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Abstract

Alchemical Grid Dock (AlGDock) is open-source software designed to compute the binding 

potential of mean force (BPMF) - the binding free energy between a flexible ligand and a rigid 

receptor for a small organic ligand and a biological macromolecule. Multiple BPMFs can be used 

to rigorously compute binding affinities between flexible partners. AlGDock uses replica exchange 

between thermodynamic states at different temperatures and receptor-ligand interaction strengths. 

Receptor-ligand interaction energies are represented by interpolating precomputed grids. 

Thermodynamic states are adaptively initialized and adjusted on-the-fly to maintain replica 

exchange rates. In demonstrative calculations, when the bound ligand is treated as fully solvated, 

AlGDock estimates BPMFs with a precision within 4 kT in 65% and within 8 kT for 91% of 

systems. It correctly identifies the native binding pose in 83% of simulations. Performance is 

sometimes limited by subtle differences in the important configuration space of sampled and 

targeted thermodynamic states.
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Configurations sampled from representative thermodynamic states as the temperature is reduced 

and receptor-ligand interactions are scaled in. These samples are used to estimate binding free 

energies between exible small molecules and rigid receptors. These estimates can be used for 

estimating binding free energies between exible binding partners.
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INTRODUCTION

Alchemical Grid Dock (AlGDock) is an open-source computer program designed to 

compute the binding potential of mean force (BPMF) - the binding free energy between a 

flexible ligand and a rigid receptor - between a small organic ligand and a biological 

macromolecule.

The BPMF is defined as a ratio of configurational integrals1,

B rR = − β−1 ln ∫ I ξ J ξ e−βU rRL drLdξ
∫ I ξ J ξ e−β U rL + U rR drLdξ

. (1)

Minh Page 2

J Comput Chem. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this paper, the internal coordinates (excluding translation and rotation) of a receptor-

ligand complex, rRL, are partitioned into the receptor, rR, the ligand, rL, and the relative 

translation and rotation of the species, ξ. β = (kBT)−1 is the inverse of Boltzmann’s constant 

times the temperature. I(ξ) is an indicator function that specifies whether the receptor and 

ligand are bound (1) or not (0). J(ξ) is the Jacobian for transforming Cartesian coordinates 

into the coordinate system used for rL and ξ. U(·) is the potential energy of a species in 

solvent.

BPMFs are useful for characterizing noncovalent association processes. According to 

implicit ligand theory (ILT)1,2, the standard binding free energy can be computed from 

BPMFs between a ligand and multiple receptor conformations. Moreover, ILT explains that 

BPMFs can reweight receptor conformations from the apo (ligand-free) to the holo (ligand-

bound) ensemble for the ligand of interest. This approach has the greatest potential benefit 

when computing binding free energies or averages over respective holo ensembles for many 

ligands to a single receptor; after performing receptor sampling once, the same snapshots 

may be used for many ligands. Another potential use for BPMFs is as a secondary scoring 

function for molecular docking.

A number of BPMF calculations have been published in the scientific literature. In the first 

paper on ILT, BPMFs were estimated for simple host-guest systems1. Unlike the calculations 

herein, the calculations in this first paper did not employ computational shortcuts that exploit 

the rigidity of the receptor. Without necessarily referring to their calculations as BPMFs, 

several groups have computed binding free energies between simple ligands and rigid 

conformations of the protein T4 lysozyme: Mobley et al.3 deployed rigorous alchemical 

binding free energy calculations; Ucisik et al.4 developed a fast and approximate method; 

and my research group published a study where BPMFs were computed using AlGDock5 

and another where they were computed based on a fast Fourier Transform6. In my group’s 

former publications involving AlGDock, we cited an unpublished earlier version of this 

article7. In Xie et al.5, we computed standard binding free energies for 141 ligands using 

multiple BPMFs and showed that our results accurately reproduce values from flexible-

receptor simulations for 25 ligands. The same BPMFs were used to demonstrate our new 

formalism for estimating relative, opposed to absolute, binding free energies2. In the Drug 

Design Data Resource Grand Challenge 3, a blinded challenge for binding affinity and pose 

prediction, my research group submitted entries based on BPMFs8. For one system, vascular 

endothelial growth factor receptor 2, our submissions were among the most highly 

correlated with experiment. Results from our purely physics-based approach were 

competitive with methods using knowledge-based potentials, which were the best 

performers in the challenge. As discussed in Xie and Minh8, several issues led to weaker 

performance in other subchallenges, including the neglect of DMSO and SO4 in the binding 

site of Cathepsin S and poor selection of receptor snapshots for free energy calculations with 

Janus Kinase 2 and Mitogen-activated protein kinase 14. Based on its uneven performance in 

the challenge, it appears that BPMF calculations show potential but further development is 

necessary before broader use. In this paper, I describe BPMF calculations for a variety of 

protein receptors: the Astex diverse set9, a curated database of 85 high-quality 

crystallographic structures of protein-ligand complexes with pharmaceutical or agrochemical 

interest.
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AlGDock uses methods that are similar to those used in recent alchemical binding free 

energy calculations with a flexible receptor10–12 and also implements algorithms that make 

BPMF calculations faster and more robust. As in other work, AlGDock performs Boltzmann 

sampling for a series of thermodynamic states with different degrees of coupling between 

the receptor and ligand and periodically attempts Monte Carlo moves to exchange 

configurations between the different replicas. The main methodological distinctions are (1) 

the use of precomputed nonbonded interaction grids for receptor-ligand interactions13–15 and 

(2) the adaptive initialization and on-the-fly adjustment of thermodynamic states. The 

former accelerates BPMFs compared to flexible-receptor binding free energy calculations 

because evaluating nonbonded terms no longer scales as O(N2) (neglecting cutoffs) with the 

number of receptor atoms N. Rather, once the grid is computed, calculation time does not 

depend on N. The latter improves the precision of free energy estimates by ensuring 

sufficient configuration space overlap between adjacent thermodynamic states along the 

alchemical protocol.

AlGDock is a python module based on the Molecular Modeling Toolkit (MMTK) 2.7.816. It 

is available under the open-source MIT license at https://github.com/ccbatiit/algdock/.

METHODOLOGY

This section details the algorithms in AlGDock and describes demonstrative BPMF 

calculations for the Astex diverse set9. Parameter values specified below, e.g. the binding 

site radius, were used in the demonstrative calculations, but most are adjustable arguments to 

the program.

Thermodynamic Cycle

In AlGDock, BPMFs are calculated based on the thermodynamic cycle shown in Figure 1. 

Figure 1 shows milestone thermodynamic states, which are referred to with the letters A to 

E. The states between and including milestones X and Y will be referred to as states XY.

Over the course of this cycle, the receptor-ligand interaction strength is scaled and the 

temperature is varied. The temperature is varied because high-temperature states enhance 

transitions between local energetic minima. As this paper will deal with thermodynamic 

states at different temperatures, I will frequently refer to the reduced potential energy17, a 

log probability density that incorporates the inverse temperature factor β = (kBT)−1. Reduced 

potential energies for key milestones in the thermodynamic cycle are shown in Figure 1. 

Subsequently, the reduced potential energy will be denoted with a lowercase u. Furthermore, 

the reduced free energy difference between two milestones X and Y will be denoted as fXY. 

Because converting from reduced to standard potential energies and free energies involves 

dividing by β, the units of these reduced quantities are kBT.

In all of the simulated thermodynamic states, the ligand is confined to the binding site using 

a flat-bottom harmonic potential1,10,11,
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uI d =
0 if d ≤ d0
1
2βk d − do

2 if d > d0
, (2)

where k = 10000 kJ/(mol nm2) is the spring constant, d is the distance between the ligand 

center of mass and the center of the binding site, and d0 = 6.0 Å is the radius of the binding 

site. There is no restriction on ligand rotation.

The thermodynamic cycle involves sampling and target force fields, which may be distinct 

from each other. In the demonstrative calculations, the sampling and target force fields had 

much in common, but some important distinctions. They both used the AMBER ff14SB 

force field for proteins and ions and Generalized Amber Force Field 218 with AM1BCC 

charges19,20 for other molecules. The key differences between the target and sampling force 

fields were the solvation model and whether receptor-ligand interactions were evaluated 

directly or by grid interpolation. They were also implemented via different python modules. 

In the sampling force field, AlGDock uses MMTK (which was extended to include implicit 

solvent and grid interpolation terms) to calculate energies and forces. In contrast, the target 

force field was evaluated with OpenMM21. The sampling force field uses the generalized 

Born/surface area model II from Onufriev et al.22 (OBC), adapted from OpenMM21, as an 

implicit solvent model. It differs from the target force field because only the ligand, opposed 

to the entire complex, is assumed to be solvated, and because it is sometimes scaled down, 

as described in the next paragraph. Finally, the sampling force field models receptor-ligand 

interactions with grid interpolation, as described further below. In the target force field, these 

interaction energies are directly computed.

To elaborate on the implicit solvent model, the sampling force field in AlGDock can employ 

two solvation pathways: Desolvated and Full. In the Desolvated pathway, an implicit solvent 

model for the ligand is present in milestone B but its strength is linearly scaled down and is 

zero at milestone C. Implicit solvent is not used for states CD, saving computer time. This 

pathway makes the most sense if the bound ligand is nearly completely desolvated. In the 

Full solvation pathway, the implicit solvent is at full strength for states BD. This pathway 

makes the most sense if the bound ligand is nearly fully solvated. In either case, an implicit 

solvent model for the complex (opposed to just the ligand) is used in milestones A and E. 

Therefore, the final results for either solvation pathway should be equivalent in the limit of 

asymptotic sampling, but may be distinct for incompletely converged calculations.

The grid interaction energy,

Ψg rRL = ΨPBSA rRL + ΨvdW rRL , (3)

is based on one electrostatic and two van der Waals grids.

The electrostatic interaction energy ΨPBSA(rRL) is evaluated by multiplying atomic partial 

charges with the electrostatic potential. The electrostatic potential for each ligand 

configuration is obtained by trilinear interpolation of a precomputed grid. The grid is 

produced by solving the linear Poisson-Boltzmann equation around the minimized receptor 
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molecule using APBS 1.423 with sequential focusing. Coarse grids are at least 1.5 times 

larger than the range of the receptor molecule in each dimension. Fine grids have the same 

size as the van der Waals grids, and a spacing of 0.5 Å. Coarse grids use multiple Debye-

Huckel boundary conditions, and fine grids use coarse-grid solutions as boundary 

conditions. Both grids are solved with the following options: a quintic B-spline charge 

discretization, spline window width of 0.3, protein dielectric of 2.0, solvent dielectric of 

80.0, solvent density of 10.0, solvent radius of 1.4 Å, smoothed dielectric and ion-

accessibility coefficients, and temperature of 300.0 K.

The van der Waals interaction energy ΨvdW (rRL) is evaluated by an analogous grid-based 

procedure15. This procedure is built on the ideas of Pattabiraman et al.13 and Meng et al.14, 

who precomputed van der Waals energies at positions along a grid. To account for the highly 

nonlinear nature of van der Waals potentials24, energies are calculated using a 

transformation, trilinear interpolation, and inverse transformation25. Based on my previous 

recommendation15, an inverse transformation power of 4 is used for the repulsive potential 

and no transformation for the attractive potential. (A reasonable alternative approach could 

be the logarithmic interpolation proposed by Diller and Verlinde26.)

Alchemical transformations that modulate the strength of interactions between atoms often 

face an “end-point catastrophe” in which free energy changes are numerically unstable27. 

The end-point catastrophe occurs because steric overlaps that do not lead to high energies 

when molecules are decoupled can do so when coupling is added. To circumvent this issue, 

a set of soft Lennard-Jones repulsive and electrostatic grids is introduced between 

milestones C and D. In these soft grids, the original grid value, vo, is replaced with vmax 

tanh(vo/vmax). (Gallicchio and Levy10 also used a hyperbolic tangent energy cap.) For the 

soft Lennard-Jones repulsive grid, vmax = 10.0 kJ mol−1/2. A potential issue with soft 

Lennard-Jones is that they can be overwhelmed by electrostatic contributions. To circumvent 

this issue of electrostatic pinning, the soft electrostatic grid uses as maximum value such that 

the electrostatic energy is less than or equal to the soft Lennard-Jones repulsive energy for 

every heavy atom at every grid point. This is established by setting vmax for the electrostatic 

grid to 10 times the minimum ratio of Lennard-Jones and electrostatic scaling factors. The 

reduced potential energy is switched according to the protocol,

uα rRL = 1
kBT α Us rL + Us rR + αsg α Ψsg rRL + αg α Ψg rRL (4)

αsg α = − 2α − 1 2 + 1

αg α = 2α − 1 2

1 + exp −1000 α − 1
2

T α = TT − TH α + TH
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This protocol turns on the soft grids first, and then the unperturbed grids (Figure 2). The 

potential is consistent with milestone C at α = 0 and milestone D at α = 1.

Sampling

For states BD, ligand conformational sampling is performed with a combination of 

Hamiltonian Monte Carlo (HMC)28, external coordinate Markov chain Monte Carlo moves, 

and Hamiltonian replica exchange.

HMC trial moves are based on 50 steps of velocity Verlet molecular dynamics with an 

adaptive time step that ranges between 0.1 and 5.0 fs. Time step adaptation occurs during the 

initialization of thermodynamic states, as described in the next section.

To accelerate transitions between binding poses, external coordinate Markov chain Monte 

Carlo moves are attempted for states CD when α < 0.01. The external coordinate move 

consists of:

1. Random rotation. A random quaternion is converted into a matrix that is used to 

rotate the molecule about its center of mass.

2. Random translation. The magnitude of translation in each dimension is drawn 

from a Gaussian distribution with a standard deviation of 0.6 Å.

The move is accepted or rejected according to the Metropolis criterion. Moves are not 

attempted for α > 0.01 due to low acceptance probability.

During production, Hamiltonian replica exchange1,10,11,29 is attempted for states BC and 

states CD. Replica exchange is a Markov chain Monte Carlo move that swaps the 

configurations of a pair of simulations at different thermodynamic states. (Equivalently, it 

may be regarded as swapping the states.) Consider the thermodynamic states a and b with 

reduced energies ua and ub, respectively. If x is the original configuration in state a and y the 

original configuration in state b, then the acceptance probability,

pacc = min 1, e−ua y − ub x + ua x + ub y , (5)

preserves the Boltzmann distribution in both states.

Typical replica exchange protocols attempt exchanges between pairs of neighboring 

thermodynamic states, but this restriction is unnecessary. As replica exchange is a type of 

Gibbs sampling30, an arbitrary number of attempts can be made between arbitrary pairs of 

states. In AlGDock, each sweep of replica exchange includes attempts to swap 

configurations between pairs of states that are 1, 2, …, min(5, K) states apart, where K is the 

total number of thermodynamic states in the direction.

Stages

BPMF calculations with AlGDock are broken down into the following stages:
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1. Ligand preparation: the ligand is minimized with 5000 steepest descent steps. 

The temperature is ramped from 20 K to 300 K over 30 geometrically spaced 

simulations of 2500 steps each.

2. Initialization: starting from 50 seed configurations, simulations of 2000 steps 

are used to initialize each thermodynamic state for states BD.

3. Equilibration and production: simulations are conducted for states BC and 

subsequently for states CD.

4. Postprocessing: samples from milestones B and D are postprocessed using the 

target force field.

5. Estimation: Free energy differences that sum up to the BPMF are estimated.

Initialization

The purpose of initialization is to establish a protocol with reasonable time steps and mean 

replica exchange rate 〈pacc〉 between all neighboring states. The key benefit of replica 

exchange is to spread sampled configurations across a range of different thermodynamic 

states. A bottleneck in the exchange of configurations across the pair of states can eliminate 

this benefit of replica exchange; groups of thermodynamic states separated by the bottleneck 

effectively become independent. Low exchange probabilities are also indicative of poor 

configuration space overlap, which can limit the convergence of free energy estimates31.

For states BC, the first thermodynamic state (k = 0) is at 300 K and the ligand is steadily 

warmed to 600 K. The first thermodynamic state initialized for states CD depends on 

whether there is a fully-bound pose available in the binding site. If a pose is available, then 

the first state is fully bound at 300 K. Otherwise, the first state is fully unbound at 600 K. In 

the latter situation, 50 randomly selected configurations from milestone C are placed in the 

binding site at 453 random center-of-mass positions (0.5 positions per Å3) and rotated with 

100 different random orientations.

After state k is initialized, state k + 1 is initialized as follows:

1. Parameter selection: Parameters for state k + 1 are selected using a new 

algorithm designed to separate states at approximately even intervals in 

thermodynamic length.

Thermodynamic length is a metric of the distance on the manifold of 

thermodynamic states32. For a sequence of states, the statistical error in free 

energy calculations is minimized and the replica exchange frequency is nearly 

maximized when intermediate states are equidistant in thermodynamic length33. 

Suppose that thermodynamic parameters (e.g. temperature, pressure, grid scaling 

strengths) are specified by a vector λ with components λi. Let γ ≡ γ(α) describe 

the dependence of λ on the variable α, such that γ(0) is the initial and γ(1) is the 

final thermodynamic state. For microscopic systems, the thermodynamic length 

is defined by the path integral33,34,
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ℒ ≡ ∫
0

1
∑
i, j

∂γi

∂α g γ ij
∂γj

∂α dα . (6)

Given a parameter vector λ, the reduced potential energy is uλ(x) = Uλ(x)/
(kBTλ), where Uλ(x) is the effective potential energy and Tλ is the temperature. 

The normalized log probability of observing a configuration x is lλ(x) = −uλ(x) 

− lnZλ, where Zλ = ∫ e−uλ x dx is the partition function. These quantities are 

used to define elements of the Fisher information matrix,

g γ ij ≡ σλ
2 ∂ilλ, ∂jlλ , (7)

where σλ
2 is the covariance in state λ and ∂i denotes a partial derivative with 

respect to λi. For a protocol in which only one parameter λi varies with α, the 

length is, ℒ = ∫0
1 ∂γi

∂α σλ ∂ilλ dt.

Numerical estimates of ℒ are most accurate when samples are drawn from many 

states between 0 < α < 134. Such exhaustive sampling, however, is unavailable 

during initialization. A simple approximation for the thermodynamic length 

when one parameter changes is, ℒ = Δλiσ0 ∂ilλ , where Δλi is the total change in 

the value of the parameter λi and σ0 [∂ilλ] is a standard deviation in the initial 

state. Thus, if one desires ℒ to be approximately constant between different 

intermediate stages in a protocol, then the change in parameter should be 

inversely proportional to σ0 [∂ilλ],

Δλi = s
σ0 ∂ilλ

, (8)

where s is an adjustable parameter, the thermodynamic speed.

For example, with the Full solvation pathway, the parameter that varies between 

milestones B and C is the temperature, T. As the log probability of a ligand 

configuration is lλ = −
US rL

kBT − ln Zλ, T is incremented by,

Δλi = − sbckT 2

σλ US
, (9)

where sbc = 20.0. For states CD, the log probability of rRL is lλ = −uα(rRL) − ln 

Zλ. α is incremented by,

Δλi = scd
dαsg
dα

σλ Ψsg
kBT α + dαg

dα
σλ Ψg
kBT α + TT − TH

σλ uα rRL
T α

−1
, (10)

with scd = 0.2. If the targeted value of the parameter is exceeded (e.g. 

temperature increased above 600 K), then the targeted value is used.
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2. Seed selection: 50 configurations from state k are resampled as starting seeds for 

simulations in state k + 1.

Configurations are drawn from state k with weights proportional to exp[uk(xi) − 

uk+1(xi)], where uk(x) = Uk(x)/(kBTk) is the reduced potential energy in state k. 

In the limit of infinite sampling of state k, resampled configurations would be 

Boltzmann-distributed in state k + 1. With imperfect sampling of state k, 

resampled configurations approximate the Boltzmann distribution in state k + 1. 

The seed selection process is an example of what is known in the statistics 

literature as sampling importance resampling.

3. Sampling and adaptation: Simulations of 2000 steps are run from each seed 

and the sampling protocol is adapted to obtain a reasonable acceptance rate.

If the Monte Carlo acceptance rate is greater than 0.8, the time step is increased 

by 0.125 fs. If it is less than 0.4, then the time step is reduced by 0.25 fs. If it is 

less than 0.1, then the time step is reduced by 0.5 fs. Initialization is repeated at 

the new time step until the acceptance rate is between 0.4 and 0.8.

4. Verification: The mean replica exchange probability, 〈pacc〉, is used to verify 

that thermodynamic states are not too distinct nor similar.

It is estimated by taking the sample mean of pacc (Eq. 5) for every pair of initial 

samples (at the same time index) from states k and k + 1. If 〈pacc〉 is estimated to 

be too low35 (below 0.4), then parameters for state k + 1 are reselected with a 

smaller increment (thermodynamic speed is adjusted by a factor of 4/5) and 

simulations are repeated. If it is too high (above 0.99), then state k is removed.

Equilibration and production

Equilibration and production calculations are broken down into cycles. Each cycle consists 

of 1000 iterations of the following: an HMC move and 20 external coordinate MCMC 

moves (if α < 0.01) for each thermodynamic state and then 25 sweeps of replica exchange. 

50 snapshots are saved per replica exchange cycle. The demonstrative calculations are based 

on 8 cycles between for states BC and 15 cycles for states CD.

Between each cycle, simulation data are saved and thermodynamic states are inserted as 

necessary. The purpose of inserting thermodynamic states is to ensure adequate replica 

exchange acceptance rates. As discussed above, AlGDock includes an estimate of 〈pacc〉 to 

verify new thermodynamic states during initialization. However, the configuration space 

explored during replica exchange can be distinct from that explored during initialization, 

leading to a substantial change in the observed pacc. Thus, if at the end of a cycle the average 

replica exchange acceptance rate between any pair of neighboring thermodynamic states 

falls to less than 0.435, then another thermodynamic state is inserted between the pair. 

Sampling importance resampling is used to populate configurations in this new state. That 

is, samples for the new state are drawn from samples for other states with probability 

proportional to the density in the new state.
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Separation of equilibration and production is based on a method inspired by Chodera36. The 

integrated autocorrelation time and statistical inefficiency is estimated based on the mean 

potential energy of configurations from the last c ∈ {1, 2, …, C} cycles of equilibration and 

production, where C is the total number of cycles. The number of statistically independent 

samples is determined by dividing the number of snapshots in c cycles by the estimated 

statistical inefficiency. The simulation is considered equilibrated based on the value of c that 

provides the largest number of statistically independent samples.

Estimation

BPMFs were estimated according to βTB rR = fAB + fBC, L + fCD′ + fDE . fBC, L is the free 

energy of warming the ligand from TT = 300 K to TH = 600 K, and,

fCD′ = − ln∫ I ξ J ξ e−βT U rL + Ψg rRL drLdξ
∫ I ξ J ξ e−βHU rL drLdξ

. (11)

fBC, L + fCD′  is used instead of fBC + fCD because the former calculation can be performed 

without determining the receptor internal energy U(rR). The receptor desolvation free energy 

is estimated by the difference, fAB,R = βT (U(rR) − U(rR)). Other free energy differences are 

estimated based on equilibrated samples from replica exchange for states BC or states CD. 

fAB,R and fDE are estimated by free energy perturbation37 using configurations drawn from 

milestones A and E, respectively. fBC,L and fCD′  are estimated by the multistate Bennett 

acceptance ratio17, which uses potential energies from every replica.

Pose prediction

Binding poses were predicted based on ligand conformations sampled after equilibration. 

Configurations sampled from milestone D were clustered using hierarchical clustering with 

complete linkage, performed using scipy.cluster.hierarchy.linkage in scipy v0.14.038. 

Distances between snapshots were based on the Hungarian symmetry-corrected heavy-atom 

root mean square deviation (RMSD), which is also implemented in UCSF DOCK 639. 

Clusters were separated based on a threshold of 1.0 Å. The probability of each cluster was 

obtained by reweighing configurations via the factor,

wc = exp −βT UT rRL − US rL − Ψg rL . (12)

or by assuming that interaction energies are the only terms that change between milestones 

D and E,

wc = exp −βT UT rRL − UT rL − Ψg rL . (13)

Pose predictions were based on the lowest-energy configuration, according to the force field 

in milestone E, from each cluster. Reduced free energies of each pose p were based on the 

cumulative weight of configurations in the cluster,
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fEEp = − ln
∑cwc

∑p ∑cwc
, (14)

where wc is the weight of the configuration, ∑c is over configurations in the cluster, and ∑p
is a sum over poses. If multiple independent simulations were run, the pose was predicted 

based on the pose with the lowest interaction energy, lowest total energy, or by the lowest 

pose-specific BPMF,

fAE, p = fAE + fEEp (15)

Astex diverse set BPMF calculations

For each system in the Astex diverse set9, 11 independent simulations were performed using 

the Desolvated and Full solvation pathways. Input files in AMBER format (based on the 

ff14SB force field for proteins and ions and Generalized Amber Force Field 218 with 

AM1BCC charges19,20 for other molecules) were reused from a previous study15. 

Simulations were started from the crystallographic pose and poses obtained from molecular 

docking. Docking with UCSF DOCK 639 was repeated using a similar procedure as in the 

previous study15, but with a minimum anchor size of 5 instead of 40, which increases 

binding pose sampling.

After starting poses were minimized for 1000 conjugate gradient steps in the appropriate 

force field for milestone D, the lowest-energy pose was used to initialize simulations in the 

milestone. After the thermodynamic states were initialized, docked poses within the binding 

site were also used as starting points for each state in replica exchange. The lowest-energy 

pose was used for replica exchange with milestone D. Higher-energy poses were used in 

intermediate replicas to fill all available thermodynamic states. If there were more states 

than docked poses, the lowest-energy pose was duplicated.

Calculations were performed the Open Science Grid40, supercomputing resources managed 

by the National Science Foundation eXtreme Science and Engineering Discovery 

Environment (XSEDE)41, and on the Minh group computing cluster at IIT. Benchmark 

calculations were run using single-core jobs with standard compute nodes on XSEDE Comet 

of the San Diego Supercomputer Center. These nodes have Intel Xeon E5–2680v3 

processors, 128 GB DDR4 DRAM (64 GB per socket), and 320 GB of SSD local scratch 

memory.

RESULTS

Thermodynamic state initialization and adaptation is system-specific and robust

The described method for thermodynamic state initialization and adaptation yields protocols 

that are tailored for specific systems. The large range in the number of thermodynamic 

states, Nstates, provides evidence that protocols are system-specific (Figure 3). For states BC, 

there is generally larger number of states with the Desolvated pathway (between 67 and 182) 

than for the Full pathway (between 51 and 111). The larger number of states is likely 
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because of a more significant difference between the end states with the Desolvated pathway 

due to the removal of implicit solvent at milestone C. In contrast, the number of states for 

the Desolvated and Full pathways for states CD is comparable.

In addition to being system-specific, the protocols appear to be robust. In all the systems, the 

standard deviation of the number of states, σ[Nstates] is small relative to the average number 

of states, Nstates. For states BC, σ[Nstates] is less than 2 for all systems. For states CD, the 

protocols are more variable. Variability may be larger because interaction grids introduce 

more possibilities for trapping in local minima during initialization. For 1l7f, the protocols 

for state CD appear to fall into two distinct classes (Figure S1 in the Supplementary 

Material). It is worth noting, however, that higher variation in protocols does not necessarily 

lead to inaccurate or imprecise results.

Similarly, the initialization of each state appears to be adaptive and robust. In the vast 

majority of initialization processes, the time step converged to between 2.75 and 3.75 fs 

(Figure S2 in the Supplementary Material). For states CD, some protocols have shorter time 

steps. The shortest time steps are from simulations with 1lrh. The relationship between the 

progress variable α and time step is fairly consistent across the independent protocols, 

demonstrating that the time step adaptation procedure is robust.

Replica exchange acceptance probabilities are reasonable

Estimates of 〈pacc〉 indicate that protocols do not have any replica exchange bottlenecks 

(Figure 4). The notation pacc refers to a statistical estimator for 〈pacc〉. For states BC, pacc
estimated during replica exchange are high and have low variance. This outcome is 

consistent with achieving the goal of nearly equal thermodynamic length between adjacent 

thermodynamic states. It also implies that the configuration spaces explored during 

initialization and replica exchange are largely the same. For states CD, the replica exchange 

rates are also high but there is a larger variance. While most pacc are between 0.7 and 1.0, 

there are a few simulations where pacc is much lower. In these simulations, the acceptance 

probability dips around α = 0.2 or α = 0.8, but are high for most other values of α. These 

drops indicate that different conformations are explored in replica exchange compared to 

during thermodynamic state initialization. However, even these low pacc are not low enough 

to be considered a bottleneck; they are expected to allow configurations to pass through the 

thermodynamic states several times per cycle.

The observed pacc also underscore the point that large variation in protocols is not 

necessarily problematic. While some systems have a relatively large variation in Nstates for 

states BC, all pacc estimated from replica exchange are 0.92 or greater. Longer protocols 

simply have a higher pacc.

Simulation time is dependent on the solvation time and ligand size

The total CPU time of benchmark simulations spanned a large range (Figure 5). For 

simulations with the Desolvated option, they ranged from 4 to 44 hours. For simulations 

with the Full solvation option, they ranged from 6 to 117 hours.
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Benchmark simulation times are dependent on the solvation option and are roughly 

exponentially dependent on ligand size (Figure 5a). Simulations with the the Full solvation 

option are substantially slower than those with the Desolvated option, particularly for larger 

ligands. For both solvation options, the dependence appears roughly linear up to 40 atoms. 

Above this threshold, the difference in computation time between solvation options becomes 

more pronounced.

In all simulations, the majority of time was spent in equilibration and production (Figure 5b 

and 5c). The largest fraction of time was states CD, and the second largest fraction for states 

BC. Initialization and estimation for states CD consumes a small but noticeable fraction of 

simulation time, whereas the analogous steps for states BC consume a nearly negligible 

fraction of simulation time.

Simulations sample a variety of poses

At milestone C, sampled configurations are uniformly distributed in a sphere. As α increases 

from 0 to 1 for states CD, the configuration space of the ligand is gradually restricted. First, 

the soft grids prevent ligand atoms from overlapping with receptor atoms. At intermediate 

values of α, the ligand may assume several poses (e.g. Figure 6). Finally, at milestone D, the 

ligand usually but does not always sample from a single minimum.

In many simulations, the configuration space sampled at higher α is a subset of that sampled 

at lower α (e.g. Figure 6). In others, however, the conformational minima for α ≈ 0.5, where 

the soft grids are at full strength, are entirely distinct from the minima for α ≈ 1 (e.g. Figure 

7). When there are shifts in important configuration space, the thermodynamic states at α ≈ 
0.5 are less beneficial to sampling from milestone D. Nonetheless, configuration space 

overlap between adjacent states is a sufficient condition for precise free energy estimates.

At milestone D, most simulations sample from a single minimum (Figure 8ab), but there are 

several other situations. These include sampling alternate poses that share a common 

warhead position, but have a floppier tail (Figure 8cd), or that are clearly distinct (Figure 

8efgh). When there are distinct poses, the native pose is often correctly identified as being 

most populated (Figure 8e), but sometimes other poses are calculated to have greater weight 

(Figure 8fgh). Indeed, the native pose may not even been among the predicted poses (Figure 

8gh).

Complex force field transfer limits BPMF precision

The mean and standard deviation of free energy differences between all adjacent pairs of 

milestones in the thermodynamic cycle (Figure 1) and for the total BPMF are reported in 

Table S1 of the supplementary material. While BPMFs are estimated within chemical 

precision of 1 kcal/mol = 1.68 RT for only 28.2% of systems, the majority of BPMFs are 

estimated within 4 kBT (75.3% with Desolvated and 74.1% with Full options) and nearly all 

within 8 kBT (87.1% with Desolvated and 94.1% with Full). The largest source of 

imprecision is estimation of fDE, which is associated with transferring the complex between 

sampling and targeted force fields.
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With the exception of fDE, free energy differences between pairs of adjacent milestones in 

the thermodynamic cycle are feasible to calculate with AlGDock, converging quickly or at a 

steady rate. To evaluate the convergence of these estimates as a function of simulation time, 

the root mean square error (RMSE) between estimates for a particular cycle and estimates 

after the final cycle (for a particular solvation option) is considered. In the final cycle, the 

RMSE is simply the standard deviation. The fraction of systems with RMSE less than 

certain values is reported for different numbers of cycles in Figure 9.

The free energy difference between milestones A and B, associated with transferring the 

ligand between the sampling and target force fields, converges quickly. After the first cycle, 

the RMSE of fAB is less than 1 kBT for all systems. After eight cycles, it is less than 0.5 kBT 
for all but one set of calculations, 0.544 kBT for 1p62 with the Desolvated option. The fast 

convergence of fAB is expected because milestones A and B are meant to be the same force 

field, but simply evaluated using different software packages. Convergence is only 

dependent on adequate sampling of milestone B.

The free energy difference between milestones B and C, associated with changing the 

temperature of the ligand (and removing implicit solvent in the Desolvated option), also 

converges quickly. For the Desolvated option, the RMSE of fBC is less than 2 kBT for all but 

1jje (3.2 kBT) after the first cycle and less than 1 kBT after eight cycles. The Full option 

converges more quickly, with a RMSE within 1 kBT after one cycle and within 0.15 kBT 
after eight. The faster convergence of the Full option is reasonable because milestones B and 

C are both in implicit solvent, implying that the protocol involves moving across a smaller 

region of configuration space.

The free energy difference between milestones C and D, associated with changing the 

temperature of the ligand and scaling the receptor-ligand interaction grid, converges more 

slowly than between milestones B and C. For the Desolvated option, the RMSE of fCD is 

over 8 kBT for 23 systems after one cycle. However, after 15 cycles, the RMSE is below 2.5 

kBT for all but one system, 2.65 kBT for 1t40. For the Full option, the RMSE of fCD is over 

8 kBT for 28 systems after one cycle. However, after 15 cycles, it is likewise below 2.5 kBT 
for all but one system, 3.41 kBT for 1l7f. For both solvation protocols, the RMSE of fCD is 

below 2 kBT for about 80% of systems after five cycles (Figure 9). It is reasonable that fCD 

converges more slowly than fBC because adding protein-ligand interactions leads to many 

local minima that simulations may become trapped in.

In contrast to the other pairs of milestones, the free energy difference between milestones D 

and E does not converge quickly nor at a steady rate for as many systems. For the 

Desolvated option, the RMSE is above 8 kBT for 26 systems after one cycle. After 15 cycles, 

it is still above 8 kBT for 9 systems. For the Full option, the RMSE is above 8 kBT for 23 

systems after one cycle and 5 systems after 15 cycles. With both protocols, the RMSE is 

below 2.5 kBT for about 60% of systems and 4 kBT for about 80% of systems. After about 5 

cycles, the speed at which precision improves substantially slows. Given minimal changes in 

RMSE after about 12 cycles, it is unlikely that extending simulation beyond 15 cycles would 

lead to significant reduction in RMSE.
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The convergence of fDE appears to be the limiting factor in the convergence of the BPMF. If 

the convergence of the total BPMF were limited by different pairs of milestones depending 

on the system, then the RMSE curves in the final row of Figure 9 would differ from any 

other row. If one particular pair of milestones always limits the convergence of total BPMF, 

the curves on the bottom row would resemble curves for that pair of milestones. In the data, 

the RMSE curves in the penultimate and final row of Figure 9 are nearly identical.

Full solvation is less susceptible to false convergence

The prior discussion of standard deviations and RMSEs neglects the possibility of false 

convergence. False convergence occurs when thermodynamic expectations and free energy 

differences are apparently stable, even across multiple independent simulations, but 

simulations do not truly sample from the relevant configuration space. In general, false 

convergence is difficult to diagnose. However, in the context of AlGDock calculations, it is 

possible to compare results from the Desolvated and Full solvation options. For these 

options, although intermediate milestones differ, milestones A and E are equivalent and 

calculations should, in principle, lead to the same total BPMF.

Figure 10 shows free energies from a representative pair of simulations that take different 

pathways but yield nearly equivalent BPMFs. fAB is the same pair of states for both 

pathways. The magnitude of fBC is larger for the Desolvated pathway, consistent with the 

removal of implicit solvent in addition to the temperature change. fCD has a similar overall 

shape. The BPMFs match because fDE have opposite signs.

In the majority of systems (63 systems or 74.1%), the mean BPMF from Desolvated and 

Full solvation options is within error (the sum of standard deviations for each of the 

estimates). In other cases, either the mean BPMF from Desolvated (5 systems) or Full (17 

systems) solvation options is lower (Figure 11). Most of these differences are less than 10 

kBT, but several are very large, up to around 100 kBT.

To facilitate analysis of false convergence, the consensus BPMF was defined as the lower of 

mean BPMFs for the two solvation options. The RMSE was computed relative to the 

consensus BPMF rather than the final BPMF observed for a specific solvation option. The 

fraction of systems with RMSE less than certain values is reported for different numbers of 

cycles in Figure S3 of the Supplementary Material. Reflecting its higher propensity for false 

convergence, the curves for the Desolvated option are noticeably shifted up and to the left 

compare to the RMSE versus the final value. After the last cycle, many systems still have 

high RMSEs relative to the consensus: 35.2% > 5 kBT, 15.2% > 8 kBT, 11.7% > 20 kBT, 

and 9.4% > 30 kBT. Curves for the Full option are shifted upwards more subtly. After the 

last cycle, fewer systems still have high RMSEs relative to the consensus: 35.2% > 4 kBT, 

24.7% > 5 kBT, and 9.4% > 8 kBT. The largest RMSE is 12.8 kBT.

Convergence is limited by differences in sampled configuration space

The false convergence observed in some simulations is caused by differences in the 

important configuration space of milestones D and E. In general, the convergence of 

calculated free energy differences between a pair of thermodynamic states is facilitated by 

overlap of the configuration space important to the states42. The described fDE calculations 
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are based on samples from milestone D. If the configuration space important to milestones D 

and E differ, then sampling configurations important to milestone E using simulations of 

milestone D is a rare event.

Although it is difficult to determine whether the important configuration space of milestone 

E has been adequately sampled, it is feasible to compare the configuration space assessed 

with different solvation options. If they do access the same space, then it is reasonable to 

expect fDE and BPMF estimates to be consistent. If they do not, then fDE and thereby 

BPMFs are likely to be different. One way to quantify whether simulations access the 

configuration space important to milestone E is the minimum interaction energy, according 

to the force field used in milestone E. In a significant subset of systems, the minimum 

interaction energy observed in samples from milestone D with the two solvation options 

substantially differs (Figure 11c). Indeed, large differences the minimum interaction energy 

appear to be a necessary, but not sufficient, condition for large differences in BPMFs 

between the Desolvated and Full solvation options. That is, all cases with large differences 

in BPMFs also have large differences in the minimum interaction energy. However, there are 

a few cases in which large differences in the minimum interaction energy do not correspond 

to large differences in the mean BPMF.

While it may be intuitive to think that large differences in the mean interaction energy are 

due to large differences in binding poses, the data suggest that this is not always the case. In 

a number of simulations, a large difference in interaction energy (on the order of 100 kBT) is 

associated with an RMSD of less that 1 Å from the crystallographic and the minimum-

energy configuration (Figure S4 of the Supplementary Material). Furthermore, there are 

simulations in which configuration with the lowest RMSD compared to the native pose is 

greater than 2 Å, but the difference in the minimum interaction energy is minimal. In these 

cases, a number of distinct conformations may have a similar interaction energy.

In cases where the two solvation options differ in sampled configurations and interaction 

energies, one option is not adequately sampling the configuration space in milestone E. 

More precise calculations of fDE would require either introducing intermediate 

thermodynamic states, adding to the computational cost, or using a different force field at 

milestone D that it is more similar to milestone E.

BPMF calculations and interaction energies are similarly successful in identifying native 
poses

The most common strategy for ranking a set of binding poses to a receptor is based on the 

interaction energy. It is also reasonable to consider the total energy of the complex, in which 

the internal energy of the ligand also differs between poses. In principle, a better ranking 

scheme would account for the relative entropy of each pose and be based on the free energy 

of the pose. For this reason, I considered whether BPMF calculations, which account for the 

configurational entropy of the ligand but not the receptor, outperform strategies based on 

individual configurations (interaction and total energy) at ranking binding poses. For 

different sets of structures, the scoring functions (interaction energy, total energy, or pose-

specific BPMF) were evaluated based on whether a native pose (RMSD < 2 Å from the 

crystal) has the lowest or close-to-lowest score (Table 1).
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If the crystallographic pose and predicted poses from UCSF DOCK 6 are considered, the 

minimum interaction energy strategy is fairly successful. The pose with the lowest 

interaction energy is native in 81.2% of systems according to the UCSF DOCK 6 grid score 

in 87.1% of systems according to the interaction energy based from milestone E. The lowest 

internal energy is an even better strategy, correctly identifying the native pose in 92.9% of 

systems. (Due to decoys observed during simulation, this success rate is reduced to 88.2% 

when considering poses from all the BPMF simulations.) In 95.3% of systems, the native 

pose has an interaction energy or total energy no more than 8 kBT higher the lowest-energy 

pose. Several reasons for the high success rate of these methods is because self-docking 

opposed to cross-docking was performed, only poses with a center of mass within 6 Å of the 

crystallographic binding pose were considered, and because of the extensive sampling of 

binding poses. The likely reason that milestone E outperforms the UCSF DOCK 6 grid score 

is because it incorporates solvation free energies.

Although all BPMF calculations included native poses among the initial structures, some 

simulations drifted away from native conformations over the course of equilibration. This 

issue was more prevalent with the Desolvated than the Full solvation option; the native pose 

was observed during production of milestone D in 90.4% of simulations with the former and 

94.9% of simulations with the latter solvation option. Due to this configuration space drift, 

the minimum interaction energy and total energy were less successful at identifying the 

native pose based on samples from BPMF calculations than from initial starting structures 

(which all included native poses).

When considering individual BPMF calculations, the success of native pose identification 

was more dependent on the force field than whether scores were based on interaction 

energies, total energies, or pose-specific BPMFs. For ranking observed poses, the force field 

at milestone E was best, milestone D with Full solvation was second, and milestone D with 

the Desolvated option was the worst among tested force fields. On the other hand, the 

interaction energy, total energy, and pose-specific BPMF performed similarly.

Even though overall performance of native pose identification was similar among scoring 

schemes, the schemes often failed in different BPMF calculations and systems (Figure 12). 

In the majority of BPMF calculations where the binding pose was incorrectly identified, 

both the minimum interaction energy and pose-specific BPMF were deceived by geometric 

decoys (172) or did not sample the native state (125). A slightly larger number of 

calculations incorrectly identified the binding pose based on the pose-specific BPMF 

exclusively (80) than based on the minimum interaction energy exclusively (45). When 

considering all BPMF calculations for a specific system, the pose-specific BPMF was 

comparably reliable with the interaction energy. Whereas the pose-specific BPMF 

exclusively misidentified the native pose in 6 systems, the minimum interaction energy was 

exclusively incorrect in 7 systems.
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DISCUSSION

Thermodynamic state initialization and automatic adaptation reliably yields reasonable 
protocols

The selection of intermediate states between two thermodynamic milestones of interest is a 

ubiquitous problem in molecular simulation. The usual approach to this problem is an 

iterative trial-and-error process starting from a naive protocol, checking for issues such as 

replica exchange bottlenecks, and manually inserting and removing states as necessary. I 

have developed a simple and robust approach to initialize a series of thermodynamic states 

based on only a single adjustable parameter, the thermodynamic speed. In the vast majority 

of cases, the initialization protocol yielded consistent replica exchange rates across 

neighboring thermodynamic states without further fine-tuning. I also developed an 

automated approach to add additional states when the observed replica exchange rate falls 

below 40%. With this procedure, I was able to run a large number of simulations on a 

diverse array of protein-ligand complexes without manual intervention. The described 

approach to trailblazing and adapting thermodynamic state space may find use in other 

classes of simulations.

Replica exchange calculations in this present study include more thermodynamic states than 

most published molecular simulations. Conventional wisdom about replica exchange is that 

an optimal number of replicas will maximize efficiency. With too few replicas, there is 

limited configuration space overlap between neighbors and exchange rates are vanishingly 

small. With too many replicas, metrics of replica exchange efficiency, such as a mean round-

trip time, diminish. However, in a recent study involving extensive simulation of several 

distinct processes, my group found that if there are no bottlenecks in which the replica 

exchange rate is below 40%, the number of states has little impact on the convergence of 

free energy estimates35. Hence, I chose to include a large number of states to minimize the 

probability that later sampling will explore different regions of configuration space and 

reduce the exchange rate between neighboring states.

While useful, the described thermodynamic state initialization process remains imperfect. 

Replica exchange is particularly beneficial when the important configuration space of a 

thermodynamic state is a subset of the important configuration space of another. The present 

procedure is limited to the variation of a single thermodynamic parameter between 

milestones. Future improvements could accommodate varying multiple parameters (e.g. 

separate parameters for the temperature, van der Waals grids, and electrostatic grids) in 

between thermodynamic states of interest to promote sampling while minimizing 

unnecessary traversals of configuration space.

Most free energy differences between sampled states are converged

It has been argued that many simulations of biomolecular binding processes do not 

adequately sample relevant configuration space and therefore results are not converged and 

are irreproducible43. Within his discussion of problematic degrees of freedom, Mobley43 

highlighted ligand binding modes and internal conformational changes in small molecules as 

common reasons for failed convergence. In the majority of simulations considered in this 
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paper, fAD estimates are very precise. Achieving precise free energy differences between 

milestones A and D requires adequate sampling of both of the aforementioned problematic 

classes of conformational transitions. The precise results suggest that the described approach 

is successful at addressing the sampling problems for simulated thermodynamic states.

BPMF convergence and native pose prediction is predicated on overlap between 
milestones D and E

While free energy differences between milestones A and D were precise in nearly all 

systems, the precision of fDE estimates was more variable, limiting the convergence of 

BPMF calculations and the accuracy of native pose prediction. The performance of fDE 

estimates and native pose prediction was highly dependent on whether the ligand was 

considered desolvated or fully solvated when bound to the protein, implicating the solvation 

option as a key factor in the overlap between the important configuration spaces of 

milestones D and E. The strong performance of the interaction energy based on milestone E 

in identifying the native binding pose suggests that it is desirable to bring sampling closer to 

the importance configuration space of milestone E (opposed to making milestone E more 

like milestone D with either solvation option). In future work, more precise BPMF estimates 

may be attained by introducing intermediate states or by altering the force field for milestone 

D to become more similar to milestone E. For example, milestone D could be based on a 

grid that uses generalized Born instead of Poisson-Boltzmann electrostatics. A related 

possibility is to model desolvation of the ligand due to the receptor using a grid-based 

fractional desolvation term44. The strong performance of the consensus binding pose 

prediction based on all BPMF estimates for a system suggests that more precise BPMF 

calculations will also yield improved binding pose prediction.

Even with shortcomings in BPMF convergence, the present native pose prediction strategies 

perform comparably to other docking programs (Table 1). Because the Astex Diverse Set9 is 

a widely used benchmark, I will only mention a few results. In the original paper on the 

dataset, the standard GOLD protocol predicted the native pose within 2 Å in 80.5% of 

systems9. With best-practice structures, GLIDE was successful according to the same 

criterion for in 82% of systems (Figure 1 of Repasky et al.45). ICM has particularly strong 

performance, successful in 91% of systems46. For comparison, when ranking poses with the 

free energy based on the force field in milestone E, the calculations described herein are 

successful in 75.8% of Desolvated and 83.9% of Full BPMF calculations (Table 1). A caveat 

to this comparison is that the BPMF calculations were started with the native pose (as well 

as poses generated by UCSF DOCK 6), but other methods were required to sample the 

binding pose de novo. Another helpful reference point is a recent comprehensive evaluation 

by Wang et al.47, who found that 10 programs were successful in 40% to 60% of complexes 

in the PDBbind refined set (version 2014).

Ligand electrostatics in the protein environment are better treated as fully solvated

One of the more surprising results is that the Full solvation option outperforms the 

Desolvated option by yielding lower BPMFs and better binding pose predictions. After all, a 

ligand that is bound to a protein must shed most if not all of its hydration shell! A possible 

explanation is that many protein binding sites could mimic the dielectric environment of 
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water. To facilitate protein folding and solubility, soluble proteins usually contain 

hydrophobic residues in the interior and hydrophilic residues on the exterior. Since binding 

sites are primarily on protein surfaces, bound ligands may be surrounded by residues whose 

dielectric behavior resembles water.

CONCLUSIONS

I have developed a reasonably robust method to estimate BPMFs for protein-ligand systems. 

The largest sources of imprecision are found to be configuration space overlap between 

representations of the complex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Thermodynamic cycle for BPMFs.
Milestone thermodynamic states are labeled with letters in parentheses and expressions for 

the reduced potential energy. βT
−1 = kB 300 K  and βH

−1 = kB 600 K  are inverse temperature 

factors for the target and high temperatures, respectively. UT (·) and US(·) denote potential 

energies for the target and sampling force fields, respectively. These potential energies 

include molecular mechanics terms and the implicit solvent model. Ψg(·) is the potential 

energy due to receptor-ligand interaction grids. Arrows with orthogonal lines indicate 

multiple intermediate thermodynamic states. For BPMF calculations, configurations are 

sampled from thermodynamic states with the rounded boxes and from their intermediates.
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Figure 2: Grid scaling for states CD.
αsg (dashed line) and αg (solid line) as a function of the progress variable α.
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Figure 3: Number of thermodynamic states
(a) for states BC, and (b) for states CD. The marker indicates the mean value and error bars 

the standard deviation of 11 independent simulations based on the Desolvated (red squares) 

and Full (blue circles) solvation options. They are ordered by the mean number of states.
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Figure 4: Mean acceptance probability statistics.
pacc for fifteen protocols with the lowest observed pacc (a) for states BC and (b) and states 

CD are shown with the a line connecting neighboring states. Histograms of pacc from all 

simulations are shown on the right panel. The largest bin count is 14492 for states BC and 

31068 for states CD. For states CD, the simulations are from 1opk (4), 1r1h (4), 1t40 (3), 

1v48 (2), 1oq5 (1), 1jje (1), where the number of simulations is in the parentheses.
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Figure 5: Benchmark simulation times.
(a) Scatter plot of the total time for Desolvated (red squares) and Full (blue circles) solvation 

options as a function of the number of atoms in the system. Breakdown of times for (b) 

Desolvated and (c) Full solvation options. Benchmark simulations include initialization, 

equilibration and production, postprocessing, and free energy estimation. From bottom to 

top, lines depict the cumulative time through initialization (cyan squares) and estimation 

(violet circles) for states AC and then initialization (pink downward triangles) and estimation 
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(yellow upward triangles) for states CE. Systems are ordered along the x axis by the total 

simulation time.
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Figure 6: 
Samples from evenly spaced thermodynamic states for states CDx, taken from a 

representative simulation of 1kzk with the Desolvated solvation option. The protein structure 

structure is shown with ribbons and the crystallographic ligand pose is shown with a thick 

licorice representation and purple carbon atoms. The same illustration scheme is used in 

Figures 7 and 8. These figures were generated with VMD49.
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Figure 7: 
Samples from evenly spaced thermodynamic states for states CD, taken from a 

representative simulation of 1l7f with the Full solvation option.
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Figure 8: 
Predicted poses taken from representative simulations. A licorice representation is used for 

both the crystallographic pose (purple carbon atoms) and predicted poses (cyan). For the 

pose predictions, the thickness of the representation is proportional to its Boltzmann weight 

(using energies from the OBC model). Poses are shown for which weights are greater than 

0.001.
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Figure 9: 
Fraction of systems with free energy differences calculated within a certain root mean 

square error of the final value. The rows are for free energy differences between different 

pairs of milestones. The columns are for the Desolvated (left) and Full (right) solvation 

options. Each line indicates a different number of cycles, with a total of 8 for the top two 

rows and 15 for the remainder. In the sequence of colors inset in the right column of each 

row, the color indicate an increasing number of cycles from left to right.
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Figure 10: 
Representative cumulative free energies as a function of progress for states (a) AC and 

(b) DE for Desolvated (red squares) or Full (blue circles) options. Simulations are of PDB 

ID 1gpk. Panel (a) is based on the sum of fAB and the free energy difference between TT = 

300 K and the temperature on the x axis. Panel (b) is based on the sum of fAC and the free 

energy difference between α = 0 and the progress variable on the x axis. The final point on 

the plot shows fAE for both pathways. For clarity, markers are shown only every four 

thermodynamic states.
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Figure 11: Differences between the mean BPMF of Desolvated and Full solvation options.
(a) Data points are ordered by the difference in mean BPMFs and the error bars are the sum 

of the standard deviations of the two estimates. (b) The fraction of systems in which the 

difference in mean BPMFs is larger than the sum of standard deviations of the two estimates. 

Either the Desolvated (red squares) or Full (blue circles) BPMF is lower by at least a certain 

value. (c) The difference in the minimum interaction energy, according to the force field in 

milestone E, versus the difference in mean BPMFs.
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Figure 12: Venn diagram of geometric decoys.
Incorrect binding pose predictions, or geometric decoys, arise when a nonnative pose has a 

lower score than any native pose. The Venn diagrams show the overlap between sets of (a) 

BPMF calculations or (b) systems in which there are geometric decoys according to the 

interaction energy in milestone E (Minimum Ψ), the pose-specific BPMF (fEEp in panel (a) 

and fAEp in panel (b)), or because no native poses were observed (Drifted). Panel (a) is 

labeled by the number of BPMF calculations and is based on poses observed in each 
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calculation. Panel (b) is labeled by PDB identifiers for the particular systems and is based on 

poses observed in all BPMF calculations for a system.
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Table 1:

Fraction of calculations in which a native binding pose (RMSD from xtal structure < 2 Å) is within a specified 

cutoff of the minimum-energy structure. Binding poses were obtained either by scoring the crystal structure 

and docking (xtal + DOCK 6), from BPMF calculations with the Desolvated or Full options at milestone D, or 

all of the above. Docking poses were the 50 best-scoring poses from docking in which the ligand center of 

mass is within 6 Å of the center of mass of the crystallographic pose. Scoring was based on one of three force 

fields: the UCSF DOCK 6 grid score (D6), milestone D, or milestone E. The score was either the minimum or 

mean interaction energy Ψ, minimum or mean total energy u, or free energy based on reweighing the 

interaction energy (Equation 13 and 14) or total energy (Equation 12 and 14). Parentheses contain the standard 

error of the sample proportion, p 1 − p /n.

Samples Scoring Native within energy of minimum (kBT)

Force Field Score Type 8 4 2 0

xtal
+ DOCK 6

D6 min Ψ 0.941 (0.026) 0.906 (0.032) 0.847 (0.039) 0.812 (0.042)

E min u 0.953 (0.023) 0.953 (0.023) 0.929 (0.028) 0.929 (0.028)

E min Ψ 0.953 (0.023) 0.918 (0.030) 0.882 (0.035) 0.871 (0.036)

Desolvated

D min u 0.845 (0.012) 0.781 (0.014) 0.732 (0.014) 0.682 (0.015)

D mean u 0.847 (0.012) 0.769 (0.014) 0.705 (0.015) 0.653 (0.016)

D fe u 0.919 (0.009) 0.912 (0.009) 0.873 (0.011) 0.690 (0.015)

D min Psi 0.886 (0.010) 0.826 (0.012) 0.786 (0.013) 0.716 (0.015)

D mean Psi 0.890 (0.010) 0.842 (0.012) 0.803 (0.013) 0.714 (0.015)

D fe Psi 0.919 (0.009) 0.912 (0.009) 0.873 (0.011) 0.690 (0.015)

E min u 0.833 (0.012) 0.811 (0.013) 0.788 (0.013) 0.771 (0.014)

E mean u 0.830 (0.012) 0.796 (0.013) 0.772 (0.014) 0.752 (0.014)

E fe u 0.842 (0.012) 0.813 (0.013) 0.787 (0.013) 0.758 (0.014)

E min Psi 0.848 (0.012) 0.831 (0.012) 0.814 (0.013) 0.788 (0.013)

E mean Psi 0.842 (0.012) 0.818 (0.013) 0.788 (0.013) 0.757 (0.014)

E fe Psi 0.856 (0.011) 0.818 (0.013) 0.799 (0.013) 0.767 (0.014)

Full

D min u 0.883 (0.010) 0.804 (0.013) 0.753 (0.014) 0.699 (0.015)

D mean u 0.905 (0.010) 0.825 (0.012) 0.759 (0.014) 0.682 (0.015)

D fe u 0.948 (0.007) 0.943 (0.008) 0.899 (0.010) 0.702 (0.015)

D min Psi 0.910 (0.009) 0.867 (0.011) 0.816 (0.013) 0.741 (0.014)

D mean Psi 0.921 (0.009) 0.872 (0.011) 0.831 (0.012) 0.734 (0.014)

D fe Psi 0.948 (0.007) 0.943 (0.008) 0.899 (0.010) 0.702 (0.015)

E min u 0.897 (0.010) 0.866 (0.011) 0.843 (0.012) 0.820 (0.013)

E mean u 0.893 (0.010) 0.863 (0.011) 0.839 (0.012) 0.807 (0.013)

E fe u 0.908 (0.009) 0.879 (0.011) 0.864 (0.011) 0.839 (0.012)

E min Psi 0.910 (0.009) 0.893 (0.010) 0.876 (0.011) 0.846 (0.012)

E mean Psi 0.897 (0.010) 0.880 (0.011) 0.864 (0.011) 0.834 (0.012)

E fe Psi 0.913 (0.009) 0.884 (0.010) 0.868 (0.011) 0.840 (0.012)

All
E min u 0.918 (0.030) 0.906 (0.032) 0.882 (0.035) 0.882 (0.035)

E min Ψ 0.941 (0.026) 0.918 (0.030) 0.894 (0.033) 0.871 (0.036)
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