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a b s t r a c t 

While COVID-19 is rapidly propagating around the globe, the need for providing real-time 

forecasts of the epidemics pushes fits of dynamical and statistical models to available data 

beyond their capabilities. Here we focus on statistical predictions of COVID-19 infections 

performed by fitting asymptotic distributions to actual data. By taking as a case-study 

the epidemic evolution of total COVID-19 infections in Chinese provinces and Italian re- 

gions, we find that predictions are characterized by large uncertainties at the early stages 

of the epidemic growth. Those uncertainties significantly reduce after the epidemics peak 

is reached. Differences in the uncertainty of the forecasts at a regional level can be used 

to highlight the delay in the spread of the virus. Our results warn that long term extrap- 

olation of epidemics counts must be handled with extreme care as they crucially depend 

not only on the quality of data, but also on the stage of the epidemics, due to the intrin- 

sically non-linear nature of the underlying dynamics. These results suggest that real-time 

epidemiological projections should include wide uncertainty ranges and urge for the needs 

of compiling high-quality datasets of infections counts, including asymptomatic patients. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The COVID-19, a disease caused by the SARS-CoV-2 virus, was firstly reported in the Hubei province on 31 December

2019 when the WHO China Country Office was informed of cases of pneumonia unknown etiology detected in Wuhan

City [1–3] . On 7 January 2020 the Chinese authorities identified this virus as a zoonotic virus belonging to the family of

coronavirus [4–6] . Its diffusion rapidly spread over all Chinese provinces and nearest countries (Thailand, Japan, Korea) [7] .

On 23 January, although still unknown the initial source of the epidemic, the evidence that 2019-nCoV spreads from human-

to-human and also across generations of cases quickly increases [8,9] . On 30 January, the World Health Organization (WHO)

declared the outbreak to be a public health emergency of international concern [10] , believing that it is still possible to

interrupt the virus spread by putting in place strong measures for early detecting, isolating, and treating cases, for tracing

back all contacts, and for promoting social distancing measures [10–12] . The main driver of transmission is still an open
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question [13,14] , and preliminary estimates of the median incubation period are 5–6 days (ranging between 2 and 14 days)

[15] . On 21 February a cluster of cases was detected in Italy (Lombardia), then on 23 February 11 municipalities in northern

Italy were identified as the two main Italian clusters and placed under quarantine [16] , on 9 March the quarantine has been

expanded to all of Italy [17] , on 11 March all commercial activity except for supermarkets and pharmacies were prohibited

[18] , and on 22 March all non-essential businesses and industries were closed [19] and additional restrictions to movement

of people were introduced [20,21] . 

Meanwhile, the quarantined Chinese regions observed a fast decrease in the number of cases in Hubei and a moderate

decrease in other affected regions, at the same time the virus internationally spread, and on 11 March the WHO declared

COVID-19 a pandemic [22,23] . To date, there are more than 1 million confirmed cases over the globe, more than 60,0 0 0

deaths, and the most affected areas are the European region and the United States. While three months were needed to

reach the first 10 0,0 0 0 confirmed cases, only 23 days were sufficient to multiply by eight the counts, a typical signature

of the exponential spreading of viruses. The reason for such high infectivity are currently being explored in clinical studies

and numerical simulations [24] . Due to the fast spread of the virus and the severity of symptoms, restrictive confinement

measures have been imposed in many countries. They were based on asymptotic extrapolation of infection counts obtained

on the basis of compartmental epidemic models as the Susceptible-Exposed-Infected-Recovered (SEIR) model and their vari-

ants [25] or on agent-based models [26] . Unfortunately, predictions made using these models are extremely sensitive to the

underlying parameters and the quality of their extrapolation is deeply affected from both the lack of high-quality datasets

as well as from the intrinsic sensitivity of the dynamics to initial conditions in the growing phase [27] . Moreover, in order to

provide reliable estimates of asymptotic infection counts, a knowledge of asymptomatic populations is needed. These data

are currently almost unavailable and affected by great uncertainties. 

Another possibility is to extrapolate the number of infections by means of fitting asymptotic distributions to actual data.

Using these phenomenological statistical approach, we compare the behavior of epidemic evolution across China and Italy.

The assumption beyond those fits is that typical curves of total infections in SEIR models display a sigmoid shape [28] .

Sigmoid functions such as the logistic or Gompertz can therefore be used to fit actual data. When data are collected with

the same protocols, e.g., in China and Italy, where tests are performed only to symptomatic patients, the statistical fitting can

therefore provide an extrapolation of how many symptomatic cases should be recorded, although it will not inform about

the real percentage of infected population [29] . We found that predictions are characterized by large uncertainties at the

early stages of the epidemic growth, significantly reducing when a mature stage or a peak of infections are reached. This is

observed both in China and in Italy, although some differences are observed across the Italian territory, possibly related with

the time delayed diffusion of epidemic into the different Italian regions. Finally, we also estimate infection increments for

each Italian region, with being the uncertainty significantly reduced for Northern and Central regions, while a larger one is

found for Southern regions. These results can be helpful for each epidemic diffusion, thus highlighting that the confinement

measures are fundamental and more effective in the early stages of the epidemic evolution (the first 7 days), thus producing

a different spread across provinces/regions as these measures are considered. The main novelty introduced in this work is

to investigate how uncertainty changes during the different stages of the epidemics. This is a crucial aspect that needs to be

carefully considered when long-term extrapolations of the infection counts are carried out since they significantly depend

not only on the quality of data, but also on the stage of the epidemics, due to the intrinsically non-linear nature of the

underlying dynamics. This has also profound consequences on modeling epidemic growth by means of dynamical models as

those based on compartments or agent dynamics which need to be initialized with quality data, faithfully representing the

infected populations including asymptomatic patients [27] . Our approach, based on a sort of Bayesian framework to reduce

uncertainty as more data and/or information become available, is particularly helpful for unknown viruses and outbreaks,

and allows to suggest few practical guidelines to control the local diffusion of epidemics and to restrict the analysis on

specific regions, aiming at preserving the public health and at enforcing/relaxing confinement measures. 

2. Data 

Data for the Chinese provinces are obtained from the data repository for the 2019 Novel Coronavirus Visual Dash-

board operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), freely available

at https://github.com/CSSEGISandData/COVID-19 . Fig. 1 reports the total number of confirmed infections (left panel), thus

including actual positive people to COVID-19, recovered and deaths for China and three Chinese provinces of Bejing, Hubei,

and Yunnan, and the daily infections (right panel), during the period between 22 January and 30 March. 

Data for the Italian regions are instead derived from the repository freely available at https://github.com/pcm-dpc/

COVID-19 where data are collected from the Italian Protezione Civile from 24 February 2020. Data used here were last 

downloaded on 02 April, thus covering the period 24 February–02 April, as shown in Fig. 2 . 

It is evident that although the increments of infections started about 1 month after the Chinese epidemic Italy has fast

reached and exceeded the Chinese peak values of ~ 80 0 0 0 infections. Moreover, it is also apparent that epidemic diffusion

in China reached its peak within ~ 20 days from the first restriction operated to the Hubei region on 23 January. Conversely,

the Italian restrictions seem to become more efficient only when the Italian government adopted a lock-down confinement

on 9 March [17] . 

https://github.com/CSSEGISandData/COVID-19
https://github.com/pcm-dpc/COVID-19
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Fig. 1. The total number of confirmed infections (left panel) and the daily infections (right panel) for China and three Chinese provinces of Bejing, Hubei, 

and Yunnan. Filled circles refer to the first 30 days of the epidemic diffusion. The vertical dashed lines mark the times when Chinese government applied 

lock-down restrictions on 23 January and 28 January, respectively. 

Fig. 2. The total number of confirmed infections (left panel) and the daily infections (right panel) for Italy and three Italian regions of Lombardia, Marche, 

and Puglia. Filled circles refer to the first 30 days of the epidemic diffusion. The vertical dashed lines mark the times when the Italian government applied 

lock-down restrictions on 23 February, 01 March, 09 March, and 22 March, respectively. 

 

 

 

 

 

 

 

 

 

 

3. Methods 

A data-driven way to extrapolate future phases, in terms of both key parameters and epidemic impact, of an epidemic

growth [30–32] is to use phenomenological statistical models [33] . Indeed, since the total number of infections C ( t ) is a

sigmoid function different kinds of models can be used to fit its time evolution [34] . Within the large variety of possible

sigmoid functions the generalized logistic distribution and the generalized Gompertz one have proven to be successful in fit-

ting epidemic growths [35,36] . Their suitability is mostly related to the reduced number of free parameters (only three) with

respect to other choices depending on a larger set of model parameters ( > 3) which allows to reduce the overfitting effect

due to a statistical model containing more parameters than can be justified by the data [34] . However, our main aim of in-

vestigating how uncertainty evolves with the epidemic growth stage is independent on the choice of the fitting distribution

provided that they are dependent on the same number of free parameters. Thus, we selected to use the generalized logistic

distribution, also considering that its parameters can be linked (in a non-explicit way) to the solution of compartmental
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Table 1 

The value of c ( α) for the most common levels of α. 

α 0.20 0.15 0.10 0.05 0.01 

c ( α) 1.073 1.138 1.224 1.358 1.628 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

models as the Susceptible-Exposed-Infected-Recovered (SEIR) model and their variants [25] or on agent-based models [26] .

The generalized logistic distribution for fitting the total cumulative number of infections reads [33,35,36] 

C(t) = 

α

1 + β e −γ t 
(1) 

being α, β , and γ the parameters of the model. They can be fitted, e.g., using Nonlinear least-squares solver, with the

Levenberg-Marquardt algorithm and the bisquare weight methods to minimize a weighted sum of squares. Here we use a

MATLAB function to perform the fits. As recently pointed out in Faranda et al. [27] in the early stages of the epidemics, the

smoothness of COVID-19 cumulative infections data could lead to very uncertain predictions although with very good R 2 .

To avoid this, here we focus only on Chinese and Italian data, that, to date, represent a mature stage of the epidemics. This

implies, as we will show, that the significance of the logistic fit can be assigned with greater confidence [27] . We remark

however, that when confinement measures are applied, the basic reproduction number R 0 , which regulates the growth of

infections, is reduced [37] . We are therefore in presence not of a single logistic distribution, but of a mixture of distributions

with control parameters changing in time as different phases of epidemic diffusion are reached. Confinement measures can

reduce R 0 from the exponential-like behavior of an uncontrolled growing phase, to a smoother logistic growth phase. Our

goal here is to use the a-priori knowledge of the introduction of confinement measurements to investigate the perfomrance

of statistical prediction of infection counts for different epidemic phases. Thus, we perform logistic fits as in Eq. (1) in the

following time intervals: 

• the first 30 days of epidemic growth, as reported in Figs. 3 and 4 by black lines, thus to consider how restrictions

measure globally affect the diffusion; 
• the first 7 days, roughly corresponding to the time interval during which first restriction measures are adopted both in

China and Italy, although not still completely efficient (red lines in Figs. 3 and 4 ); 
• the first 14 days, corresponding to the time interval in which the initial confinement measures should lead the first

effects (blue lines in Figs. 3 and 4 ); 
• the time interval between the 8th and the 14th day to investigate how the epidemic would be grown if starting from

initial restrictions (green lines in Figs. 3 and 4 ); 
• the time interval between the 15th and the 30th day to investigate the efficiency of restriction measures (magenta lines

in Figs. 3 and 4 ). 

In this way we can investigate both the efficiency of restriction measures in containing epidemic growth as well as the

stability of prediction models based on logistic distribution fitting procedures. Moreover, to assess the significance of fits we

assume that the last point of the fitting range could be affected by a ± 30% error. This allows us to provide a simple way to

estimate confidence intervals for our fits [27] . Finally, the Kolmogorov-Smirnov (K-S) test [38–40] is also used to obtain a test

decision for the null hypothesis that the observed data are from the same logistic distribution as derived from the logistic

fits under the different time intervals. This allows to test the efficiency in delivering reliable forecasts at different stages of

the epidemic growth. The test is based on evaluating the maximum distance between the empirical distribution functions

coming from two different sam ples x 1, n and x 2, m 

, being n and m the length of samples. By defining the Kolmogorov-Smirnov

statistic as 

D n,m 

= sup 

x 
| F 1 ,n (x ) − F 2 ,m 

(x ) | , (2) 

where F 1, n ( x ) and F 2, m 

( x ) are the empirical distribution functions of the two samples, respectively, the null hypothesis is

rejected at the confidence level α if 

D n,m 

> c(α) 

√ 

n + m 

n · m 

. (3) 

When m = n a general relation can be found for D n ( α) as 

D n (α) > 

1 √ 

n 

√ 

− log 

(
α

2 

)
. (4) 

The value of c ( α) for the most common levels of α are reported in Table 1 . 

The closer the observed statistics D n,obs is to 0 the more likely it is that the two samples were drawn from the same

distribution with being D n,obs < D n ( α). The use of the K-S test has two main advantages: (i) the distribution of the K-S test

statistic itself does not depend on the underlying cumulative distribution function being tested, and (ii) it is an exact test

[41–44] . Moreover, it is specifically designed for testing if data come from a normal, a log-normal, a Weibull, an exponential,
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Fig. 3. Logistic fits during the different time intervals of epidemic across Chinese provinces, together with the confidence lines. From top to bottom: China 

and three provinces (Bejing, Hubei, Yunnan). The vertical dashed lines mark the times when Chinese government applied lock-down restrictions on 23 

January and 28 January, respectively. 

 

 

 

 

 

 

 

 

 

 

or a logistic distribution [42,45] . Thus, it is particularly suitable for our investigations, being also a non-parametric and

robust technique since it is not based on strong distributional assumptions [42,44–46] . 

4. Epidemic diffusion through Chinese provinces 

Fig. 3 shows logistic fits for different phases of epidemic across Chinese provinces, together with upper and lower confi-

dence bounds, obtained as outlined in the previous section. 

Early stage of epidemic propagation is characterized by a larger confidence interval (red lines in Fig. 3 ), thus highlighting

the difficulty in making early reliable predictions of epidemic growth, with an exponential-like behavior. The confidence

interval becomes narrower as the growth rate reduces, as for the case of the provinces of Bejing and Yunnan being less

affected from COVID-19 infections with respect to the Hubei, the latter mostly contributing to the overall epidemic growth

in China. The logistic fit becomes more stable, being characterized by a narrower estimates of confidence intervals, when

the first two weeks are considered (blue lines in Fig. 3 ), possibly related to the initial efficiency of restriction measures. This

could be also due to both the limited number of points of the fitting range as well as to the particular phase of the epidemic

growth. However, by comparing the confidence intervals of logistic fits performed using the first week (22/01–29/01, red
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Fig. 4. Logistic fits during the different time intervals of epidemic across Italian regions, together with the confidence lines. From top to bottom: Italy 

and three regions (Lombardia, Marche, Puglia). The vertical dashed lines mark the times when Italian government applied lock-down restrictions on 23 

February, 01 March, 09 March, and 22 March, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

lines in Fig. 3 ) and the second week (30/01–05/02, green lines in Fig. 3 ) it is possible to note that the stability increases for

this second interval for all Chinese provinces, thus suggesting that estimates are significantly dependent on the particular

epidemic phase considered. Indeed, the stability significantly increases when the logistic fit is performed on time intervals

that do not include the first week of the epidemic growth (green and magenta lines in Fig. 3 ), suggesting that credible

predictions could be assigned with a large confidence by means of a logistic fit if the beginning of the outbreak is not

considered. However, the narrowest estimates of significance levels is obtained when the first 30 days are considered, thus

also including the beginning of the outbreak, possibly suggesting that fits become more and more stable if data are collected

at a mature stage of the epidemic growth. This is clearly visible for all Chinese provinces, apart for the slight discrepancy

observed for the Bejing province where some returned cases from outside China were observed from 20 March. Finally, we

assess the statistical discrepancy of the logistic fits from the observed data by performing the Kolmogorov-Smirnov (K-S)

test those results for the 95% confidence level are reported in Table 2 . 

It can be noted that the statistical results obtained through the K-S test suggest that the fits performed by considering

the time intervals from 22 January to 21 February as well as from 05 February to 21 February are statistically significant

for reproducing the behavior of the observed number of infections at the 95% significance level. This seems to support the
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Table 2 

Results of the Kolmogorov-Smirnov test for the 95% confi- 

dence level for the Chinese provinces. The decision to re- 

ject the null hypothesis is based on comparing the ob- 

served statistics D n,obs with the theoretical value D n,th = 

0 . 2329 obtained for the significance level α = 0 . 05 as in 

Eq. (4) . If D n,obs < D n,th then the samples come from the 

same logistic distribution and corresponding values are re- 

ported in bold. 

D n,obs 

Time interval China Hubei Bejing Yunnan 

22/01–29/01 0.750 0.750 0.750 0.625 

22/01–05/02 0.500 0.475 0.550 0.450 

30/01–05/02 0.575 0.575 0.550 0.525 

05/02–21/02 0.225 0.150 0.125 0.125 

22/01–21/02 0.100 0.100 0.100 0.100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that reliable predictions can be assessed only when a mature stage of the epidemic growth is approached/reached, while

low-significant predictions can be released at the early stages of the epidemic diffusion. 

5. Epidemic diffusion through Italian regions 

Fig. 4 shows logistic fits for different phases of epidemic across Italian regions, together with the upper and lower confi-

dence lines. 

As for Chinese provinces the early stage of epidemic diffusion is characterized by a larger confidence interval (red lines

in Fig. 4 ), again suggesting that reliable predictions of epidemic growth are particularly difficult in its early stages. Indeed,

an exponential-like behavior is found for both the Italian territory and Lombardia, the latter being the first Italian region

characterized by COVID-19 infections. As for China, confidence intervals become narrower as the growth rate reduces (see

for example Marche or Puglia with respect to Lombardia), with the logistic fits also becoming more stable when the initial

stages of the outbreak are removed (green and magenta lines in Fig. 4 ). Unlike for Chinese regions, Italian regions present a

wide range of different epidemic behaviors, that we investigate separately in the following. 

5.1. Epidemics growth in Lombardia 

As discussed above the initial phase is characterized by larger uncertainties and by an exponential-like behavior (red

lines in Fig. 4 ), thus suggesting a clear difficulty in making predictions of the growth in its early stage. When the first

two weeks (e.g., 24/02–08/03) are considered (blue lines in Fig. 4 ) a larger uncertainty is found, especially for the upper-

bound confidence level. This underline the difficulty in making reliable estimates of its evolution. Similarly, the logistic fits

performed between 01 March and 08 March (green lines in Fig. 4 ) suggest that the first two weeks were particularly critical

in Lombardia, while logistic fits become more stable when removing the beginning of the outbreak, leading to more reliable

estimates of the epidemic growth (magenta lines in Fig. 4 ). Finally, significance levels become narrower when the first 30

days are considered (e.g., 24/02–23/03), thus also including the beginning of the outbreak, possibly again suggesting that

including data from the mature stage of the epidemic growth could allow to obtain more stable fits. We remark that, no

matter the approach followed, logistic fits struggle to predict the number of infections of the successive days. This failure of

statistical real-time forecasts of the epidemics could be related to all those factors that can change the instantaneous value

of R 0 , e.g., extended violations of the restriction measures, changes in testing protocols or delay in data reporting, changes

in the virus characteristics. It is worthwhile to note that the above features are found for all Northern regions firstly affected

from COVID-19 diffusion (not shown here). 

5.2. Epidemics growth in Marche 

The epidemic growth throughout Marche, as well as throughout other Central regions (not shown), is different from

Northern regions. Indeed, the first 7 days (e.g., 24/02–01/03, red lines in Fig. 4 ) were not characterized by an exponential

increase of infections, as the diffusion of the virus was pretty slow: logistic fits are therefore meaningless in this context.

The exponential phase started in the second week, as we can see by fitting the first two week of the infection counts

(e.g., 24/02–08/03, blue lines in Fig. 4 ) or just the second week (e.g., from 01 March to 08 March, green lines in Fig. 4 ).

During this week, the number of infections significantly increases (272 confirmed cases) enabling better fits of data to

logistic distributions. This suggests a time delayed propagation between Northern and Central regions. Indeed, the logistic

fits become more stable, with narrower estimates of confidence intervals, when the time interval from 08 March to 23 March

(magenta lines in Fig. 4 ) or the first 30 days (e.g., 24/02–23/03, black lines in Fig. 4 ) are taken into account, suggesting that

credible predictions could be assigned with a large confidence when a mature stage of the epidemic growth is approached.
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Table 3 

Results of the Kolmogorov-Smirnov test for the 95% confidence 

level for the Italian regions. The decision to reject the null hy- 

pothesis is based on comparing the observed statistics D n,obs 

with the theoretical value D n,th = 0 . 3037 obtained for the sig- 

nificance level α = 0 . 05 as in Eq. (4) . If D n,obs < D n,th then the 

samples come from the same logistic distribution and corre- 

sponding values are reported in bold. 

D n,obs 

Time interval Italy Lombardia Marche Puglia 

24/02–01/03 0.825 0.800 0.800 0.800 

24/02–08/03 0.575 0.550 0.650 0.800 

01/03–08/03 0.550 0.425 0.600 0.800 

08/03–23/03 0.325 0.325 0.400 0.400 

24/02–23/03 0.350 0.325 0.400 0.400 

Table 4 

Results of the Kolmogorov-Smirnov test for the 95% confidence 

level for the Italian regions. The decision to reject the null hy- 

pothesis is based on comparing the observed statistics D n,obs 

with the theoretical value D n,th = 0 . 3037 obtained for the sig- 

nificance level α = 0 . 05 . If D n,obs < D n,th then the samples come 

from the same logistic distribution. 

D n,obs 

Time interval Italy Lombardia Marche Puglia 

24/02–23/03 0.350 0.325 0.400 0.400 

24/02–30/03 0.150 0.150 0.250 0.275 

24/02–02/04 0.100 0.100 0.175 0.200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, as for Norther regions the logistic fits struggle to predict the number of infections of the successive days (i.e., after

the first 30 days). 

5.3. Epidemics growth in Puglia 

A completely different scenario is found for Puglia and Southern regions (not shown). Logistic fits cannot be performed

during the first two weeks (e.g., from 24 February to 08 March), as the infection counts was not yet exponential. By con-

sidering the time interval between 08 and 23 March (magenta lines in Fig. 4 ) and the first 30 days (e.g., 24/02–23/03, black

lines in Fig. 4 ) an increase in the confidence of logistic fits is found, although they struggle to predict the number of infec-

tions of the successive days (i.e., after the first 30 days). This is possibly due to the time delayed propagation of epidemic

throughout Southern regions for which a mature stage is, to date, not yet reached. To support this hypothesis and to assess

the statistical discrepancy of the logistic fits from the observed data we perform the Kolmogorov-Smirnov (K-S) test those

results for the 95% confidence level are reported in Table 3 . 

It is interesting to note that, although lower values of D n,obs are observed when a more mature stage of the epidemic

growth is considered in the fitting range, as for example for time intervals from 24 February to 23 March as well as from 08

to 23 March, the observed values D n,obs are all above the statistical threshold of D n,th = 0 . 3037 . This suggests that a mature

stage is, to the date of 23 March, not yet reached, although Northern and Central regions are characterized by lower values

than the Southern ones, thus possibly related to the time delayed propagation of epidemic throughout Southern regions. 

6. Estimation of infections for Italy and their peak time 

As discussed in Section 5 all performed logistic fits struggle to predict the number of infections of the successive days

(i.e., after the first 30 days), thus we performed and compare logistic fits in three time intervals: (i) the first 30 days (e.g.,

from 24 February to 23 March), (ii) the first 37 days (e.g., from 24 February to 30 March), and (iii) the overall period from

24 February to 02 April. The results of the Kolmogorov-Smirnov test for the 95% confidence level are reported in Table 4 ,

while the behavior of logistic fits are shown in Fig. 5 . 

It is interesting to note that all regions and Italy are characterized by lower values of D n,obs , below the theoretical value

D n,th = 0 . 3037 , when including the next 7 days (e.g., by considering the period between 24 February and 30 March) to

the logistic fits and when considering the whole time range (e.g., 24/02–02/04). Lombardia presents lower values of the

K-S statistics D n,obs than those for Marche and Puglia, together with a narrower confidence interval when including the

successive days, not observed for both Marche and Puglia. Particularly for Puglia the confidence interval remains practically

unchanged, thus suggesting that logistic fits are not still stable, possibly due to the fact that Southern regions have not yet
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Fig. 5. Logistic fits during the different time intervals of epidemic across Italian regions, together with the confidence lines. From top to bottom: Italy 

and three regions (Lombardia, Marche, Puglia). The vertical dashed lines mark the times when Italian government applied lock-down restrictions on 23 

February, 01 March, 09 March, and 22 March, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

reached a mature stage of the epidemic growth. This difference in terms of stability of logistic fits as well as on confidence

of reliable estimates can be clearly seen by looking at the behavior of estimated daily increments. Days of peak significantly

depends on the fitting range for Puglia, while the estimation of this quantity is more stable for Lombardia and Marche, as

shown in Fig. 6 . 

Indeed a wider discrepancy is found between daily increments and estimates for logistic fits performed during the three

intervals, obviously affecting both the peak time estimation and its value. By comparing our estimates and data collected

from the daily report of the Italian Protezione Civile ( https://github.com/pcm- dpc/COVID- 19 ) we found that the discrepancy

significantly increases when moving from Northern to Southern regions, where it can also reach an error which is compa-

rable with the predicted value. This could be the reflection of at least two different factors: (i) the epidemic growth is in

a more mature phase in the Northern and Central regions with respect to the Southern ones, where it began with a time

delay ranging from 3 to 14 days, and (ii) the higher ratio between the observed cases and the number of tests carried out

for Southern regions with respect to the rest of Italy (see https://github.com/pcm- dpc/COVID- 19 ). These two factors could

affect the performance of the logistic fits for the Southern regions of Italy, being characterized by wider uncertainties with

respect to the rest of Italy. Thus, our results suggest that estimates of the ending of epidemic growth are affected by the

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
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Fig. 6. Estimation of daily infections and their peak time during three different time intervals of epidemic across Italian regions, together with the confi- 

dence lines. From top to bottom: Italy and three regions (Lombardia, Marche, Puglia). The vertical dashed lines mark the times when Italian government 

applied lock-down restrictions on 23 February, 01 March, 09 March, and 22 March, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

statistical uncertainties, by the delayed propagation of infections through the different regions, and by the effective respect

of the guidelines in terms of confinement measures. 

7. Conclusion 

In this paper we investigated the behavior of predictions of COVID-19 infections on the particular phase of its growth

and propagation in a specific country, as well as, on the effectiveness of social distancing and confinement measures. By

analyzing the epidemic evolution in China and Italy we find that predictions are characterized by large uncertainties at the

early stages of the epidemic growth, significantly reducing when the epidemics peak is past, independently on how this

is reached. While infection counts for different Chinese provinces show a synchronised behavior, counts for Italian regions

point to different epidemic phases. While the epidemic peak has been likely reached in the Northern and Central regions,

COVID-19 infections are still in a growing phase for Southern regions, with a delay ranging from 3 to 14 days. By assessing

the performance of logistic fits we assess that a wider uncertainty is found during the first week of epidemic propagation.

Uncertainty is reduced when data from the very beginning of the breakout are removed from the datasets. Moreover, the

estimated infection increments are extremely sensitive to the epidemic growth stage and to the last points considered to

perform statistical extrapolations. Higher significance levels are reached for the more mature stages of the epidemic growth.
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The most interesting pattern in the time-evolution of the distribution is the observed change from an exponential-like

behavior observed at the beginning of the epidemic growth to a sigmoid-like one when first restriction measures are in-

troduced, particularly evident for the Italian case study. Indeed, by evaluating the expected final number of total infections

as predicted from logistic fits during the different stages we highlight that reliable estimates cannot be released until more

mature stages of the epidemic growth are reached. We show that by only means of the first 7 days, corresponding to the

time interval during which first restriction measures are adopted both in China and Italy, an overestimation of the final

number of infections of ~ 65% for China and ~ 20 0 0% for Italy is observed. Conversely, by considering the first 14 days,

corresponding to the time interval in which the initial confinement measures should lead the first effects, an underestima-

tion of ~ −48% for China and ~ −76% for Italy is obtained. A lower underestimation ( ~ −32% and ~ −69% for China and

Italy, respectively) is found when considering the time interval between the 8th and the 14th day, e.g., by investigating how

the epidemic would be grown if starting from initial restrictions only, while a better agreement is found when considering

the time interval between the 15th and the 30th day, corresponding to investigate the efficiency of restriction measures,

with reduced underestimation of the final number of infections of ~ −17% for China and ~ −12% for Italy. Finally, by mon-

itoring the stability of logistic fits as well as their suitability on predicting the number of infections of the successive days

(i.e., after the first 30 days) we highlight how the uncertainty evolution can be used to track how the epidemics diffused

at a regional level, allowing an estimation of the delay in the spread of the virus. Indeed, we found that the uncertainty

significantly increases when moving from Northern to Southern regions, where the error is almost comparable with the

predicted value, suggesting that, to date, the epidemic peak has not been likely reached for Southern regions, being delayed

with respect to Northern and Central ones. 

Our results aim at providing some guidelines for real-time epidemics forecasts which should be applicable to other

viruses and outbreaks. Real-time forecasts of the epidemics are, to date, a societal need more than a scientific field. They

are crucial to plan the duration of confinement measures and to define the needs for health-care facilities. The aim of this

letter was to show that those extrapolations crucially depend not only on the quality of data, but also on the stage of the

epidemics, due to the intrinsically non-linear nature of the underlying dynamics. This prevents from performing successful

long-term extrapolations of the infection counts with statistical models. As a guideline it is surely helpful to perform logistic

fits every day and to evaluate the reliability on predicting the next day, and then perform a new logistic fit to investigate

how the uncertainty grown/reduced. Moreover, reliable estimates are surely affected by possible source of errors in counting

infections, thus we suggest to assess the significance of fits to the last data point of the fitting range by assuming it could

be affected by a ± 30% error. This allows us to provide a simple way to estimate confidence intervals [27] . Furthermore, we

also suggest not only to exclude the last data point and check fits stability but also to consider to exclude initial point(s) to

evaluate how epidemic would be grown if starting from initial restriction measures or how delayed propagation could be

present at a regional level. 

Our approach, based on a sort of Bayesian framework to update the probability for a reduced uncertainty as more evi-

dence or information become available (this especially true for unknown viruses and outbreaks), suggests that the statistical

modeling of epidemic growth should be focused on specific stages of its evolution on time as well as on its spread at a

more local level (e.g., regional level). This can help in controlling local diffusion of epidemics and to restrict the analysis on

specific regions depending on its uncertainty values. The above guidelines can be also suitable for dynamical models such

as those based on compartments or agent dynamics which need to be initialized with quality data, faithfully representing

the infected populations including asymptomatic patients [27] . It is therefore crucial to pursue national health systems to

provide the most transparent and extended datasets as possible and obtain high quality datasets to initialize those models.

We remind that only dynamical models can provide a coherent representation and evolution of the epidemics, as they are

effectively based on the conservation of the total number of individuals. Characterizing and modeling the uncertainty can

allow to preserve the public health and help to enforce/relax strict confinement measures. 
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