length (from
planting to 50 days after planting [DAP]). (C) Principal component analysis of G × E from the additive main effect and multiplicative interaction (AMMI)
model. (D) Reaction norm based on a numerical order of environmental mean. Regression fitted lines are indicated for two parents in panel D. Dots are
the observed flowering-time values.
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partitioned the phenotypic variance into environment (73.3%),
genotype (17.6%), and G×E (8.9%) (Supplemental Tables S2,
S3).We then partitioned theG×E variance into lackof genetic cor-
relation (79.0%) and heterogeneity of genotypic variance (21.0%)
(Supplemental Table S4). By following the additive main effects
and multiplicative interaction (AMMI) model, we found that the
first two principal components accounted for 82.3% of the G×E
(Fig. 1C). With the joint regression analysis approach (Finlay and
Wilkinson 1963; Eberhart and Russell 1966), G×E was partitioned
into heterogeneity in slopes (73.3%) and error (26.7%) (Supple-
mental Table S5).

We focused our attention on joint regression analysis, which
models the overall phenotypic variation with a numerical index
(environmental mean) to connect all environments (Fig. 1D). By
regressing the observations of individual genotypes on environ-
mental mean, one can obtain the expected reaction norm of this
genetic population. Despite two parents showing relatively small
differences, their progenies showed transgressive segregation in
flowering time (Fig. 1D). Although grouping patterns emerged in
both genotypes and environments, this traditional joint regres-
sion analysis relies on environmental mean and could not discern
the underlying biological mechanisms or allow performance pre-
diction of other environments.

Temperature defines the environmental index capturing

flowering-time variation

A better understanding of the general environmental pattern is
needed to facilitate both systematic gene effect comparison and
performance prediction. As an aggregate measure, environmental

mean represents the outcome of the interplay between genetics
and environment. If we regard thewhole population as a single ge-
notype, environmental mean informs us about differences among
environments. However, environmental mean can only be ob-
tained after the actual experiment and is specific to the tested set
of environments, lacking the capability of inference.

We examined ways to replace environmental mean by an ex-
plicit, performance-derived environmental index (Supplemental
Table S6). After testing temperature (using GDD), photoperiod,
and photothermal time (PTT) from different growth windows
(Supplemental Fig. S3), we found that average temperature from
9–50 DAP (denoted as GDD9–50) can serve as an environmental
index to best characterize the environments and replace environ-
mental mean (Fig. 2A,B). Besides having a strong correlation (r=
−0.990, P=3×10−7) (Fig. 2C), GDD9–50 involves a biologically
relevant window covering the early growth stage when plants pro-
cess the environmental cues to determine the timing of transition
to reproductive development. All nine environments were regard-
ed as LD environments because the average daily photoperiod
before flowering ranged from 13.9 to 15.5 h (Supplemental Fig.
S4), >13.5-h threshold for the general SD and LD classification
(Itoh et al. 2010). Correlation between photoperiod and environ-
mental mean was only 0.38 in the same 9–50 DAP window
(Supplemental Fig. S3). Because of the negligible increase in corre-
lation strength when considering photoperiod as an additional
environmental factor to pair with temperature, PTT (r=−0.991)
was not chosen (Supplemental Fig. S3). In addition, subsampling
analyses verified the general consistency of this GDD9–50 across
both subsets of environments and subsets of genotypes
(Supplemental Fig. S5).
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Figure 2. Identifying an environmental index from the performance data. (A) Rice development and temperature (in GDD) profiles across different en-
vironments. (B) Search for the most indicative growth window within which average temperature is highly correlated to environmental mean of flowering
time. Temperature within the window of 9–50 DAP was chosen as the environmental index and denoted as GDD9–50. (C ) Significant correlation between
GDD9–50 and environmental mean. (D) Regression-fitted reaction norm using the environmental index (GDD9–50) as the explanatory variable.
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With the identified environmental index, the fitted reaction
norm of this genetic population was obtained by regressing flow-
ering-time observations from each genotype on the values of
GDD9–50 (Fig. 2D). The varied responses among individual geno-
types can be described by two reaction-norm parameters: (1) inter-
cept, quantifying the overall expected flowering time, and
(2) slope, quantifying the sensitivity to environmental changes.
A one-unit increase in temperature promoted the whole popula-
tion to flower 1.94 d earlier, whereas this value varied between
0.6 and 3.6 d for different genotypes (i.e., different slopes).

Performance prediction through JGRA

To first focus on the whole-plant performance level, we imple-
mented joint genomic regression analysis (JGRA) to model and
predict flowering time for this rice population by integrating the
identified environmental index, joint regression analysis, and ge-
nomic selection. With the whole population being genotyped,
we tested two approaches: (1) genomic predicted reaction-norm
parameters for individual genotypes (Fig. 3A–C) and (2) genome-
wide marker effect continua for individual markers (Fig. 3D–F).
All 162 markers across the genome were used to construct the ge-
nomic relationshipmatrix for rectionnormparameters or to derive
the genome-widemarker effects. Although thismarker number ap-

peared small, it is known that the requirement for the number of
markers in biparental population is generally low (Bernardo and
Yu 2007).We examined three scenarios by splitting environments
and genotypes into either tested or untested.

High prediction accuracy (i.e., correlation between predicted
and observed values) was obtained from both JGRA approaches for
predicting performance of tested genotypes in untested environ-
ments (leave-one-environment-out cross-validation): 0.97 and
0.94 (Fig. 3A,D). Prediction accuracy within individual environ-
ment varied from0.82 to 0.99 for the reaction-norm parameter ap-
proach and from 0.71 to 0.90 for the marker effect continuum
approach. The predicted values were very close to the observed val-
ues, with a ratio close to one (Supplemental Fig. S6). For the second
scenario, predicting the performance of untested genotypes in
tested environments (leave-one-half-genotypes-out cross-valida-
tion), prediction accuracy was 0.91 and 0.89 (Fig. 3B,E). This sce-
nario describes when only a proportion of possible genotypes
can be tested in different environments (either because of limited
resources or by design) and predictions of the remaining untested
genotypes are made. Prediction accuracy within individual envi-
ronment ranged from 0.45–0.66 and 0.46–0.67 for the two ap-
proaches, lower than the first scenario. The ratio of predicted
values to observed values was close to one on average in the second
scenario (Supplemental Fig. S6).

A B
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Figure 3. Performance prediction of flowering time with joint genomic regression analysis (JGRA) to leverage environmental index and genomic predic-
tion. (A–C) JGRA using reaction-norm parameters. (D–F) JGRA using genome-wide marker effect continua. The three scenarios are predicting performance
for tested genotypes in untested environments (A,D), predicting performance for untested genotypes in tested environments (B,E), and predicting perfor-
mance for untested genotypes in untested environments (C,F). Prediction accuracy within each individual environment (in parentheses) and across all en-
vironments (r) are indicated; the diagonal line indicates the exact match between observed and predicted values.
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For the most challenging scenario, predictions for untested
genotypes in untested environments, connecting tested and un-
tested genotypes with genome-wide markers and connecting test-
ed and untested environments with environmental index were
needed (Fig. 3C,F). The leave-one-environment-and-one-half-
genotypes-out cross-validation resulted in an accuracy of 0.88 for
the reaction-norm parameter approach and 0.90 for the marker ef-
fect continuum approach and in an individual-environment accu-
racy of 0.44–0.67. We further showed that in all three scenarios,
the series of environment-specific predictions generated from
JGRA were superior to the fixed predictions using average perfor-
mance across tested environments (best linear unbiased estimator
[BLUE]) (Supplemental Fig. S6).

Prediction accuracy across all environments was higher than
those for individual environments. This was expected given the
wider context for the across-all-environments prediction (i.e.,
range change for x-y correlation of predicted-observed) and given
that the across-all-environments correlation contains the environ-
ment effect that was well captured by the environmental
index. Biologically, unique local environmental conditions may
alter flowering time in different directions from themain environ-
mental factor across environments and thus reduce prediction
accuracy.

By following the framework of joint regression analysis
(Finlay andWilkinson 1963; Eberhart and Russell 1966), we parti-
tioned the overall variance in the predicted values into compo-
nents (Supplemental Table S7). As expected, contribution of
environment to phenotypic variance was the highest, followed
by genotype and G×E.

Genetic dissection of flowering-time plasticity

To reveal the underlying genetic loci and their effect dynamics, we
conducted QTL linkage mapping using flowering-time observa-
tions within individual environments, mapping using flowering-
time observations across environments, and mapping using
two reaction-norm parameters (intercept and slope). Although
the environment effect accounted for a large part of the overall
phenotypic variation in the multienvironment trial (73.3%), ge-
notypic variance was twice of G × E variance and entry-mean-
based heritability of flowering time was 0.946 (Supplemental
Tables S2–S4). The detection of QTLs was not affected because
the heritability for single environment was moderately high
(0.662). Consistently, four loci corresponding to Hd1, Hd2, Hd5,
and Hd6 were detected by all mapping approaches (Fig. 4A,B;
Supplemental Figs. S7, S8).

Given the well-studied photoperiod response in rice
(Matsubara et al. 2014) and available genome sequence informa-
tion of two parental inbreds (Wang et al. 2018), we verified the
functional polymorphisms in these four genes (Hd1, Hd2, Hd5,
and Hd6) (Fig. 4C; Supplemental Fig. S9; Supplemental Table S8).
In addition, all four genes were originally identified by map-based
cloning involving Kasalath, one of the mapping parents, and
Nipponbare, the reference genome. All this information allowed
us to connect these four cloned genes with the mapped QTLs.
We adapted the known pathway (Matsubara et al. 2014) to show
their additional roles for temperature sensing to control flowering
time (Fig. 4D). The effect of temperature on flowering time and
the effect through genes identified from the photoperiodic re-
sponse pathway were documented in the earlier studies (Vergara
and Chang 1985; Li et al. 2015b). In the current study, the
Koshihikari allele ofHd1 delayed flowering inmost of the environ-

ments, which agrees with the function of Hd1 as a repressor of
Hd3a in LD condition, and the effect was dependent on the tem-
perature. In comparison with the Hd2 allele from Kasalath, the
Hd2 allele from Koshihikari promoted flowering in environments
with GDD9–50 > 20 while repressing flowering in environments
withGDD9–50 < 20. The negative genetic effects ofHd5 andHd6 in-
dicated that Koshihikari alleles promoted flowering across the tem-
perature range captured in these tested environments.

Having the same set of loci detected from mapping using
flowering-time observations (Fig. 4A) and mapping using reac-
tion-norm parameters (Fig. 4B) indicated these plasticity genes
were responding to the temperature gradient that differentiated
the environments (Nicotra et al. 2010). In addition, different or-
ders of QTL effects were identified: Hd5, Hd1, Hd6, and Hd2 for in-
tercept but Hd1, Hd2, Hd5, and Hd6 for slope (Fig. 4B), which
agreed with reaction norms of genetic effects at single-locus level
along the environmental index defined by temperature (Fig. 4A).
By using effect estimates (Fig. 4B) from mapping with reaction-
norm parameters (Fig. 2D), reaction norms of genetic effects for
four loci can also be plotted, which is comparable to the plot
from mapping first and regression next (Fig. 4A). Reaction norms
at different resolution levels showed consistent patterns
(Supplemental Methods; Supplemental Figs. S10–S12).

To examine contributions from additive effect and QTL by
environment interaction (QEI) effect, we conducted QEI mapping
(Supplemental Fig. S8; Li et al. 2015a). Agreeance was found be-
tween the results from QTL mapping with intercept and slope.
Hd1,Hd5, andHd6were detectedmainly by additive effect, where-
as Hd1 and Hd2 were detected mainly by QEI effect. Hd2 was the
most significant gene controlling QEI as the effect of Hd2 is bidir-
ectional, promoting or repressing flowering depending on the en-
vironment it was exposed to. To discover the interaction between
genes, we performedQEImapping on epistasis and detected strong
interaction signals between Hd2 and Hd6 and between Hd1 and
Hd5 (Supplemental Fig. S8). Additionally, other signals with inter-
mediate strength across the genomewere detected, indicating that
many small-effect interactions also contributed to the flowering-
time variation. It appears that even though complex pathways
and networks might have been involved, strong marginal effects
and two-way interactions can still be detected.

Alternative to genomic prediction using genome-wide mark-
ers, flowering time can also be predicted by constructing a model
with only markers tagging these four genes (Supplemental Fig.
S13). Comparable results were obtained, which is expected given
the common framework of environmental index search and joint
regression analysis.

Haplotype networks of four flowering-time plasticity genes

in global germplasm

It is interesting to see howdifferent alleles and allele combinations
are present in diverse rice accessions. This is because we observed
the differential temperature responses of these four genes original-
ly discovered from their photoperiod effects, and a recent genome
scan with whole-genome sequencing identified Hd1, Hd2, and
Hd6 underlying flowering time across a diverse rice accessions
(Yano et al. 2016). We constructed haplotype networks of these
four genes for the 3010 diverse cultivated rice genomes from
the 3000 Rice Genomes Project (Supplemental Fig. S14; Supple-
mental Table S9; Wang et al. 2018). From 29 million single-nucle-
otide polymorphisms (SNPs), there were more than 100 SNPs for
each gene (Hd1, Hd2, Hd5, and Hd6). These four genes were found
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to have multiple haplotypes but were primarily separated into
xian/indica (XI) and geng/japonica (GJ) accessions.

Haplotype analysis identified four major haplotypes for Hd1,
eachwithmore than100 accessions.We aligned these SNP-defined
haplotypes with characterized functional polymorphisms (Fig. 5A;
Supplemental Table S10). One major haplotype with the largest
number of accessions was dominated by XI accessions with a
wild-type allele, whereas anothermajor haplotypewith the second
largest numberof accessionswas dominatedbyGJ accessions carry-
ing either a c.468_500del33 or c.833_834del2 allele (Fig. 5A). We
identified six major haplotypes for Hd2. Three haplotypes mainly
consisted of XI accessions and two mainly GJ accessions. Wild-
type haplotypewas only detected inXI accessions. Three function-
al sites, c.1515_1522del8,M457V, andY704H, were also uncovered
in XI accessions, whereas the majority of GJ accessions carried the
G420D allele. We found Hd5 had four major haplotypes, with two
of them containing more than 800 accessions. One was found to
containmostly XI accessions with either a L19S or c.323delA allele,
whereas the second haplotype contained mostly GJ accessions
with either a wild-type or c.222G>T allele. Additionally, Hd6 had
four major haplotypes, with 1398 and 945 accessions for the first

two haplotypes. Out of 1398 accessions sharing the same haplo-
type carrying c.1809delG, 57% were XI accessions and 35% were
GJ accessions. The second haplotype was mainly shared by XI ac-
cessions with the allele of c.1631delA&c.1809delG. The number of
accessions for Hd6 wild-type allele was 48, and this small group of
accessions was not considered as a major haplotype.

Geographic origins of the 3010 accessions were primarily
composed of accessions from East Asia, Southeast Asia, and India
(Fig. 5B; Supplemental Fig. S15). We identified a total of 158 hap-
lotype combinations (Hd1: Hd2: Hd5: Hd6) by aggregating func-
tional alleles from four genes (Supplemental Table S11). Ten
combinations with more than 50 accessions were regarded as ma-
jor haplotypes. The combination ofWT: p.G420D:WT: c.1809delG
dominated in the northern region, whereas the combination of
WT: WT: p.L19S: X (X is designated to any haplotype of Hd6) ac-
counted for South Asia. China and India contributed the largest
numbers of accessions with different haplotype combinations:
WT: p.G420D: WT: c.1809delG and WT: c.1515_1522del8:
p.L19S: c.1631delA in China and WT: WT: p.L19S: c.1631delA
andWT:WT: L19S: c1809delG&c.1631delA in India. To test the sig-
nificance of genetic differentiation on the country-level, we

CA

DB

Figure 4. Varied effects at four loci along the temperature gradient underlying rice flowering-time plasticity. (A) Reaction norms of genetic effects at the
single-locus level along the environmental index by temperature (GDD9–50). Dots show the effects detected from individual environment analysis. Dashed
vertical line shows the positions of intercepts at the average temperature value. (B) Loci detected by mapping using the parameters (intercept and slope)
derived from the reaction norms of genotypes. Horizontal lines in LOD plots show the significance threshold. Additive effect in descending absolute-value
order for intercept (Hd5, Hd1, Hd6, and Hd2) and for slope (Hd1, Hd2, Hd5, and Hd6). (C) Known or potential functional polymorphisms between two
alleles in four flowering-time genes from sequence analysis. (D) Positions of four genes highlighted in the rice flowering control pathway under natural
long day-length (LD) conditions. These genes originally discovered for photoperiodic response are found to be involved in sensing temperature differences
in LD. Pathway diagram is modified following the Figure 1 in the work by Matsubara et al. (2014).
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assessed population genetic differentiation based on SNPs within
the gene loci (Supplemental Table S12). The Gst value (Nei and
Chesser 1983) was 0.55 from genetic differentiation between ind-
ica and japonica (Huang et al. 2012a). We obtained the mean Gst

values of all pairwise comparisons among 89 countries, which
were 0.43 (Hd1), 0.37 (Hd2), 0.45 (Hd5), 0.41 (Hd6), and 0.42 (over-
all across four genes). These numbers suggested a strong popula-
tion differentiation and suggested that these genes were selected
for local adaptation.

To connect the findings from two rice populations (the bipar-
ental population and the diverse accessions), we further classified

haplotypes at these genes into two functional classes: WT and
non-WT. With this designation, we were able to leverage the slope
valueof reactionnormobtained fromthebiparental population. In
the biparental population, parent Koshihikari has thewild-type al-
leles for Hd1, Hd2, and Hd5 but the mutant allele for Hd6
(Supplemental Table S13). Accordingly, the slope value for WT
was from the wild-type allele; for non-WT, from the mutant
allele. As a result, the identified 158 major haplotype combi-
nations in diverse rice genomes were categorized into 16 groups
(24 = 16), each with a unique slope value obtained from the corre-
sponding haplotype combination in the biparental population

C

A

B

H
d1

H
d2

H
d5

H
d6

Figure 5. Natural allelic variations in the Hd1, Hd2, Hd5, and Hd6 genes among 3000 rice genome accessions. (A) Haplotype network of four genes from
3010 rice accessions. Haplotype frequencies are proportional to the sizes of the circles. Each major haplotype is annotated with the functional sites. The
total number of accessions used for haplotype analysis varies among four genes. The different colors represent the classification of rice accessions.
(B) Geographic distribution of the four-gene combinations in rice accessions. The different colors represent different combinations of Hd1, Hd2, Hd5,
and Hd6. The relative size of each pie indicates the ratio of accessions within each combination in a given country. (C ) Geographic distribution of the multi-
gene haplotypes with different slope values indicating the sensitivity to temperature. High slope, absolute value≥2; low slope, absolute value < 2.
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(Supplemental Fig. S11). From the geographic distribution of hap-
lotypes, we observed that regions with lowermean annual temper-
ature were dominated by haplotypes sensitive to temperature
changes (absolute slope value≥2), whereas regions with higher
temperature had a majority of haplotypes less responsive to tem-
perature changes (absolute slope value <2) (Fig. 5C). This global
distribution suggested that combinationsof flowering-timeplastic-
ity genes have contributed to the rice expansion and adaptation to
around 18 regions and 89 countries.

Multiple levels of reaction norms underlying phenotypic

complexity

To encapsulate our understanding of phenotypic complexity, we
diagramed multiple reaction norms along the temperature gradi-
ent using findings from the current study as an example. At the
single-locus level, reaction norms of two homozygous genotypes
are represented by two alleles of a major-effect gene (Fig. 6A).
Within the range of environmental input, they may show a non-
crossover gene-by-environment interaction like Hd1, a crossover
interaction like Hd2, or not much interaction like Hd5 and Hd6.
These patterns emerged out of sorting by individual locus agree
with the reaction norms of genetic effects. Reaction norms at the
multilocus haplotype level can be revealed by plotting the reaction
norms of allelic combinations of major loci (Fig. 6B). Compared
with a single locus, multilocus haplotypes account for both addi-
tive effects and interactions among genes, reflecting the combined
effect from these loci in relevant pathways and networks. The hap-
lotype combination from alleles with the higher slopes was most
plastic along the environmental index; conversely, most stable
(least responsive) was the haplotype combination from alleles
with the lower slopes. Reaction norms of genotypes observed as in-
dividual organisms involved both major genes and many other
background genes on the genome (Fig. 6C).

Reaction norm at the genome-wide marker effect level has a
similar general pattern, representing the outcome of a genome-
wide approach to partition the observed phenotypic variation,
different from other reaction norms. In our study, this series of re-
action norms constitute the systematic view of the interplay be-
tween genetics and environment in generating the observed
phenotypic variation at different resolution levels (Figs. 1, 2, 4, 6;
Supplemental Figs. S10–S12).

Discussion

Uncovering genetic architecture and molecular mechanisms of
complex traits is important research in biology, evolution, agricul-
ture, and medical science (Mackay et al. 2009; Marais et al. 2013).
This current study showcased the benefit of pattern discovery in
natural environments to explore the interdependent relationship
of genetics and environments behind phenotypic plasticity.
Specifically, temperature at the early growth stagewas found to dif-
ferentiate the nine environments in which this rice population
was grown, and an explicit environmental index was identified
to explain, model, and predict rice flowering time. More impor-
tantly, changes in size and direction of genetic effects were system-
atically revealed with reaction norms along the temperature
gradient. Genes known to respond to day length changes were
found to respond to temperature in these long-day environments.
This can be explained by the interconnected pathways in plants in
processing different environmental cues (Blackman 2017; Scheres
and van der Putten 2017).

Unlike the earlier study in sorghum inwhich a single biparen-
tal population was examined (Li et al. 2018), in the current study,
we uncovered the patterned geographic distributions of multigene
haplotypes using the whole-genome sequencing data from a set of
diverse rice accessions. By projecting the plasticity parameter value
(the slope) obtained from the biparental population to the diverse

IndividualHd1, Hd2, Hd5 & Hd6Hd1

Multilocus HaplotypeSingle Locus GenomeA B C

Figure 6. A conceptual model to explain phenotypic complexity using reaction norms at multiple levels with varied environmental inputs. (A) Reaction
norms at the single-locus level to temperature changes. Two homozygous genotype classes are represented by two alleles for the gene Hd1. (B) Reaction
norms at the multilocus haplotype level to temperature changes. The 24 = 16 haplotype (homozygous genotype) classes are shown for four genes (Hd1,
Hd2, Hd5, and Hd6). (C) Reaction norms at the genome level observed as individual organisms to temperature changes.
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accessions, we revealed that these multigene haplotypes with ei-
ther a higher slope value (sensitive to temperature change) or a
lower slope value (less responsive to temperature change) are pref-
erentially distributed in different regions. Further research into the
complex haplotype networks of flowering-time genes under broad
agroecological conditions may eventually explain the patterns of
global rice germplasm adaptation at a finer resolution.

Transition to flowering, a well-recognized trait of plasticity, is
one of the most critical stages in the life cycle of a plant. In this
study, the same group of genes were found to be underlying
both reaction norm parameters, namely, intercept and slope,
even though their effect sizes varied, similar to the earlier study
in sorghum (Li et al. 2018). In both cases, the identified environ-
mental index explained a large proportion of variation in environ-
mental mean. Therefore, it appears that a set of genes from
overlapping pathways and networks are underlying phenotypic
plasticity, but the exact dynamics may differ depending on differ-
ent input values of the primary environmental factor(s) differenti-
ating these natural field conditions with respect to flowering time.
Distinct genetic architectures for intercept and slope detected in a
recent maize study (Kusmec et al. 2017), in which environmental
mean was used, may be owing to joint effects from multiple envi-
ronmental indices or the high genetic diversity involved.

Building on earlier works about dynamic gene effects (Marais
et al. 2013; Li et al. 2018) and the omnigenic model (Boyle et al.
2017), we propose a conceptual model to reveal the layers of com-
plexity of a quantitative trait using a set of reaction norms along an
environmental index: reaction norms of genetic effects at the sin-
gle-locus level, reaction norms of genotypes at the single-locus lev-
el, reaction norms of genotypes at the multilocus combination
level, reaction norms of genome-wide marker effect continua,
and reaction norms of genotypes (observed as individuals). Our
findings highlighted the need, as well as the gain in clarity, of
quantifying the relevant environmental context when we define
and estimate the effects of genes underlying complex traits
(Marais et al. 2013). Besides these revealed patterns of genetics
and environment interplay, we showed that accurate performance
prediction can be achieved through the integrated approaches
with genome-wide SNPs and the identified environmental index.
Finally, we expect to see further integration of knowledge and ap-
proaches in studying the genotype–phenotype relationship from
the detailed molecular mechanisms perspective (e.g., gene map-
ping and cloning, molecular and developmental biology, and ge-
nome editing) and the broad genomic and environmental
diversity perspective (e.g., sequencing, genome-wide association
studies, genomic prediction, high-throughput phenotyping, and
crop model and physiology).

Assessing genetic effects along the environmental factors pro-
vides away to optimize the utilization of genetic resources in plant
breeding process. Abundant allelic variations have been observed
at many loci in rice flowering time. Complementary to genome-
wide prediction, quantifying the allelic effects and haplotype ef-
fects at multiple loci across different environmental gradients
can help breeders fine-tune flowering time in rice cultivars with
designed introgression or targeted editing (Zeng et al. 2017;
Chen et al. 2019). In addition, resource allocation of testing envi-
ronments can be optimized to better capturemajor environmental
gradients. Besides flowering time, other agriculturally and eco-
nomically important traits are also strongly affected by environ-
mental conditions and can be examined using the same
approaches. Besides temperature and day length, other quantifi-
able factors, such as soil properties, including soil water retention

and plant available water, can also be examined and potentially
factored into constructing the environmental index. Understand-
ing the genetic and environmental mechanisms underlying com-
plex traits helps improve crops to satisfy the demand for food
supply for still increasing world population under climate change.

Methods

Genetic population and phenotyping

The genetic mapping population from Koshihikari and Kasalath
was developed by the National Institute of Agrobiological
Sciences Rice Genome Resource Center, Japan. Phenotype and ge-
notype data were detailed in previous studies (Ma et al. 2002;
Onogi et al. 2016) and are available at GitHub (https://github
.com/Onogi/HeadingDatePrediction). Genotypes and a linkage
map of 162 restriction fragment length polymorphism markers
are available at https://www.rgrc.dna.affrc.go.jp/ineKKBIL182
.html. All these markers are biallelic. This population of 174 BILs
was evaluated in six experimental fields across 3 yr. The nine envi-
ronmentswere: Tsukuba 2007 (TS07), Tsukuba 2008 early planting
(TS08E), Tsukuba 2008 late planting (TS08L), Tsukuba 2009
(TS09), Ishikawa 2008 (ISA08), Fukuoka 2008 (FU08), Ishigaki
2008 (ISI08), Thai Nguyen 2008 (TH08), and Ha Noi 2008
(HA08) (Supplemental Table S1). Planting dates for these trials var-
ied from March 31 to June 30. At each site, seeds were pregermi-
nated in water and planted to seedling trays filled with soil.
Seedlings were transplanted at the three-to-four-leaf stage.
Heading dates were recorded for five plants from the middle of
each row, the averaged value was recorded, and we used term flow-
ering time to represent heading date. A randomized complete
block design (RCBD) was applied in the field, each environment
had two replications, and the average value was used for each
line. Environmental mean of flowering time was calculated as
the average heading date for the whole population at each
environment.

Identifying the environmental index

Environment data for temperature and day length (based on civil
twilight) were retrieved from the National Oceanic and Atmo-
spheric Administration (NOAA: https://www.noaa.gov/weather)
and the Astronomical Applications Department of the U.S. Naval
Observatory (https://www.usno.navy.mil/USNO/astronomical-
applications). Daily temperature (°F) was converted to GDD for
rice with the formula: GDD= [(maximum temperature +mini-
mum temperature) / 2] – 50.

We tested three environmental parameters: temperature (ex-
pressed as GDD), day length, and PTT (GDD×day length)
(Supplemental Table S6). From each window during development,
themean value of each parameter was calculated first, and then its
correlation with environmental mean of flowering time was ob-
tained. Each window was from a starting day (i) to an end day
( j), and both were expressed as DAP. The search was conducted
with consecutive starting and ending days, and only windows be-
fore the trait expression were considered. The parameter–window
combination with the highest correlation and reasonable biologi-
cal interpretation was chosen as the final environmental index.

Genetic mapping and flowering-time genes

We conducted inclusive composite interval mapping with the
software ICIM (Meng et al. 2015). A total of 162 markers were
used. QTL mapping with additive and epistasis were conducted
for flowering time in individual environments and for QEIs using
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multienvironment trials (Supplemental Methods; Li et al. 2006,
2015a).

Intercept and slope were calculated by regressing phenotypes
of each individual onto the environmental index using R (R Core
Team 2019). For mapping of reaction-norm parameters, intercept
and slope were treated as phenotypes to detect QTL with ICIM.
The significant thresholds were determined with 1000-time
permutations.

Functional polymorphisms of four flowering-time genes
(Hd1, Hd2, Hd5, and Hd6) underlying the detected QTLs for the
two parental inbreds (Koshihikari and Kasalath) (Supplemental
Table S13) were tabulated from literatures (Yano et al. 2000;
Takahashi et al. 2001; Wei et al. 2010; Koo et al. 2013). From the
3000 Rice Genomes Project (Wang et al. 2018), we obtained the
known or potential functional polymorphisms between two par-
ents in four flowering-time genes (Supplemental Methods).

Additional information about reaction norms atmultiple lev-
els is presented in the Supplemental Methods.

Geographical distribution of haplotypes of flowering-time genes

Across 3010 rice accessions, polymorphisms (SNPs and small
indels) for four genes (Hd1, Hd2, Hd5, and Hd6) were extracted
from 3000 Rice Genomes Project (Wang et al. 2018; http://iric
.irri.org/resources/3000-genomes-project). There were 143, 475,
282, and 184 SNPs within the gene regions for Hd1, Hd2, Hd5,
and Hd6, respectively. After filtering with missing rate and minor
allele frequency less than 0.05, the number of high-quality SNPs
were 11, 74, 14, and 21 for Hd1, Hd2, Hd5, and Hd6, respectively.
These high-quality SNPs were used to conduct haplotype determi-
nation and analyses by using R package “pegas” (Paradis 2010).
Theminimumnumber of shared accessions was set as 100 to select
major haplotypes.

Documented functional sites (small insertions, deletions, and
large structural variations) were compiled from literatures charac-
tering Hd1, Hd2, Hd5, and Hd6 (Yano et al. 2000; Takahashi et al.
2001; Wei et al. 2010; Koo et al. 2013) to annotate the haplotypes
constructed by SNPs in “pegas.”

The global temperature visualized in the geographic map was
the mean annual temperature for the years 1970–2000 with R
package “raster” and function “getData.” The temperature data
were from the database “worldclim,” which collects global inter-
polated climate data.

Population genetic differentiation analysis

To test whether accessions with different haplotype combinations
were selected for local adaptation, we grouped the 3010 accessions
into 89 countries. TheR package “mmod”was used to analyze pop-
ulation genetic differentiation (Winter 2012). We applied the
function “diff_stats” to calculate three different statistics of differ-
entiation using SNPs within the genes extracted from sequence
data. The three statistics are heterozygosity of subpopulations
(Hs), heterozygosity of the total population (Ht), and Nei’s Gst
(Nei and Chesser 1983), all of which were estimated for individual
genes and four genes together (Supplemental Table S12).

JGRA for performance prediction

Performance predictionwith JGRAwas conducted for three scenar-
ios: predicting the performance of tested genotypes in untested en-
vironments, predicting the performance of untested genotypes in
tested environments, and predicting the performance of untested
genotypes in untested environments (Supplemental Methods).
Unlike the traditional joint regression analysis, JGRA involved per-
formance prediction of individuals without performance data

through genomics and performance prediction for untested envi-
ronments through environmental index (Li et al. 2018).

JGRA through reaction-norm parameter approach obtained
the intercept and slope by regressing an individual’s performance
on environmental index, and the connection of individuals with
and without performance data was established with the genome-
wide relationship (Supplemental Methods). JGRA through a
genome-wide marker effect continuum approach obtained ge-
nome-wide marker effects at each environment, and these effects
were then regressed on environmental index to obtain fitted val-
ues for prediction. JGRA is a generic framework that can be applied
for input data sets with sizes ranging from small to large. Both ge-
nomic prediction with the genome-wide relationship and ge-
nome-wide marker effect estimation use rrBLUP as a default
setting, which can be customized to accommodate othermethods.
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