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Abstract

Cardiovascular disease (CVD) is the most common disease to increase as life expectancy 

increases. Most high-profile pharmacological treatments for age-related CVD have led to 

inefficacious results, implying that novel approaches to treating these pathologies are needed. 

Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by 

irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate 

in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular 

function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, 

the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell 

senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug–

mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and 

precisely targeted therapeutics for CVD prevention and treatment.
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1. Introduction

Human life expectancy is significantly increasing due to the better quality of water, food, 

hygiene, housing, and lifestyle, as well as vaccine usage and improved medical care 

(Foreman et al., 2018). As projected, the percentage of the global population of age ≥ 65 

years will increase from 13% in 2010 to 19% in 2030, whereas those age ≥ 85 years will 

increase from approximately 0.03% in 2010 to approximately 1.4% in 2030 (Kontis et al., 

2017). Advanced age has been well recognized as the leading unmodifiable risk factor for 

chronic fatal diseases (Niccoli and Partridge, 2012), including cardiovascular disease (CVD) 

(Shakeri et al., 2018), cancer, and neurodegenerative diseases (Baker and Petersen, 2018). 

Among these, CVD is the most common disease to increase globally as populations continue 

to age (Partridge et al., 2018). CVD is the leading cause of death in the elderly (Roth et al., 
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2017). However, the mechanisms underlying development of age-related CVD are largely 

unknown. Cellular senescence, a state of permanent cell-cycle arrest despite continued 

viability and metabolic activity, presents in diseased cardiovascular tissues and is strongly 

associated with cardiovascular ageing (Shakeri et al., 2018). Senescence is different from 

ageing, which is characterized by progressive functional decline. Senescence generally 

happens at the cellular level, whereas ageing occurs on the tissue or organ level. Cell 

senescence drives tissue ageing (McHugh and Gil, 2018) and is also different from cell 

quiescence characterized by reversible cell cycle arrest. Cell senescence and quiescence have 

distinct features and roles in the pathophysiology of CVD. Growing evidence indicates that 

senescent cardiovascular cells tightly trigger or exacerbate the onset and progression of 

numerous CVDs, including atherosclerosis (Childs et al., 2016), arterial stiffening 

(Schellinger et al., 2019), aortic aneurysms (Chen et al., 2016), (re) stenosis, myocardial 

fibrosis (Sawaki et al., 2018), and heart failure. Here, we discuss the unique features of 

senescent cardiovascular cells, molecular mechanisms underlying cardiovascular cell 

senescence, and emerging roles of senescent vascular cells in CVD initiation and 

progression. We also summarize whether and how senotherapy targeting elimination of 

senescent cardiovascular cells by senolytics or the immune system could be used to improve 

cardiovascular function with normal ageing-, disease-, or cancer therapy-induced damage, 

ideally resulting in healthy longevity (Campisi et al., 2019; Ovadya and Krizhanovsky, 2018; 

van Deursen, 2019).

2. Cellular senescence or quiescence and development of CVD

Senescent cardiovascular cells are especially abundant at sites of diseased or impaired 

cardiovascular systems, and accumulating evidence from human samples and mouse models 

demonstrates a causal role for senescent cells in the pathogenesis of age-related CVD, 

including atherosclerosis (Matthews et al., 2006), abdominal aortic aneurysm (AAA) (Chen 

et al., 2016), arterial stiffness (Roos et al., 2016), hypertension (Boe et al., 2013), and heart 

failure (Gude et al., 2018). We will review a body of work that, taken together, strongly 

suggests that cardiovascular cell senescence may have a significant role in the pathogenesis 

of CVD.

2.1. Cardiovascular cell senescence and quiescence

Cardiovascular cell senescence is defined as irreversible and permanent cell cycle arrest 

while cells remain metabolically active. Vascular cell senescence can be triggered by various 

detrimental stimuli, including but not limited to, radiation, oxidative stress, shortened 

telomeres (Matthews et al., 2006; Minamino et al., 2002), DNA damage, mitochondrial 

dysfunction, abnormal metabolism, and gene mutation. There are two kinds of vascular cell 

senescence (Bennett et al., 2016; Chi et al., 2019). The first is replicative senescence, 

irrevocable cell proliferation arrest after multiple cell divisions, which is generally mediated 

by telomere shortening (Kuilman et al., 2010). The second is stress-induced premature 

senescence (SIPS), a stable cell cycle arrest in the absence of any detectable telomere loss or 

dysfunction, which is usually induced by distinct endogenous or exogenous stresses 

(Kuilman et al., 2010). Cell senescence is a strategy used generally by mitotic cells to 

prevent dysregulated cell division. Emerging evidence demonstrates that cell senescence also 
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occurs in post-mitotic cells, including cardiomyocytes and mature adipocytes (Sapieha and 

Mallette, 2018). In general, DNA damage in telomere regions drives post-mitotic 

cardiomyocyte senescence (Anderson et al., 2019). p53 induction mediates the senescence of 

post-mitotic adipocytes (Minamino et al., 2009). Upregulation of pro-senescence factor p21 

triggers cell senescence in post-mitotic dopaminergic neurons (Riessland et al., 2019). 

Cardiovascular cell senescence is vital for the maintenance of cardiovascular tissue 

homeostasis during embryonic development, tissue regeneration, and wound healing 

(Demaria et al., 2014). However, persistent accumulation of senescent cells in cardiovascular 

tissues will impair cardiovascular function and has been implicated in the pathogenesis of 

age-related CVD. In contrast, cardiovascular cell quiescence with reversible cell cycle arrest 

usually occurs due to a lack of nutrition or growth factors (Blagosklonny, 2011).

2.1.1. Hallmarks of cardiovascular cell senescence—Senescent cardiovascular 

cells usually differ greatly from non-senescent cardiovascular cells, including proliferating 

cells and quiescent cells (Table 1). Senescent cardiovascular cells present several 

morphological and molecular features (Table 2) that may serve as suitable markers and 

therapeutic targets for these cells. Senescent cardiovascular cells generally display a 

characteristic flattened and enlarged morphology (Coleman et al., 2010; Meijles et al., 

2017), increased senescence-associated beta-galactosidase (SA β-gal) activity (Matthews et 

al., 2006), telomere attrition, and accumulation of cyclin-dependent kinase inhibitor p16ink4a 

or p21 (Morgan et al., 2013). The prominent feature of senescent cardiovascular cells is the 

senescence-associated secretory phenotype (SASP). Senescent vascular cells secrete a 

variety of pro-inflammatory cytokines (e.g. IL-6, IL-8), growth factors (e.g. vascular 

endothelial growth factor [VEGF], platelet-derived growth factor AA [PDGF-AA]) 

(Demaria et al., 2014), chemokines, and matrix metalloproteinases (MMPs). Senescent 

vascular cells exhibit a SASP that enables them to communicate with other cells, as well as 

the microenvironment, and to promote the senescence of neighboring cells, tissue 

regeneration, and embryonic development (Munoz-Espin et al., 2013). A critical feature of 

senescent cells is that they are more resistant than non-senescent cells to both extrinsic and 

intrinsic pro-apoptotic stimuli, which may be due to the transcriptional and cap-independent 

translational upregulation of pro-survival BH2 family proteins (BCL-W, BCL-XL, and 

BCL-2) (Yosef et al., 2016). Another surrogate marker of vascular cell senescence is the 

induction of telomere-associated foci (TAF) of DNA damage (Roos et al., 2016). DNA 

methylation may function as a biomarker for vascular cell senescence and biological ageing 

(Field et al., 2018).

Notably, one type of cardiovascular cell may have its unique senescent hallmarks with 

different kinds of senescence. For example, passaged vascular smooth muscle cells 

(VSMCs) exhibit p16, but not p21, elevation in replicative senescence, whereas p21, but not 

p16, is expressed in oxidative SIPS (Matthews et al., 2006). Endothelial cell (EC) SENEX is 

upregulated in SIPS, but not in replicative senescence (Coleman et al., 2010). Upregulation 

of fibroblast senescence marker dipeptidyl peptidase 4 (DPP4, also known as CD26) is much 

stronger in replicative senescence than in ionizing radiation (IR)-induced premature 

senescence (Kim et al., 2017). Middle-aged wild-type lung ECs show elevation of p53 and 

p21, but not p16, compared with younger counterparts (Meijles et al., 2017). Cyclin D1 

Song et al. Page 3

Ageing Res Rev. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reactivity (upregulation) is a more accurate marker than SA β-gal activity for replicative 

senescence in human VSMCs (Burton et al., 2007). Thrombospondin 1 (TSP1) protein 

levels are increased in senescent ECs, but not in VSMCs (Meijles et al., 2017). Thus, 

different cardiovascular cells have distinct molecular signatures of senescence, which may 

serve as potential therapeutic targets for selective elimination of different senescent cells.

2.1.2. Features of cardiovascular cell quiescence—Most cardiovascular cells in a 

healthy adult are quiescent (Eelen et al., 2018). Quiescent cardiovascular cells are 

characterized by reversible cell cycle arrest at G0 (Kalucka et al., 2018) and responsiveness 

to external stimuli, including both growth factors and apoptotic agents, which is distinct 

from senescent cells (Table 1). Different cardiovascular cells may have unique features of 

quiescence. EC quiescence has been well studied. Generally, Notch signaling induces 

endothelium quiescence (Harrington et al., 2008), which increases fatty acid β-oxidation 

(FAO) via elevation of Notch1-mediated carnitine palmitoyltransferase 1A (CPT1A) up to 

levels 3- to 4-fold greater than in proliferating ECs to sustain the tricarboxylic acid cycle for 

redox homeostasis through regeneration of the reduced form of nicotinamide adenine 

dinucleotide phosphate (NADPH). Quiescent ECs also have upregulated endothelial nitric 

oxide synthase (eNOS) and prostaglandin G/H synthase 1 (PTGS1), as well as 

downregulated glycolysis (Kalucka et al., 2018). Also, forkhead box O1 (FoxO1) activation 

enhances EC quiescence by downregulating Myc protein levels and triggering consequent 

glycolysis inhibition, whereas FoxO1 activation does not induce EC senescence and 

apoptosis (Wilhelm et al., 2016). FoxO1 activation also mediates quiescence of pulmonary 

artery smooth muscle cells (Savai et al., 2014). Supplementation with acetate (metabolized 

to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-

mediated EC dysfunction in EC-specific CPT1A-deleted mice (Kalucka et al., 2018), 

offering therapeutic opportunities. Quiescent ECs stimulated by β-hydroxybutyrate (β-HB) 

present upregulated Oct4 and Lamin B1 (Han et al., 2018). Bone morphogenetic protein-9 

(BMP9) can function as a vascular (endothelial) quiescence factor (David et al., 2008).

2.2. Cellular senescence contributes to CVD

Dysregulation of cardiovascular cell senescence is tightly linked to many human CVDs, 

such as heart failure, coronary artery disease, atherosclerosis, aortic aneurysm, and vessel 

(re)stenosis. The role of senescent cardiovascular cells in the etiology of these pathologies 

was recently established. It was reported that p16-positive cells are major drivers of the age-

related cardiac phenotype that results in decreased lifespan in mice (Baker et al., 2016). 

Removal of senescent cells with p16 promoter activity inhibits both atherosclerotic plaque 

onset and progression and enhances plaque stability (Childs et al., 2016).

2.2.1. Endothelium senescence and CVD—ECs line the inner vascular wall, and 

their phenotype, fate, and function alternately depend on the organs and tissues in which 

they reside and the niches. Not only do ECs form the barrier of vessel walls, they also 

communicate via signals with neighboring cells to promote tissue regeneration and growth, 

as well as to control low-density lipoprotein (LDL) transcytosis and consequent 

atherogenesis (Huang et al., 2019). EC senescence is tightly linked to EC dysfunction (Kim 

et al., 2018b) and subsequent CVD development and progression (Table 2) (Bochenek et al., 
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2016; Pantsulaia et al., 2016; Regina et al., 2016). Minamino et al. first demonstrated that 

senescent ECs with strong SA β-gal activity are present in atherosclerotic lesions of human 

coronary arteries (Minamino et al., 2002). Atherosclerotic ECs have shortened telomeres 

compared with the ECs in the normal vessel wall (Ogami et al., 2004). ECs from the 

aneurysmal region also present a senescent phenotype with shorter telomeres and more 

severe oxidative DNA damage (Cafueri et al., 2012). Importantly, in a mouse ageing model, 

EC senescence contributes to heart failure without systolic dysfunction, specific heart failure 

with preserved ejection fraction (HFpEF), which occurs in approximately 50% of all patients 

with heart failure (Gevaert et al., 2017). Also, EC senescence mediates thrombosis 

(complete vena cava occlusion) via elevation of plasminogen activator inhibitor-1 (PAI-1), 

an established marker and key mediator of cellular senescence (McDonald et al., 2010). EC 

premature senescence due to sirtuin deacetylase 1 (Sirt1) inhibition (Ota et al., 2007; Zu et 

al., 2010) may reversibly lead to vascular ageing and age-related decrease in exercise 

endurance (Das et al., 2018). Senescence of bone ECs (type H ECs with high expression of 

CD31 and endomucin) may trigger dysfunctional vascular niches for hematopoietic stem 

cells (Kusumbe et al., 2016), which may accelerate atherosclerosis development in mice 

(Fuster et al., 2017).

2.2.2. Senescence of vascular smooth muscle cells and CVD—VSMC 

senescence is profoundly associated with and contributes to numerous CVDs, including 

atherosclerosis (Bennett et al., 2016; Gardner et al., 2015; Grootaert et al., 2018), aortic 

aneurysm (Cafueri et al., 2012), and fibrotic neointima formation (Komaravolu et al., 2019). 

VSMCs from aged thoracic aortas express higher levels of platelet-derived growth factor 

receptor-alpha (PDGFR-α) and are resistant to apoptosis induced by serum starvation or 

nitric oxide (Vazquez-Padron et al., 2004). VSMCs derived from human atherosclerotic 

plaques have a lower level of proliferation compared with cells from the regular arterial 

media, suggesting that plaque VSMCs are prematurely senescent (Bennett et al., 1998). 

Human plaque VSMCs are characterized by higher p16 and p21 expression, 

hypophosphorylation of retinoblastoma (RB), stronger SA β–gal activity, and sizeable 

flattened cell morphology, when compared with normal VSMCs (Gorenne et al., 2006). 

Matthews et al. reported that senescent VSMCs are present in the fibrous cap of human 

advanced carotid atherectomies (Matthews et al., 2006), and VSMCs within the fibrous cap 

demonstrate remarkable telomere loss compared with medial VSMCs of the same lesion. 

Furthermore, telomere shortening of intimal VSMCs is tightly linked to increasing severity 

of atherosclerosis (Matthews et al., 2006). Angiotensin II (Ang II) has been reported to 

accelerate the development of atherosclerosis via induction of premature senescence by the 

p53/p21-dependent pathway in VSMCs, but not bone marrow cells (Kunieda et al., 2006). 

VSMC senescence due to Sirt1 inactivation increases atherosclerosis (Gorenne et al., 2013). 

Also, VSMC senescence contributes to plaque vulnerability, leading to myocardial infarction 

and stroke (Wang et al., 2015). VSMC-specific TRF2 overexpression in apolipoprotein E 

knockout (ApoE−/−) mice prevents senescence and consequently improves several features 

of plaque vulnerability (Wang et al., 2015).

Medial VSMCs derived from patient AAAs demonstrate accelerated replicative senescence 

compared to VSMCs from the corresponding adjacent (non-aneurysmal) inferior mesenteric 
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artery of the same patient (Liao et al., 2000). Ang II induces VSMC senescence and 

resultant AAA formation via Sirt1 reduction (Chen et al., 2016). Medial VSMC senescence 

due to NAD+ reduction by inhibition of the rate-limiting enzyme nicotinamide 

phosphoribosyltransferase (NAMPT) leads to human thoracic aorta (ascending aorta) 

aneurysm (Watson et al., 2017). VSMC senescence in the aorta also increases vascular 

stiffness (Durik et al., 2012). VSMC senescence induced by nicotine (Suner et al., 2004) 

may drive nicotine-mediated aortic and arterial stiffness (Ding et al., 2019). Replicative 

senescence of VSMCs instigates age-related medial artery calcification that is not 

concomitant with lipid or cholesterol deposit via runt-related transcription factor-2 

(RUNX-2)-mediated osteoblastic transdifferentiation (Nakano-Kurimoto et al., 2009). 

Ageing exacerbates neointimal formation by wire injury in carotid arteries in mice 

(Vazquez-Padron et al., 2004). However, it is unknown if age-enhanced neointimal 

formation is due to VSMC senescence.

2.2.3. Immune cell senescence in CVD—Immune cell senescence 

(immunosenescence) plays a pivotal role in CVD initiation and progression (Alpert et al., 

2019; Yu et al., 2016). Macrophages are the primary type of immune cells that play critical 

roles in CVD development. Employing CD11b-driving diphtheria toxin (DT) receptor 

(DTR) transgenic mice, Stoneman et al. showed that monocyte/macrophage content 

positively contributes to atherosclerotic plaque development, collagen content, and necrotic 

core formation. However, monocyte reduction has minor effects on the established plaques 

(Stoneman et al., 2007). Mouse ageing is associated with the accumulation of senescent 

macrophages that can be induced in young mice by senescent fibroblasts (Hall et al., 2016). 

Senescent macrophages accumulate in the sub-endothelial space during early atherogenesis 

(Childs et al., 2016). In advanced atherosclerotic plaques, senescent macrophages promote 

features of plaque instability, including diminished collagen content, elastic fiber 

fragmentation, and fibrous cap thinning, in descending aorta and brachiocephalic artery, by 

elevating MMP3 and MMP13 formation. Interestingly, selective removal of these p16-

positive senescent cells without interfering with the senescence program by genetic or 

pharmacological strategies reverses atherosclerosis in mice (Childs et al., 2016). It was 

reported that older persons (over the age of 60 years) with the senescent marker of shorter 

telomeres in leukocyte DNA have a 3.18-fold higher mortality rate from heart disease 

(Cawthon et al., 2003), implying that senescent immune cells may lead to heart disease. 

Accelerated telomere shortening also presents in leukocytes of patients with severe coronary 

artery disease (Samani et al., 2001) and myocardial infarction (Brouilette et al., 2003). 

Plasmacytoid dendritic cells (pDCs, uniquely produce type I interferon) and regulatory T 

cells (Tregs) are concomitantly induced and co-localized in mouse atherosclerotic intima 

(Yun et al., 2016). Although the accumulation of intimal DCs increases in aged mice with 

accelerated atherogenesis (Liu et al., 2008), the causal function of senescent DCs and T cells 

in CVD development remains an unmet challenge. Recently, it was reported that human 

carotid artery plaques contain immune cells, including CD4+ or CD8+ T cells, natural killer 

(NK) cells, and macrophages (Fernandez et al., 2019). However, it is totally unknown 

whether the patient’s plaque immune components are senescent and the role of senescent 

immune components in human atherogenesis.
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2.2.4. Senescent myofibroblasts and fibroblasts in CVD—Senescence of cardiac 

myofibroblasts is increased in perivascular fibrotic areas after transverse aortic constriction 

(TAC) compared with the sham-treated heart. Inhibition of premature senescence by genetic 

deletion of both p53 and p16 leads to enhanced fibrosis and cardiac dysfunction after TAC 

compared with the wild-type control heart. In contrast, induction of premature senescence 

by cardiac-specific adeno-associated virus serotype 9 (AAV9) (Suckau et al., 2009) gene 

transfer-mediated expression of cysteine-rich angiogenic inducer 61 (CYR61) (Jun and Lau, 

2010) results in an approximately 50% reduction of perivascular fibrosis and improved 

cardiac function after TAC (Meyer et al., 2016). These data imply that premature senescence 

of myofibroblasts functions as an essential anti-fibrotic mechanism and is a promising 

therapeutic target for myocardial fibrosis (Condorelli et al., 2016). The role and regulation of 

senescent fibroblasts and myofibroblasts in the development of CVD, including AAA, 

cardiac fibrosis, and arterial stiffness, warrant further investigation.

2.2.5. Senescence of vascular stem/progenitor cells and CVD—Ageing is 

frequently associated with dysfunction of stem or progenitor cells. Although cellular 

senescence of progenitor cells (PCs) contributes to multiple diseases (Nicaise et al., 2019), 

senescence of cardiovascular PCs in CVD progression has been less investigated. 

Circulating endothelial progenitor cells (EPCs) from human subjects at high risk for 

cardiovascular events or older subjects have higher percentages of in vitro senescence (Hill 

et al., 2003) or functional impairment (e.g. decreased migration and proliferation) (Heiss et 

al., 2005), which is correlated with vascular or EC dysfunction, a key trigger of 

atherogenesis. Depletion of growth differentiation factor 11 (GDF11) or telomerase reverse 

transcriptase (TERT) causes senescence of young VEGFR2+/CD133+ EPCs, leading to 

impaired vascular function and angiogenesis in vitro and in vivo (Zhao et al., 2019). 

However, it is unknown whether EPC senescence contributes to the onset and progression of 

CVD.

Although the endogenous cardiomyocyte renewal capacity of adult cardiac stem/progenitor 

cells (CSCs/CPCs) is still a matter of debate (van Berlo et al., 2014; Vicinanza et al., 2018), 

they exert a beneficial effect on cardiac function in animal models of cardiac ischemic injury 

(Vagnozzi et al., 2020). Age affects the senescence of human CSCs from older patients 

(Lewis-McDougall et al., 2019; Nakamura et al., 2016), and it also enhances mouse CSC 

senescence (Torella et al., 2004). Indeed, c-kit+ cardiac CPCs from aged (24 months) 

C57BL/6 mice have increased senescent phenotype, decreased stemness, and impaired 

ability to upregulate paracrine factors for angiogenesis (Castaldi et al., 2017). Overall, CSC 

senescence mediates cardiac ageing and heart failure (Cianflone et al., 2019; Torella et al., 

2004). Interestingly, elimination of senescent CPCs using dasatinib + quercetin (D + Q) 

senolytics attenuates the SASP and its effect on promoting senescence of healthy non-

senescent CPCs in vitro. Moreover, systemic ablation of senescent cells in aged mice in vivo 
using senolytics (D + Q) leads to resident CPC activation and enhanced heart regenerative 

capacity (Lewis-McDougall et al., 2019). Ageing induces senescence of cardiac 

mesenchymal stem cells (MSCs) associated with decreased CD90 expression, resulting in 

impaired EC differentiation potentials and enhanced SASP (Martini et al., 2019), which may 

contribute to cardiac disease. Additionally, CVD risk factors, such as type 2 diabetes, 
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depletes circulating pro-vascular PCs characterized by high aldehyde dehydrogenase activity 

and CD34+ (Terenzi et al., 2019). Importantly, in patients with their first acute myocardial 

infarction, tight glycemic control reduces senescent myocyte precursor cells, thus increasing 

the regenerative potential of the ischemic myocardium (Marfella et al., 2012).

3. Molecular mechanisms of cardiovascular cell senescence

There are multiple mechanisms involved in cardiovascular cell senescence. Here, the review 

summarizes several key underlying molecular mechanisms.

3.1. Progeria and vascular cellular senescence in cardiovascular ageing and diseases

The homeostasis of the cell nucleus is profoundly modified during cellular senescence. 

Defects of the nuclear lamina have been associated with several different diseases of 

accelerated ageing, including Hutchinson-Gilford progeria syndrome (HGPS) (Gonzalo et 

al., 2017; Gordon et al., 2014), mandibuloacral dysplasia (Novelli et al., 2002), and atypical 

Werner syndrome (Bonne and Levy, 2003). HGPS is an ultra-rare, early-onset, and severe 

genetic disease of premature ageing caused by a point mutation (C1824 T) in Lmna (G608 

G) or Zmpste24 that disrupts nuclear lamin A processing, leading to the formation of 

mutated (truncated and farnesylated) prelamin A, generally referred to as progerin (50 amino 

acids deleted from the tail of prelamin A) (Kim et al., 2018a; Lee et al., 2016). Prelamin A 

elevation is linked to oxidative stress-mediated reduction of the lamin A-processing enzyme 

Zmpste24/FACE1 (Fig. 1) (Ragnauth et al., 2010). HGPS patients exhibit severe premature 

arteriosclerosis characterized by VSMC calcification and attrition, as well as prominent 

adventitial fibrosis, and die in their early teens (younger than 15 years), mainly due to 

myocardial infarction or stroke (Olive et al., 2010).

Prelamin A accumulation in multiple cardiovascular cells contributes to their senescence. 

For example, senescent VSMCs rapidly accumulate prelamin A and present defective 

nuclear morphology in vitro, both of which are reversible by treatment with farnesylation 

inhibitors and statins (Fig. 1) (Ragnauth et al., 2010). In human arteries, prelamin A does not 

accumulate in young and healthy vessels but is prevalent in medial VSMCs from aged 

individuals or in atherosclerotic lesions, where it often colocalizes with senescent and 

degenerative VSMCs. Knockdown of FACE1 recapitulates the prelamin A-induced defects 

of nuclear morphology in aged VSMCs, whereas prelamin A overexpression promotes 

VSMC senescence through disrupting mitosis and inducing DNA damage in VSMCs, 

leading to premature senescence (Ragnauth et al., 2010). Selective overexpression of 

progerin in VSMCs, but not macrophages, leads to VSMC loss and promotes LDL retention 

in the aorta and the resultant atherogenesis and death in a mouse model of HGPS (Hamczyk 

et al., 2018). Disruption of the linker of the nucleoskeleton and cytoskeleton (LINC) 

complex in VSMCs ameliorates progerin-induced VSMC apoptosis and limits the 

accompanying adventitial fibrosis (Kim et al., 2018a). Furthermore, VSMC-derived progerin 

accelerates atherogenesis via inducing endoplasmic reticulum (ER) stress in the aorta 

(Hamczyk et al., 2019). Mice with progerin overexpression in ECs (progerinecTg) develop 

perivascular and cardiac fibrosis, cardiac hypertrophy (Fig. 1), and premature death without 

VSMC depletion (Osmanagic-Myers et al., 2019). Also, progerin expression is increased in 
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human hearts with dilated cardiomyopathy and is strongly associated with left ventricular 

remodeling and myocardial ageing (Messner et al., 2018). Left ventricular diastolic 

dysfunction is the most prevalent echocardiographic abnormality in HGPS patients, and its 

prevalence increases with age (Prakash et al., 2018). Recently, Beyret and colleagues 

employed a single-dose systemic administration of AAV9-delivered CRISPR-Cas9 

components with lamin A/progerin reduction via facial vein injection to repress HGPS in a 

mouse model (Beyret et al., 2019). At the same time, another group using intraperitoneal 

injection of AAV9-mediated CRISPR-Cas9 to ameliorate HGPS in LmnaG609G/G609G mice 

(Santiago-Fernandez et al., 2019). All the results indicate that prelamin A accumulation in 

different cardiovascular cells due to impaired lamin A processing is a novel biomarker of 

cardiovascular ageing and contributes to CVD development (Fig. 1) and therefore represents 

a novel therapeutic target to ameliorate the effects of age-induced cardiovascular 

dysfunction.

3.2. Impaired autophagy leads to cardiovascular cell senescence

Autophagy is a “housekeeping” cellular process recognized as a mechanism for cell survival 

when cells encounter stress, including nutrient deprivation or hypoxia, in which cells 

degrade their dysfunctional proteins, macromolecules, or sub-organelles in lysosomes and 

recycle them to produce the required raw materials for biosynthesis or energy generation 

(Anding and Baehrecke, 2017; Grootaert et al., 2018). In general, autophagy appears to be 

constitutively active in the cardiovascular system, but its activity decreases with age 

(Kroemer, 2015; Shirakabe et al., 2016). Importantly, inhibited general autophagy or special 

autophagy of mitochondria (mitophagy) leads to or accelerates cardiovascular ageing 

(Abdellatif et al., 2018). Dysfunctional autophagy in ECs, VSMCs, and macrophages, plays 

a detrimental role in atherogenesis (Fig. 2). Growing evidence implies that decreased 

autophagy results in cardiovascular cell senescence (Sasaki et al., 2017). For instance, 

VSMC-specific deficiency of the essential autophagy factor autophagy-related 7 (ATG7) 

causes accumulation of SQSTM1/p62 and accelerates SIPS. ATG7 deletion in VSMCs of 

ApoE−/− mice promotes ligation-induced neointima formation and Western diet-induced 

atherogenesis in mice (Grootaert et al., 2015). Interestingly, moderate activation of 

autophagy by rapamycin has been shown to repress VSMC replicative senescence (Tan et 

al., 2016) and stabilize progressed atherosclerotic plaques (Luo et al., 2017). Inhibition of 

autophagic adaptor p62-mediated selective autophagy stabilizes and increases GATA4 

protein, which initiates and maintains the SASP, thus triggering senescence of fibroblasts 

(Kang et al., 2015).

3.3. Mitochondrial dysfunction causes cardiovascular cell senescence

Mitochondrial dysfunction usually drives cellular senescence (Chapman et al., 2019; Wiley 

et al., 2016), which is characterized by lower NAD+/NADH ratios (Mouchiroud et al., 2013; 

Watson et al., 2017; Wiley et al., 2016), excluding RAS oncogene-induced fibroblast 

senescence (Nacarelli et al., 2019). In general, mitochondrial fission reduction-caused 

inhibition of mitophagy contributes to senescence in multiple cell types by mitochondrial 

dysfunction (Fig. 3). For example, mouse heart with mitochondrial imbalance between 

fission (fragmentation) and fusion develops mitochondrial senescence and heart failure due 

to the impaired mitophagy (Song et al., 2017). Furthermore, increased mitochondrial fission 
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associated with elevation of mitochondrial reactive oxygen species (ROS), but not ER stress, 

triggers EC senescence and dysfunction, including impaired EC-dependent vasorelaxation 

and angiogenesis (Kim et al., 2018b). Kim and colleagues recently identified protein 

disulfide isomerase A1 (PDIA1) as a thiol reductase for the mitochondrial fission protein 

dynamin-related GTPase1 (Drp1) at Cys644. Diabetic reduction of PDIA1 induces Drp1 

sulfenylation (oxidation) at Cys644, promoting Drp1 GTPase activity, which leads to 

mitochondrial fission contributing to EC senescence (Kim et al., 2018b). On the other hand, 

ageing also leads to mitochondrial dysfunction. For example, ageing elevates RNA-binding 

protein Pumilio2 (PUM2) in mouse muscle, which translationally downregulates 

mitochondrial fission factor (MFF, an outer mitochondrial membrane protein) and thereby 

inhibits mitochondrial fission and mitophagy, resulting in mitochondrial dysfunction 

(D’Amico et al., 2019). Interestingly, NAD+ replenishment restores defective mitophagy and 

mitochondrial function in fibroblasts and consequently restrains the accelerated ageing in 

Caenorhabditis elegans and Drosophila melanogaster models of Werner syndrome (Fang et 

al., 2019), a human premature ageing disease. It is unknown whether clearance of 

dysfunctional fragmented mitochondria by guanine derivative-targeted cargo-mediated 

mitophagy (Takahashi et al., 2019) attenuates cardiovascular cell senescence.

Mitochondrial dysfunction may induce cell senescence through the following mechanisms: 

1) instigation of oxidative stress, triggering activation of DNA damage response or telomere 

damage in cardiomyocytes (Anderson et al., 2019; Chapman et al., 2019); 2) leakage of 

mitochondrial DNA into the cytoplasm of tubular cells (Chung et al., 2019; Maekawa et al., 

2019) or triggering of cytoplasmic chromatin fragmentation in fibroblasts (Vizioli et al., 

2020) and consequently driving activation of the cGAS-STING (stimulator of interferon 

genes) pathway to mediate SASP and senescence; and 3) AMPK-p53 activation-mediated 

mitochondrial dysfunction-associated senescence with distinct SASP profiles in fibroblasts 

(Wiley et al., 2016). Mitochondrial DNA polymerase (PolG)-mutated (POLGD257A) mice 

showing mitochondrial dysfunction with lower NAD+/NADH ratios in inguinal adipose 

tissue demonstrate more senescent cells in adipose tissue and skin compared to that of age-

matched wild-type mice (Wiley et al., 2016). Moreover, overexpression of mitochondria-

targeted catalase partially reverses cell senescence in heart and age-related cardiomyopathy 

in POLGD257A mice in vivo (Dai et al., 2010).

3.4. cGAS-STING signaling in cardiovascular cell senescence and disease

Although DNA damage responses have been tightly linked to cardiovascular cell senescence 

(Gray et al., 2015; Matthews et al., 2006), the underlying mechanism remains incompletely 

understood. Damaged or stressed cells usually have increased chromatin fragmentation and 

cytosolic DNA, which binds and activates cyclic guanosine monophosphate-adenosine 

monophosphate (GMP-AMP) synthase (cGAS) (Ablasser and Chen, 2019). The activation 

of cGAS, in turn, increases the second messenger molecule 2′3′ cyclic GMP-AMP 

(cGAMP), which binds and activates the ER protein STING (Motwani et al., 2019), which 

triggers the production of SASP factors (including IL-6 and TNF-α) and paracrine 

senescence (Gluck et al., 2017). Numerous stimuli (including oxidative stress) of cellular 

senescence engage the cGAS-STING pathway in fibroblasts in vitro (Gluck et al., 2017). In 

pre-senescent hepatic stellate cells and human diploid fibroblasts, transcriptional 
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downregulation of E2F-mediated cytoplasmic DNases (DNase2 and DNA 3’ repair 

exonuclease 1 [TREX1]) results in cytoplasmic accumulation of nuclear DNA, which 

provokes aberrant activation of cGAS-STING signaling and resultant SASP and cellular 

senescence (Takahashi et al., 2018). The cGAS-STING pathway mediates irradiation- and 

NRasV12 oncogene-induced senescence and SASP in mice in vivo (Gluck et al., 2017). 

Interestingly, cGAS activity can be post-translationally regulated. Dai et al. reported that 

aspirin-induced cGAS acetylation at one of three lysine residues (K384, K394, or K414) 

robustly suppresses cGAS activity and self DNA-induced autoimmunity in a mouse model 

of Aicardi-Goutières syndrome (AGS) (Dai et al., 2019). Whether senescence stimuli lead to 

deacetylation of cGAS in the cardiovascular system remains undetermined. It has been 

reported that cGAS-STING signaling from ischemic cell death results in a fatal response to 

myocardial infarction (MI). Inhibition of the cGAS-STING-IRF3-type I interferon axis 

blocks pathological myocardial remodeling, maintains cardiac function, and improves post-

MI cardiac repair and survival in mice (Fig. 4) (Cao et al., 2018; King et al., 2017). These 

studies suggest a novel molecular mechanism for cellular senescence and suggest that 

modulation of cGAS activity may be a new strategy to treat senescence-associated 

cardiovascular disease. Cytosolic DNA from dysfunctional mitochondria and nuclei of 

senescent cardiovascular cells would activate cGAS-STING signaling. Whether and how 

cGAS-STING signaling plays causative roles in cardiovascular cell senescence warrants 

further exploration. It remains to be determined whether the regulation of cGAS or STING 

is beneficial in CVD prevention and therapy.

3.5. Other mechanisms

There are other mechanisms underlying cardiovascular cell senescence. Epigenetic events, 

including DNA methylation, regulate cell senescence (known as an epigenetic clock) (Cheng 

et al., 2017; Ermolaeva et al., 2018). For example, hypermethylation of DNA cytosine-

preceding-guanosine (CpG) islands in the NAMPT promoter is present within both dilated 

thoracic aortas and VSMCs, is inversely associated with NAMPT mRNA level, leading to 

NAD+ reduction and consequent VSMC premature senescence (Watson et al., 2017). 

Recently, a high-throughput screen of a library of short hairpin RNAs for targeted silencing 

of all known epigenetic proteins showed that histone acetyltransferase p300 positively 

controls replicative senescence of IMR-90 lung fibroblasts via inducing a dynamic hyper-

acetylated chromatin state (Sen et al., 2019).

Noncoding RNAs (ncRNAs) also play crucial roles in cell senescence. Notably, long 

ncRNAs (lncRNAs; > 200 nt in length) have recently been demonstrated to play critical 

roles in ageing and age-related diseases (Kour and Rath, 2016; Zhang et al., 2018). 

Abdelmohsen et al. used RNA sequencing and reported that lncRNA MALAT1 (metastasis-

associated lung adenocarcinoma transcript 1) is decreased in senescent fibroblasts 

(Abdelmohsen et al., 2013). lncRNA MALAT1 may be reduced in senescent ECs as 

proliferating human ECs have higher levels of lncRNA MALAT1 (Michalik et al., 2014). 

lncRNA Meg3 (maternally expressed gene 3) is upregulated in senescent human umbilical 

vein endothelial cells (HUVECs). Meg3 reduction in HUVECs blocks age-induced 

inhibition of sprouting angiogenesis in vitro. Meg3 silencing restores blood flow impaired in 

an aged mouse ischemic hind limb in vivo (Boon et al., 2016). Recently, it was reported that 
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oncogene HRas-induced senescent fibroblasts had increased lncRNA-OIS1, which 

transcriptionally upregulates DPP4 protein (Li et al., 2018). lncRNA-OIS1 may also be 

elevated in senescent ECs because senescent ECs have higher DPP4 levels (Kim et al., 

2017). However, the functions and regulation of lncRNAs implicated in cardiovascular 

senescence are largely unknown.

4. Clearance of senescent cardiovascular cells alleviates CVD

Compelling data indicate that senescent cardiovascular cells lead to and accelerate CVD 

onset and development; thus, senescent cells are an emerging target for age-related disease, 

including CVD (Childs et al., 2017). Targeting senescent cardiovascular cells is a potential 

strategy to prevent or cure CVDs. For example, inhibiting vascular cell senescence by β-

hydroxybutyrate (Han et al., 2018), which is elevated by fasting and calorie restriction, may 

be beneficial for prevention of CVD having diverse risk factors (Chakraborty et al., 2018). 

Rapamycin (Flynn et al., 2013; Singh et al., 2016) or metformin (Barzilai et al., 2016; Yin et 

al., 2011), acting on the senescent cell property of SASP, also attenuates or reverses CVD 

development. Interestingly, therapeutic removal of senescent cells is emerging as a 

promising and innovative strategy to delay cardiovascular ageing or disease progression. 

Currently, several approaches are being used for the elimination of senescent cardiovascular 

cells in in vitro and in vivo models.

4.1. Induction of apoptosis in senescent cardiovascular cells by small-molecule drugs

Because senescent cells have a pivotal feature, resistance to apoptosis due to elevation of 

pro-survival molecules, the B cell lymphoma 2 (BCL-2) family proteins (BCL-2, BCL-W, 

and BCL-XL) (Singh et al., 2019), the development of novel small-molecule inhibitors of 

these proteins, known as BH3 mimetics, has been used to selectively induce apoptosis of 

senescent cells (Yosef et al., 2016), preparing for elimination of apoptotic cells by 

phagocytosis. Senotherapeutic agents are used to target features of cellular senescence 

(Table 3). For example, senolytics are used to target anti-apoptotic signaling molecules and 

induce cell death of senescent vascular cells (Chang et al., 2016; Zhu et al., 2016). Elegant 

experiments by Childs and colleagues demonstrated that clearance of senescent cells by 

ABT-263 (navitoclax) dramatically inhibits atherogenesis onset in the aortic arch of high-fat 

diet (HFD)-fed Ldlr−/− mice (Childs et al., 2016). Treatment of aged (2-year-old) mice with 

the senolytic drug ABT-263 eliminates senescent cardiomyocytes and consequently reduces 

fibrosis and cardiomyocyte hypertrophy (Anderson et al., 2019). Importantly, clearance of 

senescent cells by ABT-263 attenuates myocardial remodeling and improves diastolic 

function, as well as overall survival in aged mice following myocardial infarction mimicked 

by ligation of the left anterior descending coronary artery (Walaszczyk et al., 2019). BH3 

mimetics ABT-737 and ABT-199 targeting BCL-2 specifically eliminate senescent 

pancreatic beta cells without effect on the abundance of the immune cell (lymphoid or 

myeloid) types in a non-obese diabetic mouse model and prevent type 1 diabetes (Thompson 

et al., 2019).

As senescent cells share common SASP and apoptosis-resistance features with cancer cells, 

dasatinib (D), which is used in the cancer treatment, may have a role in clearing senescent 
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cells. Zhu et al. demonstrated that oral gavage administration of single-dose dasatinib + 

quercetin (D + Q) dramatically decreases senescent cell number and improves cardiac 

function of 24-month-old mice as shown by improved left ventricular ejection fraction and 

fractional shortening (Zhu et al., 2015). A single D + Q treatment significantly improves 

vascular endothelial function and vascular smooth muscle sensitivity to nitroprusside. 

However, senescent cell elimination does not change smooth muscle contractile function 

(Zhu et al., 2015). Intermittent treatment with D + Q by oral gavage reduces the number of 

TAF-positive senescent VSMCs in the aorta media of aged (24-month old) and 

atherosclerotic ApoE−/− mice (fed a western diet for two months), but not in established 

intimal atherosclerotic plaques. Treatment with D + Q also improves vasomotor function in 

aged mice, as well as reduced aortic calcification in ApoE−/− mice. However, D + Q 

treatment does not affect intimal plaque size (Roos et al., 2016). Additionally, clearance of 

senescent glial cells from HFD-fed or leptin receptor-deficient obese mice by D + Q restores 

neurogenesis and alleviates neuropsychiatric disorders, including anxiety and depression 

(Ogrodnik et al., 2019). D + Q senolytic treatment selectively clears amyloid beta (Aβ)-

triggered senescent oligodendrocyte progenitor cells (OPCs) characterized by upregulation 

of p21, p16, and SA β-gal activity, and decreases Aβ plaque load and subsequent cognitive 

improvement in Alzheimer's disease mice (Zhang et al., 2019). In clinical trial, D + Q 

treatment (D, 100 mg/day plus Q, 1250 mg/day, 3 times per week for three weeks) improves 

physical function of patients with idiopathic pulmonary fibrosis (Justice et al., 2019). 

Another D + Q phase 2 pilot study (oral D 100 mg and Q 1000 mg for three days) on 

subjects with diabetic kidney disease decreases adipose tissue senescence and circulating 

key SASP factors (Hickson et al., 2019). It is noteworthy that dasatinib treatment increases 

susceptibility to experimental pulmonary hypertension development in rats (Guignabert et 

al., 2016).

More approaches have been used to induce apoptosis of senescent cells. Compared with 

healthy cells, senescent cells upregulate transcription factor forkhead box protein O4 

(FoxO4), which interacts with p53. FoxO4-DRI peptide, designed to interfere with the 

interaction of FoxO4 and p53, thus directs p53 from the nucleus to mitochondria for 

apoptosis induction. Selective downregulation of FoxO4 by inhibitory RNA triggers 

apoptosis in senescent, but not healthy, cells via release and activation of p53 (Baar et al., 

2017).

Intriguingly, senolytic drugs seem to exert their effects in a cell type-specific manner. For 

example, dasatinib is more effective in selectively killing senescent human pre-adipocytes 

than HUVECs, whereas quercetin (polyphenol, PI3K inhibitor) is more effective in killing 

senescent HUVECs and mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) 

than senescent adipocytes (Zhu et al., 2015). ABT-263, targeting the anti-apoptotic BCL-2 

family, selectively increases apoptosis and decreases cell viability of senescent but not 

proliferating HUVECs, while does not affectprimary human preadipocytes (Zhu et al., 

2016). D + Q does not affect the viability of proliferating or quiescent cells. The HSP90 

inhibitor Ganetespib exhibits senolytic activity in IR-induced senescent HUVECs, but not in 

pre-adipocytes (Fuhrmann-Stroissnigg et al., 2017).
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4.2. Immune clearance of senescent or apoptotic cells

Accumulating data indicate that immune surveillance of senescent cells is mediated by 

immune cells, such as macrophages, natural killer (NK) cells, neutrophils, and cytotoxic T 

cells in tumors (Burton and Krizhanovsky, 2014; Kang et al., 2011; Xue et al., 2007) and 

liver cirrhosis (Krizhanovsky et al., 2008). Different senescent cells generate unique ligands 

that attract different immune cells. For example, senescence-related hepatic stellate cells 

elevate cell surface MICA and ULBP2, ligands of activating receptor NKG2D, on NK cells 

(Krizhanovsky et al., 2008). Senescent cells may express specific surface antigens, such as 

major histocompatibility complex class II (MHCII) molecules that will be recognized by 

distinct cells (such as CD4 + T) of the immune system and subsequently killed (Kang et al., 

2011). At present, senescence immunotherapy is an emerging research field (Burton and 

Stolzing, 2018; Hoenicke and Zender, 2012; Krizhanovsky et al., 2008; Sagiv et al., 2013). 

Senescence immunotherapy strategies are also a promising alternative to senolytics for 

removing senescent cardiovascular cells in CVD prevention and therapy (Fig. 5).

4.2.1. Macrophages engulf apoptotic or senescent cells—It was reported that 

macrophages engulf senescent cells in cancer. Kang and colleagues presented that CD4+ T 

cells need monocytes or- macrophages, but not NK cells, to clear pre-malignant senescent 

hepatocytes and subsequently restrain liver cancer development (Kang et al., 2011). 

Interestingly, p53 restoration induces liver tumor cell senescence with upregulated p16 and 

SA β-gal activity, but not apoptosis, in mice in vivo. The senescent tumor cells attract innate 

immune cells, including macrophages, neutrophils, and NK cells, resulting in clearance of 

senescent tumor cells and resultant tumor regression (Xue et al., 2007). Whether 

macrophages remove senescent cardiovascular cells in aged or diseased cardiovascular 

systems remains to be elucidated.

It is well known that macrophages can clear apoptotic cells in a process known as 

efferocytosis, which prevents apoptotic cells from becoming necrotic or acquiring pro-

inflammatory activity (Henson, 2017; Roberts et al., 2017). Impaired macrophage 

efferocytosis would enhance atherosclerotic lesion development (Kojima et al., 2017; Proto 

et al., 2018; Schrijvers et al., 2005) and vulnerable plaque formation (Seneviratne et al., 

2017; Thorp et al., 2008; Yurdagul et al., 2017). For example, transcription factor interferon 

regulatory factor (IRF)-5 enhances fragile plaque formation through maintenance of pro-

inflammatory CD11c+ macrophages within atherosclerotic lesions and by stimulating the 

expansion of the necrotic core by impairing macrophage efferocytosis mediated by 

downregulated integrin-β3 and its ligand, milk fat globule-epidermal growth factor 8 (Fig. 6) 

(Seneviratne et al., 2017)

Both the macrophage itself and the features of apoptotic or senescent cells regulate 

macrophage efferocytosis capability. Tissue-resident macrophages silently eradicating 

apoptotic cells with limited recognition of nucleic acids within the apoptotic cells are 

characterized by a lack of Toll-like receptor 9 (TLR9) expression (Roberts et al., 2017). 

Recently, Yang et al. reported that C-type lectin receptor LSECtin (Clec4g) in colon 

macrophages is needed for macrophage engulfment and elimination of apoptotic cells (Yang 

et al., 2018). It is noteworthy that Treg cells secrete interleukin-13 (IL-13), thus stimulating 
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IL-10 production in macrophages. The upregulated IL-10 signaling elevates macrophage 

Vav1 (a guanine nucleotide exchange factor), which activates GTPase Rac1 to promote 

apoptotic cell engulfment by macrophages (Proto et al., 2018). Continued clearance of 

multiple apoptotic cells by macrophages requires Drp1-mediated macrophage mitochondrial 

fission, which is initiated by the first uptake of apoptotic cells (Wang et al., 2017). Drp1-

deficient macrophages show defective efferocytosis and subsequently increased plaque 

necrosis in western diet-fed Ldlr1−/− mice (Wang et al., 2017). On the other hand, apoptotic 

cell fate also affects macrophage efferocytosis. For example, apoptotic cells expressing cell-

surface protein CD47, a “don’t eat me” signal, impair macrophage efferocytosis. Antibodies 

against CD47 markedly recover efferocytosis without cellular apoptosis alternation, as well 

as reduce atherosclerosis in both aortic sinus and en face aorta (Kojima et al., 2016). 

Moreover, the anti-CD47 antibody ameliorates AAA formation in an ApoE−/−/AngII model 

and a porcine pancreatic elastase model (Kojima et al., 2018). Cyclin-dependent kinase 

inhibitor 2B (CDKN2B)-deficient apoptotic cells are resistant to efferocytosis leading to 

accelerated atherogenesis due to the reduction of calreticulin, a principal phagocyte receptor 

ligand (Gardai et al., 2005). Supplementation with exogeneous calreticulin normalizes the 

engulfment of CDKN2B-deficient apoptotic cells (Kojima et al., 2014). Thus, it is critical 

for us to know the molecular mechanisms regulating the phagocytic ability and senescent 

cell clearance by macrophages in CVD progression and therapy.

4.2.2. NK cells eradicate senescent cells—The human NK cell line YT selectively 

targets etoposide-induced senescent and activated hepatic stellate cells, but not proliferating 

cells, in vitro. Also, YT cells preferentially attack senescent IMR-90 cells, which then 

undergo apoptosis and detach from the surface of the culture dish (Krizhanovsky et al., 

2008). This selectivity is because expression of NKG2D ligands MICA and ULBP2 is 

selectively upregulated in senescent IMR-90 fibroblasts, but not in growing or quiescent 

cells (Sagiv et al., 2016). Furthermore, NK cell activation with polyinosinic-polycytidylic 

acid (Radaeva et al., 2006) decreases senescent cell number in the liver in vivo resulting in 

the resolution of liver fibrosis (Krizhanovsky et al., 2008). NKG2D receptor deletion 

enhances the accumulation of senescent stellate cells leading to increased liver fibrosis in 

mice (Sagiv et al., 2016). Chemotherapeutic agents, including doxorubicin, melphalan, and 

bortezomib, increase both DNAM-1 (DNAX accessory molecule-1; CD 226) ligand PVR 

(poliovirus receptor; CD155) and NKG2D ligands (MICA and MICB) on multiple myeloma 

cells exhibiting a senescent phenotype. These ligands promote NK cell susceptibility 

(Soriani et al., 2009). Interestingly, PVR and Nectin-2 are expressed at cell junctions on 

primary vascular ECs. Moreover, the specific binding of DNAM-1-Fc molecule was detected 

at endothelial junctions. This binding is almost completely abrogated by anti-PVR 

monoclonal antibodies (mAbs), but is not modified by - mAbs anting Nectin-2, which 

demonstrates that PVR is the major DNAM-1 ligand on ECs. Both anti-DNAM-1 and anti-

PVR mAbs strongly block the transmigration of monocytes through the endothelium 

(Reymond et al., 2004). Moreover, granule exocytosis, but not death-receptor-mediated 

apoptosis, is required for NK cell-mediated killing of senescent cells. Accordingly, mice 

with defects in granule exocytosis accumulate senescent stellate cells and display more liver 

fibrosis in response to a fibrogenic agent (Sagiv et al., 2013). Unfortunately, the roles of NK 
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cell-mediated depletion of senescent cardiovascular cells in CVD progression remain 

unknown.

Senescent human diploid fibroblasts selectively and robustly elevate expression of DPP4 on 

the cell surface, but not in the cytosol, compared with proliferating fibroblasts (Kim et al., 

2017). Anti-DPP4 antibodies have been used to recognize the specific antigen DPP4 on the 

cell surface of senescent cells and guide NK cells to selectively destroy the antibody-labeled 

senescent cells in vitro (Fig. 5). Because senescent HUVECs and HAECs also express 

higher levels of DPP4 mRNA (Kim et al., 2017), whether we can use a DPP4-based 

mechanism to eradicate senescent cardiovascular cells needs further exploration. Whether 

senescent cardiovascular cells generate specific surface ligands recognized by NK cell 

receptors, such as NKG2D and DNAM-1, is another exciting research arena.

4.2.3. Dendritic cells and senescent or apoptotic vascular cells—Dendritic 

cells (DCs), one kind of professional phagocytic cells, can also recognize and remove 

apoptotic cells (Albert et al., 1998). For example, DCs exclusively traffic mouse apoptotic 

intestinal epithelial cells (IECs) to mesenteric lymph nodes, which serve as crucial 

determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation and 

activation (Cummings et al., 2016). DC accumulation in aorta intima of aged wild-type 

mice, but not of young mice, is associated with increased atherosclerosis (Liu et al., 2008). 

CD11b+ DCs with impaired autophagy as a result of ATG16l1 deficiency expand aortic 

CD4+ Treg cells and inhibit atherosclerosis in Ldlr−/− mice (Clement et al., 2019). 

Chemokine (C-C motif) receptor 9 (CCR9)+ pDCs expressing indoleamine 2,3-dioxygenase 

1 (IDO1) in aorta locally induce aortic Treg cells, which produce IL-10 and subsequently 

prevent atherogenesis (Yun et al., 2016). However, it is largely unknown whether and how 

DCs eliminate apoptotic or senescent cells in cardiovascular systems.

4.2.4. Chimeric antigen receptor T cells eliminate senescent cardiovascular 
cells—Redirecting cytotoxic T cells to recognize the particular antigens on cancer cells 

using either a modified T-cell receptor or a chimeric antigen receptor (CAR) has been 

successfully used for certain cancer therapies (June et al., 2018). Fibroblast activation 

protein (FAP), a cell-surface glycoprotein (Scanlan et al., 1994), is selectively and highly 

expressed in activated cardiac fibroblasts, but not cardiomyocytes (Aghajanian et al., 2019). 

High FAP expression contributes to cardiac fibrosis and resultant myocardial disease. 

Recently, adoptive transfer of engineered antigen-specific CD8+ T cells specifically targeting 

FAP dramatically ablated cardiac fibrosis and restored both systolic and diastolic cardiac 

function in Ang II- and phenylephrine-exposed mice (Aghajanian et al., 2019). Because 

senescent cells produce specific cell-surface antigens, such as band 3 (Kay, 1993) and an 

oxidized form of membrane-bound vimentin (Frescas et al., 2017), developing particular 

CAR T cells to selectively deplete senescent cardiovascular cells is a promising strategy.

5. Conclusions and perspectives

Homeostasis of senescent cardiovascular cells is required for a healthy cardiovascular 

system. Multiple complex molecular pathways regulate cardiovascular cell senescence in 
vitro and in vivo. Emerging evidence suggests that permanent accumulation of senescent 
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cardiovascular cells is responsible for the initiation and development of various CVDs and 

cardiovascular ageing. Senolytics and senescence immunotherapy are developing strategies 

for CVD prevention and therapy. However, there is insufficient understanding of the 

molecular mechanisms that precisely drive the deregulation of cardiovascular cell 

senescence during CVD onset. Currently, there are no highly selective markers for senescent 

cardiovascular cells in vivo (Gorgoulis et al., 2019). It is still challenging to spatiotemporally 

identify and quantify individual senescent cardiovascular cells in vivo in a noninvasive 

manner (Biran et al., 2017). All of these circumstances have prevented the development of 

effective treatments for CVD. Development of novel therapeutic approaches to target 

senescent cardiovascular cells and reduce significant clinical consequences such as MI or 

stroke, will depend on a rigorous understanding of the senescence biology of each of the 

major cell types that contribute to the pathogenesis of CVD. So far, only D + Q has been 

assessed in the clinical setting, and none of the current clinical trials is testing whether 

senolytic agents can prevent cardiovascular disorders. A more in-depth understanding of 

molecular mechanisms underlying activation of the immune response, as well as special 

recognition and targeting of a senescent cardiovascular cell, is warranted. Taken together, to 

target the senescent cardiovascular cells accurately, effectively, and safely, it is essential to 

do the following research: 1) identify the unique spatiotemporal biomarkers (particularly the 

cell surface markers) and targets for senescence of different cardiovascular cells in vivo; 2) 

investigate the mechanism underlying cardiovascular cell senescence and its function in 

CVD onset and progression; 3) validate the efficiency and potential side effects of known 

senolytics in animal models and the cardiovascular clinic; 4) explore novel senolytic agents 

or local delivery methods that can act on specific senescent cardiovascular cells or tissues 

and optimize the dosage, mode of administration, and combinations for the treatment of 

various CVDs; and 5) develop a novel strategy for clearance of senescent cardiovascular 

cells by immunosurveillance.
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Fig. 1. 
Prelamin A accumulation leads to vascular cell senescence and multiple cardiovascular 

diseases. ⊥, inhibits. Refer to the text for the expanded form of abbreviations.
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Fig. 2. 
Defective autophagy and cardiovascular cell senescence. ⊥, inhibits. Refer to the text for the 

expanded form of abbreviations.
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Fig. 3. 
Possible mechanisms for mitochondrial dysfunction leading to cardiovascular cell 

senescence. For definitions of other abbreviations, please see the main text.
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Fig. 4. 
Possible roles of cGAS-STING pathway in cardiovascular cell senescence. ⊥, inhibits. For 

definitions of other abbreviations, please see the main text.
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Fig. 5. 
Proposed immunotherapies targeting senescent cardiovascular cells. Refer to the text for the 

expanded form of abbreviations.
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Fig. 6. 
Efferocytosis regulation and cardiovascular disease. For definitions of other abbreviations, 

please see the main text.
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