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Abstract

Coal-fired power plants release substantial air pollution, including over 60% of U.S. sulfur dioxide 

(SO2) emissions in 2014. Such air pollution may exacerbate asthma however direct studies of 

health impacts linked to power plant air pollution are rare. Here, we take advantage of a natural 

experiment in Louisville, Kentucky, where one coal-fired power plant retired and converted to 

natural gas, and three others installed SO2 emission control systems between 2013 and 2016. 

Dispersion modeling indicated exposure to SO2 emissions from these power plants decreased after 
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the energy transitions. We used several analysis strategies, including difference-in-differences, 

first-difference, and interrupted time-series modeling to show that the emissions control 

installations and plant retirements were associated with reduced asthma disease burden related to 

ZIP code-level hospitalizations and emergency room visits, and individual-level medication use as 

measured by digital medication sensors.

Coal-fired power plants provide a large amount of electricity worldwide. In 2015, they 

produced 6 trillion megawatt (MW) hours and 25% of the global supply.1 Simultaneously, 

coal-fired power plants emit air pollution, including 63% of U.S economy-wide sulfur 

dioxide (SO2) emissions in 2014,2 as well as nitrogen oxides (NOx), particulate matter 

(PM2.5 and PM10), mercury, acid gases, polycyclic aromatic hydrocarbons, and volatile 

organic compounds.3 Such pollutants have been associated with increased asthma 

symptoms, emergency room visits (ERVs), hospitalizations, and mortality.4-8

Among populations living near coal-fired power plants and fossil fuel refineries, some, 

though not all,9,10 epidemiologic studies have found a relationship between higher SO2 

levels and uncontrolled asthma,11 respiratory symptoms,12-15 and respiratory-related 

hospitalizations.16 Residential proximity to such facilities alone, without assessed air quality, 

has also been identified as a risk factor for asthma exacerbation.17-19

Prior scholarship related to asthma and coal-fired power plant exposures often consisted of 

observational and cross-sectional studies that considered single air pollutants (usually SO2), 

and either hospitalizations, pulmonary function, or symptoms alone. Studies of symptoms 

lacked objective measures, usually relying on participant diaries. Some studies have 

overcome a portion of these limitations; for example, Smargiassi et al. 200916 used a case-

crossover design to evaluate the relationship between SO2 concentrations and ERVs and 

hospitalizations among young children living near a refinery. To build on these prior studies, 

we incorporate improved exposure and outcome assessment and capitalize on recent abrupt 

changes in coal-fired power plant emissions.

Between 2000–2015 in the U.S., 49.5 GW of capacity from coal-fired generators retired at 

146 coal-fired power plants1,20 and many generating units installed flue-gas desulfurization 

systems (alternatively, SO2 emission “controls”) to comply with regulations from the U.S. 

Environmental Protection Agency (USEPA) and individual states, including the Acid Rain 

Program, the Clean Air Interstate Rule, and Mercury and Air Toxics Standards.2 The 

discrete nature of these energy transitions and the ensuing abrupt changes in emissions 

present circumstances for a “natural experiment” to study related changes in health in the 

timeframe and population exposed to emissions from the coal-fired power plants.21,22 The 

key feature is that the transition-induced change in exposure occurs for reasons unrelated to 

a health investigation and produce exposure changes that more closely resemble an 

experiment than a typical observational study. Such a natural experiment supports the study 

of the influence of coal-fired power plant emissions on asthma outcomes more directly, 

without relying on exposure-response functions estimated with different populations across 

time and space with varying levels of pollution exposure.23 Previous studies framed in this 

manner have used a steel mill closure,24 ban on coal sales,25 the Olympic Games,26,27 and 
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the Nitrogen Oxides Budget Program28 to study the relationship between air pollution and 

respiratory-related medication expenditures, hospitalizations, and death.

We use retirements and SO2 emissions control installations at four coal-fired power plant 

facilities near Louisville, KY, USA between 2013–2016 to frame a natural experiment, 

which generated abrupt changes in air pollution exposures that varied in extent across the 

Louisville area. The circumstances of these energy transitions and their resemblance to an 

experiment that (approximately) randomizes exposure changes motivates a variety of 

analysis approaches that each mitigate some of the common threats to observational studies. 

Our approaches include comparing asthma-related endpoints in areas more and less exposed 

to changes in air pollution and individuals before and after the discrete transition events to 

evaluate impacts on asthma-related endpoints. Kentucky has historically ranked among the 

top-five in the U.S. for SO2, NO2, and PM10 emissions from power generation.29 We 

confirmed air quality improvements after the power plant energy transitions using a 

longitudinal coal-fired power plant emission exposure model.30 Analyses leveraging 

different elements of spatial and temporal variability in exposure demonstrated that the coal-

fired power plant energy transitions were associated with reductions in asthma-related 

hospitalizations and ERVs at the ZIP code-level and asthma symptoms measured at the 

individual-level using digital medication sensors within the Louisville metropolitan area.

Impact of retirement, retrofit, and conversion on emissions

Four coal-fired power plants–Cane Run, Clifty Creek, Mill Creek, and Rockport–with 

emissions that impacted air quality in Jefferson County, Kentucky either retired or installed 

SO2 controls between 2012–2016 (Figure 1). We quantified monthly ZIP code variability in 

SO2 emissions exposure from these plants using the HYSPLIT Average Dispersion 

(HyADS) model, which aggregates results from 146,000 HYSPLIT runs per power plant.30 

During the study period, the quarterly median unitless HyADS exposure was 6553 (IQR: 

2283, 9702; maximum 31781). Power plant energy transitions resulted in declining levels 

over time (Figure 2 and Supplementary Figure 1 and 2). Data from the Louisville Metro Air 

Pollution Control District confirmed that retirements at Cane Run and scrubbers at Mill 

Creek reduced annual SO2 emissions by 10,572 tons and 14,208 tons, respectively 

(Supplementary Figure 3). Comparing years pre/post control installations, SO2 emissions 

also declined at Clifty Creek (−90%) and Rockport (−%50). These four facilities contributed 

36%, 30%, and 16% of total average ZIP code HyADS exposure in Louisville in 2012, 2014, 

and 2016, respectively. The transitions at the four facilities contributed to overall declining 

coal-fired power plant emissions exposures in Jefferson County.

HyADS emissions exposures peaked annually during the third quarter (April–June, Figure 

2). In a companion analysis, we found that meteorological variability contributed more than 

emissions reductions to changing HyADS in 2012, 2013, and 2014.31 Table 1 shows that, 

accounting for seasonality and meteorological factors, the average level of HyADS exposure 

decreased substantially after three of the four energy transitions, with a 55% decline from 

baseline after the second quarter 2015 (Q2-2015)
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Observed changes in ZIP code-level asthma outcomes

The median (IQR) quarterly asthma hospitalizations/ERV counts across the 35 ZIP codes in 

Jefferson County between 2012–2016 was 16 (9-31), and counts declined county-wide over 

time (Figure 3, Supplementary Table 1). Between 2012–2016 rates of uninsured and 

unemployed individuals also fell. Quarter 4 typically exhibited hospitalization/ERV values 

higher than other quarters after adjusting for ZIP code and annual specific means.

Three of the four energy transitions were associated with reductions in ZIP code-level 

asthma hospitalizations/ERVs (Table 2), which corresponded to the three transitions 

associated with reduced HyADS (Table 1). The largest reduction in risk came after the 

Q2-2015 transitions, rate ratio (RR) = 0.81, 95% CI: 0.70, 0.92. We therefore focused the 

next stage of analysis on the Q-2015 transitions at Cane Run, Mill Creek, and Rockport. 

From Q2-2014 to Q2-2016 the average quarterly ZIP code HyADS reduction was 25,281 

(SD = 3,638).

In a difference-in-differences framework, we categorized ZIP codes based on their pre-

period HyADS exposure (high vs. low). Results indicated that the Q2-2015 energy transition 

reduced asthma hospitalizations/ERVs by an additional 2.8 visits per ZIP code per quarter in 

areas with high pre-transition exposure relative to areas with lower pre-period exposure 

(Figure 4). When we specified pre-period HyADS as a continuous variable, results were 

similar when converted to a comparable scale (−0.4 [95% CI: −0.2 −0.7] asthma 

hospitalizations/ERVs per ZIP code per 1000-unit higher pre-period HyADS exposure, 

Supplementary Figure 4).

With a first-difference linear regression model, we found that a 1000-unit ZIP-code level 

reduction in HyADS exposure from the year prior to the year after the Q2-2015 energy 

transitions resulted in, on average, 2.2 fewer asthma hospitalizations/ERVs (95% CI: −4.5, 

0.2) per ZIP code per year and a first-difference model specifying categories of ΔHyADS 

showed the largest effect for the highest ΔHyADS category (Supplementary Figure 4). 

Inferences remained stable in sensitivity analyses using baseline population weights instead 

of adjusting models for baseline population (Supplementary Table 2).

Observed changes in individual-level asthma symptoms

We identified 207 study participants in the AIR Louisville program who were under 

observation during the year prior and the year after the June 8, 2016 Mill Creek power plant 

scrubber installation. Most participants were female (67%), of White race/ethnicity (63%), 

and middle-aged (average age = 45 years) (Supplementary Table 3). Participants’ median 

monthly HyADS exposure was 1915 (IQR: 1172, 3050) (Supplementary Figure 5). 

Participants had a daily mean of 1 SABA use (SD = 1.5) and a median of 0 SABA uses (IQR 

= 0, 1). From visual inspection, daily rescue inhaler use was more prevalent and variable 

earlier in the study period, likely driven by the smaller number of enrolled participants 

(Supplementary Figure 6) and later trended downward (Supplementary Figure 7).
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In a within-person conditional quasi-Poisson model, we observed reduced monthly average 

daily SABA use associated with reduced monthly HyADS exposure (RR = 0.94, 95% CI: 

0.89, 0.98, for each 1000-unit decrease in HyADS).

Because the June 2016 Mill Creek scrubber installation resulted in relatively uniform 

reductions in HyADS exposure across Jefferson county (Figure 5b), we used an interrupted 

time-series framework. We identified a level shift in SABA use (at the time of scrubber 

installation) and a possible slope change (decreasing trend in SABA use) (Figure 6). The 

scrubber installation was associated with a 17% reduction in monthly average daily SABA 

use (RR = 0.83, 95% CI: 0.69, 1.00) and a 2% reduction (95% CI: −5%, 1%) for each month 

thereafter.

In two sensitivity analyses, we evaluated the change in odds of having any daily SABA use 

(monthly average of ≥1 use/day vs. <1 use/day) and high daily SABA use (monthly average 

of ≥4 uses/day vs <4 uses/day) at the time of scrubber installation. We found an apparent 

larger immediate effect on higher monthly average daily SABA use (32% reduction [odds 

ratio, OR = 0.68, 95% CI: 0.45, 1.02]) and a trend in reduced monthly average daily use of 

≥1 uses (17% reduction each month after the scrubber installation [OR = 0.83, 95% CI: 0.71, 

0.97]) (Supplementary Table 4).

DISCUSSION

The top four coal-fired power plants in terms of emissions affecting air quality in Louisville, 

Kentucky in 2012 retired or installed SO2 emission controls between 2012–2016. The 

resulting air quality improvements translated into reductions in both acute asthma outcomes

—measured by quarterly ZIP code-level asthma-related hospitalizations and ERVs—and 

daily symptoms, as measured by sensor-collected SABA use. In the spring of 2015, coal-

fired power plant units retired at Cane Run and SO2 controls were installed at Mill Creek 

and Rockport. These energy transitions resulted in approximately 3 fewer hospitalizations/

ERVs per ZIP code per quarter in the following year, which translates into nearly 400 (−2.8 

per ZIP-quarter × 4 quarters × 35 ZIPs) avoided hospitalizations/ERVs in Jefferson County 

annually. At the individual level, the Mill Creek SO2 scrubber installed in June 2016 was 

associated with immediate reductions in SABA use and a marginally declining trend in use 

through May 2017.

Uniquely, this study found coal-fired power plant emissions exposure reductions consistently 

associated with reduced asthma morbidity at two spatial and temporal resolutions: monthly 

average daily SABA use within individuals and acute quarterly ERVs and hospitalizations at 

the ZIP code-level. Acute outcomes like hospitalizations represent an important, yet more 

infrequent, severe, and costly32 signal of asthma morbidity. SABA use can represent the 

daily burden of disease and future risk of adverse outcomes.33 Our analyses used digital 

medication sensors to objectively track the time and location of SABA use and avoids 

potential recall bias associated with the diaries used in previous studies of short-term air 

pollution levels and asthma.15,34,35
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In 2014, US power plants accounted for 64% of SO2, 14% of NOx, and 7% of PM2.5 

economy-wide emissions, with coal power comprising 98% of SO2 and >82% of NOx and 

PM2.5 power plant emissions.2 Exposure to these air pollutants, even at relatively low levels, 

have been associated with asthma morbidity.7,8,10,36 Four main mechanisms–oxidative 

stress; airway remodeling; inflammation or immunological response; and enhanced response 

to inhaled allergens37–likely explain how air pollution contributes to asthma onset and 

exacerbation. Laboratory studies of SO2 exposure among asthmatics have demonstrated 

bronchoconstriction in humans38 and airway inflammatory and immune responses in rats.39

In a 2017 report for the U.S. Department of Energy, Massetti and colleagues characterized 

SO2 as the main source of air pollution-related economic damage associated with coal-fired 

power plants due to its high volume of emissions and because SO2 is a PM2.5 precursor.2 

Among populations living close to coal-fired power plants, SO2 has been associated with 

wheeze and asthma prevalence,13,40 asthma attacks, and ERVs,12,15,16 though it is likely that 

other pollutants play a role. Coal electricity generation contributes to anthropogenic PM2.5 

levels (which accounts for 1-3% of all asthma-related ERVs in the Americas41) and NO2 

exposures (which may cause 19% of asthma incidence in high-income countries42). Among 

children living near Israel’s 2580 MW Orot Rabin coal-fired plant, combined NOx and SO2 

exposure was more strongly associated with reduced pulmonary function test performance 

than either pollutant alone.14

Several studies have characterized exposure via residential proximity to coal-fired power 

plants, a metric which incorporates, albeit crudely, multiple coal-related pollutants.17-19 The 

continuous and quantitative HyADS metric improves exposure characterization around coal-

fired power plants and attempts to isolate the effect of collective coal emissions on health. 

However, the temporal resolution of our data and the HyADS metric make it difficult to 

compare our findings, in magnitude, to prior research that reports relationships between 

coal-fired power plant exposure and increased diary-reported respiratory symptoms12,13,40 

and SABA use,15 as well as ERVs and hospitalizations.16,19

Epidemiologists cannot randomize individuals to differing levels of air pollution, which can 

make causal inference challenging. Quasi-experimental designs23 that leverage the 

circumstances of natural experiments provide one alternative method, that, when paired with 

appropriate analytic approaches, can mimic pseudo-randomization of individuals and 

populations to varying levels of environmental exposures.21,22 Compared to traditional 

observational studies, quasi-experimental techniques are better equipped to handle 

unobserved differences in populations that might otherwise confound exposure-outcome 

associations.43 A few prior studies of asthma exacerbations have used quasi-experimental 

designs,24,26-28 for example, monitoring changes in asthma-related hospitalizations and 

acute care visits before, during, and after an Olympic Games that reduced local air pollution.
26,27 Environmental exposures tend to follow a social gradient44 and co-occurring factors 

like high body mass index, smoking, low socioeconomic status, and area-level racial 

segregation are risk factors for asthma.45 Therefore, an abrupt change in an environmental 

exposure improves our ability to disentangle social and environmental determinants of 

health.
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To our knowledge, no study has focused on SO2 emission control installations or power 

plant retirements to assess potential asthma-related health benefits. We examined multiple 

interventions across several years and tracked intervention impacts at several phases (i.e., 

intervention, emissions, exposure, health outcome). An important analytic decision in quasi-

experimental studies is the choice of control group. Our difference-in-differences analysis 

compared changes between ZIP codes that were initially most exposed to the power plants 

generating the transition and the control ZIP codes that were comparatively less subject to 

exposure from these plants. In our first-difference analysis, we used ZIP codes that 

experienced less reduction in HyADS exposure during the study period to control for time 

trends in hospitalizations and ERVs and other factors over the study period thereby 

minimizing the threat of confounding due to such factors. Both designs control for variation 

in observed and unobserved fixed characteristics of place.46 At the individual-level we 

implemented a within-person analysis, which regards each person as his or her own control 

to reduce the threat of bias associated with confounding variables related to differences 

across people. This case time-series analysis only controlled for overall linear temporal 

trends. Individual- and ZIP code-level analyses consistently supported the notion that the 

energy transitions improved asthma outcomes.

This study had limitations. AIR Louisville cohort participants were enrolled through a 

number of channels and did not have standardized clinical oversight. We lacked access to 

individual-level data on participants, (e.g., healthcare utilization, socioeconomic status, 

smoking or tobacco smoke exposure), though most of these factors are considered time-

invariant and controlled for by study design. Time-varying factors, however, both at the 

individual and area-level could have confounded our results. A prior study found that the 

digital health intervention (i.e., Propeller inhaler system) may have helped reduce SABA 

use, with the largest improvements during the first few months.47 If enrollment in the 

program coincided with plant changes, this could have resulted in overestimated effects. 

However, our within-person interrupted time-series design suggested an abrupt change in 

SABA use at the time of a SO2 control installation and continued decline thereafter. We 

assumed a linear trend in outcome, while changes may have followed a non-linear pattern. 

Although results in Figure 6 suggested the largest change in SABA use corresponded to the 

largest drop in HyADS in Q2-2015, we lacked the individual-level data in the pre-period to 

assess this statistically. At the ZIP code level, due to data limitations, we could not consider 

asthma-related hospitalizations and ERVs separately, nor could we track multiple events 

within-individuals. Finally, we were not able to assess cumulative impacts; for example, the 

relationship between chronic coal-fired power plant-related exposures and asthma 

prevalence or co-occurrence of asthma and chronic disease. As evidence is mixed regarding 

the association between long-term air pollution exposure and asthma,10,48 this presents an 

area for future research.

Our study focused specifically on the impact of four coal-fired power plants but took place 

against the backdrop of changing emissions at other power plants and reductions in vehicle 

emissions. We did not explicitly include air pollutants that might affect asthmatics, for 

example, SO2, PM2.5, NO2, or ozone, but HyADS does represent an index of the mixture of 

pollutants emitted by power plants. Changes in air quality unrelated to power plants but that 

trended in time were controlled for in our models. While the HyADS model provided a 
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summary of coal-fired power plant-specific exposure, it did so at the monthly-level, limiting 

our ability to assess the relationship between short-term exposure fluctuations and SABA 

use.

In conclusion, this study showed reductions in coal-fired power plant air pollution exposure 

after retirements and SO2 control installations near Louisville, Kentucky. These reductions 

appeared to translate into substantially fewer asthma-related ERVs and hospitalizations, as 

well as fewer average daily SABA uses. Given that 20.4 million adults, or about 9% of the 

population, suffered from current asthma in 2016,49 the shift in U.S. energy trends away 

from coal-fired electricity generation may reduce asthma morbidity below otherwise 

expected levels. Future research should evaluate this potential impact so that plant controls 

and retirement sites can be phased to affect neighborhoods and schools at highest risk for 

asthma.

METHODS

The natural experiment

The circumstances supporting the natural experiment arose in Jefferson County, which fully 

contains Louisville, a city covering 842 km2 and a population of 600,000 people in 2010. 

We hypothesized that: coal-fired power plant emissions and subsequent population 

exposures dropped after coal-fired power plant energy transitions; and lower exposures 

resulting from energy transitions translated into fewer healthcare utilization events and 

symptoms. Our analyses used two health outcomes (acute asthma-related healthcare 

utilization and asthma symptoms) at two spatial scales (ZIP code and individual-level) and 

employed a measure of coal-fired power plant emission exposure.

Exposure to power plant emissions

From the USEPA Air Markets Program,50 we downloaded data on power plant facilities 

(typically comprising multiple generating units) nationwide with at least one unit using coal 

as its primary fuel between 2008–2017. These data included power plant latitude and 

longitude, number of units and fuel type by unit, monthly SO2 emissions, SO2 control type 

and installation date, and retirement date. We obtained further information on the timing of 

Jefferson County coal-fired power plant control installations, retirements, and SO2 emissions 

from the Louisville Metro Air Pollution Control District.

We estimated exposure to power plant emissions over time using the recently-developed 

HYSPLIT average dispersion (HyADS) model.30 HyADS uses the HYSPLIT air parcel 

trajectory model51 to quantify the extent to which any power plant influences air quality 

across U.S. ZIP codes (see Supplementary Note 1 and Henneman et al. 201930 for details). 

This method produces a unitless measure of emissions influence that is highly correlated 

with related measured and modeled exposure metrics for coal emissions exposure.30,52 

HyADS has previously been applied to estimate U.S.-wide health benefits achieved through 

reduced coal-fired power plant SO2 emissions.53

We ran HyADS for each of the over 1009 U.S. coal-fired power plant units in operation 

(located at 478 facilities) nationwide in 2012, 2014, and 2016. In 2012, we ranked each 
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unit’s exposure contribution in each Louisville ZIP code and identified the four facilities that 

had the highest influence on Louisville ZIP codes (Supplementary Figure 8). These four 

facilities subsequently underwent retirement or control installations before 2017. We ran 

HyADS for each facility’s units for years 2012-2017 to estimate the ZIP code-level monthly 

(used in individual-level analyses) and quarterly (as the average of monthly, used in ZIP 

code-level analyses) influence of each unit’s emissions on Louisville air quality over time 

(see Supplementary Data).

Emissions exposures for the four plants of interest

The four highest-ranked facilities by HyADS impact in 2012 included Cane Run, a 943 MW 

plant located 14 kilometers southwest of downtown Louisville; Clifty Creek, a 1303 MW 

plant located about 75 kilometers northeast of Louisville that had the greatest impact of any 

coal-fired power plant in the country on east Jefferson County; Mill Creek, a 1717 MW 

plant located 25 kilometers southwest of downtown Louisville that had the greatest impact 

of any coal-fired power plant in the country on west Jefferson County; and Rockport, a 2600 

MW plant located about 100 kilometers west of Louisville.

Clifty Creek installed wet limestone scrubbers for units 1-3 on March 20, 2013 and for units 

4-6 on May 15, 2013. The Mill Creek plant installed wet limestone scrubbers for unit 4 on 

December 9, 2014, for units 1 and 2 on May 27, 2015, and for unit 3 on June 8, 2016.54 

Cane Run retired its three active units in May 2015, after which a 650 MW natural gas 

combined cycle plant began operating at the site. Rockport installed dry sodium scrubbers 

on its 2 coal units in April 2015.

Area-level confounders of asthma symptoms

We assembled several indicators of community socioeconomic status and demographic 

composition at the ZIP code-level from the U.S. American Community Survey (ACS).55 

These were variables potentially associated with coal-fired power plant exposure that might 

also predict asthma hospitalizations56 and included: total population; number of non-

Hispanic Black individuals; number of individuals without health insurance coverage; 

number of individuals 16 years and older that were unemployed; number of individuals 25 

years and older without a high school diploma or equivalent; and number of individuals with 

income in the past 12 months below the federal poverty level. To create a time-varying 

dataset, we linked multiple 5-year surveys because annual ZIP code-level estimates were not 

available. For example, we used the 2008-2012 ACS to estimate ZIP code characteristics in 

2012 and the 2009-2013 ACS for 2013. Finally, we downloaded ZIP code-level 

meteorological data on ambient temperature, relative humidity, windspeed, and atmospheric 

pressure from the USEPA.57

Jefferson County quarterly ZIP code-level asthma data

The Louisville Metro Department of Public Health and Wellness provided quarterly 

combined counts of asthma-related hospitalizations and ERVs among all ages for the years 

2012–2016 for all Louisville ZIP codes, which we restricted to the 35 ZIP codes with non-

zero population in 2012. Hospitalizations/ERVs were considered asthma-related if the 
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following International Classification of Diseases 9 (ICD-9) or ICD-10 diagnosis codes were 

present in the first through third diagnosis positions: 493.XX or J45.X.

Participant recruitment for individual level asthma data

Data for the individual-level analyses came from the AIR Louisville pilot (2012–2014) and 

full program (2015–2017).47 Eligible participants (n = 1,021 from pilot and full program) 

were enrolled from 2012–2016 through multiple channels, including employer partner 

wellness programs, clinics, community events, and social media campaigns. Inclusion 

criteria consisted of a self-reported diagnosis of asthma, a current prescription for a 

compatible inhaled medication for asthma, and a home or work address in Jefferson County, 

Kentucky. Additional details on the study can be found elsewhere.47 Participants all agreed 

to and signed Propeller Health’s Terms of Service, which stated that their data may be used 

in an aggregated fashion for public health-oriented analyses. We also received a waiver of 

consent and exemption (PRH1-17-508) from the Copernicus Group Independent Review 

Board. The protocol was additionally approved by the UC Berkeley Committee for 

Protection of Human Subjects.

We included participants in analyses if they had inhaler use data collected in the year before 

and the year after the coal-fired power plant energy transitions. We focused on the June 8, 

2016 SO2 scrubber installation on Mill Creek Unit 3, because this date supported the largest 

participation cohort for the individual-level analyses (N = 207, 20.3% of the entire AIR 

Louisville cohort) (Supplementary Figure 9).

Digital Health Platform

All participants received digital sensors (Propeller Health, Madison, WI) to attach to their 

inhaled short-acting beta agonist (SABA, i.e., “rescue”) medications. The sensor and 

platform comprised a U.S. Food and Drug Administration-cleared digital health intervention 

that combined inhaler sensors, mobile apps, web-based dashboards and predictive analytics 

for patients and clinicians.47,58,59 The sensor objectively monitored the use of inhalers, 

capturing the date, time of day, and number of actuations, and wirelessly transmitted these 

data back to secure servers through a smartphone application or hub base station. Actuations 

occurring within 2 minutes were grouped into a single use event, therefore each use could 

represent multiple actuations. The sensors regularly transmitted medication use data back to 

the server (“sync”) through the smartphone or hub, and also transmitted a “heartbeat” signal, 

which reported sensor battery life, confirmed no actuations had occurred since the last sync 

and recorded the participant’s GPS location from which we assigned HyADS exposure 

estimates. Heartbeats occurred approximately every 3 hours.

The majority (98%) of participants entered the cohort in 2015 or 2016 with the mean (SD) 

duration of follow-up of 602 (321) days from first to last day under observation. We used the 

monthly-average count of SABA use events per person per day as our outcome of interest.

Individual meteorological data and plant-specific exposures

Over 85% of SABA use events and heartbeats had a recorded location. For those SABA 

events missing a GPS location (about 6%), we retro-filled location information with the 
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most recent recorded location within 24 hours before or after the index event. If no location 

was available, we assigned the participant’s home address location. At the time and place of 

inhaler use or sensor heartbeat, we assigned hourly meteorological data, including 

temperature, wind speed, atmospheric pressure, and relative humidity from the National 

Oceanic and Atmospheric Administration for the years 2008–2016.60 These data were 

averaged first to daily and then to monthly means. A specialty clinic, Family Allergy & 

Asthma, provided daily counts of grass, weed, and tree pollen, as well as mold spores from 

their National Allergy Bureau-certified pollen counting station in Louisville. We assigned 

each SABA use or heartbeat event daily pollen or mold counts based on event date, with 

events occurring on the same day assigned the same pollen or mold counts. For analyses, we 

took the monthly mean of pollen or mold count. We assigned monthly HyADS exposures 

based on the ZIP code where the participant spent the most time that month. We linked a 

measure of community social vulnerability in 2014 from the U.S Centers for Disease 

Control and Prevention to each individual’s census tract of residence.61

Statistical analysis

We conducted ZIP code and individual-level analyses to test the hypothesis that coal-fired 

power plant energy transitions altered air quality and thereby asthma morbidity among 

populations living nearby. In Supplementary Table 5, we provide a roadmap for all analyses 

including questions, datasets, analyses, and locations of results. We performed analyses 

using R Statistical Software version 3.5.1 (R Core Team [2018], Vienna, Austria, https://

www.R-project.org/). Individual-level analyses were conducted using the gnm package 

(https://cran.rproject.org/package=gnm). All tests were two-sided.

ZIP code level HyADS analysis

We first tested whether the energy transitions were associated with reduced HyADS 

exposures throughout Louisville, KY. To do so, we used linear regression to fit the following 

equation:

HyADSpqr = β0 + β1 Transition1pqr + β2 Transition2pqr + β3 Transition3pqr +
β4 Transition4pqr + λpqr + Pp + Qq + εpqr

(1)

HyADSpqr is the level of HyADS in ZIP code p, quarter q, and year r. 
Transition1pqr−Transition4pqr are indicator variables equal to 1 if the energy transition has 

occurred and 0 otherwise. For example, Transition1pqr equals 1 after Q2-2013 and 0 

beforehand, Transition2pqr equals 1 after Q4-2014 and 0 beforehand. Pp and Qq are indicator 

variables for ZIP code and quarter of year. λpqr is a set of quarterly meteorological variables 

that included temperature, wind speed, relative humidity and atmospheric pressure. Negative 

values for β1-β4 indicate decreased HyADS associated with the respective energy transition.

ZIP code-level quasi-Poisson asthma analysis

We then used three approaches to estimate the relationship between energy transitions and 

ZIP code level asthma hospitalizations/ERV counts. The first was a generalized linear model 

with a quasi-Poisson distribution, which accommodates over-dispersion, and a log link:
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log E Astℎmapqr = log(totpoppr) + β0 + β1 Transition1pqr + β2 Transition2pqr
+ β3 Transition3pqr + β4 Transition4pqr + λpqr + θpr + Pp + Qq + Rr

(2)

where E(Asthmapqr) represents the expected quarterly asthma hospitalization/ERV counts, 

totpoppr is the estimated ZIP code-level population, Transition1pqr−Transition4pqr are 

indicator variables equal to 1 if the energy transition has occurred and 0 otherwise. λpqr is a 

set of quarterly meteorological variables that included temperature, wind speed, relative 

humidity and atmospheric pressure, and θpr is a set of demographic variables from the ACS 

that included percent non-Hispanic Black individuals, percent individuals living in poverty, 

and percent unemployed individuals. Pp, Qq, and Rr are ZIP code, quarter, and year indicator 

variables that control for factors common to a ZIP code within a quarter or year. We 

included population as an offset.

ZIP code-level difference-in-differences asthma analysis

A second analysis of the natural experiment posed by the Q2-2015 transitions used a quasi-

experimental difference-in-differences design to evaluate how asthma outcomes 

differentially changed in ZIP codes defined as either “low” or “high” HyADS exposure 

based on average pre-period (Q2-2014 to Q2-2015) HyADS exposure. The post-period 

spanned the year after Q2-2015, so the analysis covered the time period surrounding the 

installation of scrubbers on units 1 and 2 of the Mill Creek plant and both units of the 

Rockport plant, and the retirement of Cane Run’s three units. Difference-in-differences 

analysis is commonly used in studies of natural experiments and can effectively eliminate 

both observed and unobserved confounding variables that do not vary in time.46,62 We 

categorized ZIP codes as “low” when their pre-period average HyADS was <32,500 (near 

the median) and “high” when pre-period HyADS was ≥32,500, selecting the cutoff based on 

the change’s distribution (Supplementary Figure 10). By estimating the change in asthma 

hospitalization/ERVs from the pre- to the post-period (difference 1) and subtracting off the 

difference between the exposed and control exposure ZIP codes (difference 2) we estimated 

the effect of the Q2–2015 energy transitions in Jefferson County. We used the following 

parametric equation:

Astℎmapqr = β0 + β1Hpqr + β2Cpqr + β3Hpqr ∗ Cpqr + λpqr + θpr + Pp + Qq
+ Rr + εpqr

(3)

where p stands for ZIP code, q for quarter-year, and r for calendar year. Asthmapqr 

represents the count of asthma hospitalizations/ERVs in ZIP code p during quarter-year q. 

Hpqr is an indicator variable equal to one for ZIP codes with pre-period HyADS ≥ 32,500 

(i.e., exposed). The group of ZIP codes with pre-period HyADS <32,500 served as the 

control group because these ZIP codes were less exposed in the pre-period and therefore 

benefitted less from the Q2-2015 energy transitions but experienced similar secular trends as 

the high HyADS change group. Cpqr is an indicator variable equal to one when the quarter is 

after Q2-2015. β3 represents the difference-in-differences estimate of interest. λpqr is a set of 

quarterly meteorological variables that included temperature, wind speed, relative humidity 

and atmospheric pressure, and θpq is a set of demographic variables from the ACS that 

included total population, percent non-Hispanic Black individuals, percent individuals living 
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in poverty, and percent unemployed individuals. Pp, Qq, and Rr are indicators of ZIP code, 

quarter, and year. We also specified a continuous model by comparing ZIP codes with 

differing levels of pre-period HyADS rather than creating a cut-point. To do so, we replaced 

the Hpqr indicator variable with the pre-period continuous HyADS level. We opted to include 

the described set of potential confounding variables in Equation (3) based on a priori 
hypotheses, causal diagrams,63 and the correlation structure of potential covariates 

(Supplementary Figure 11). For example, annual unemployment and uninsured status had a 

Spearman correlation of 0.84, so we included only unemployment in our models to avoid 

instability in parameter estimation due to multicollinearity. Difference-in-difference analysis 

relies on the parallel trends assumption, that in the absence of intervention, trends in the 

outcome in the pre-period would continue.62 We visually inspected trends over time by low 

and high pre-Q2-2015 HyADS and found no evidence of a violation (Figure 4a).

ZIP code level first-difference analysis

In a secondary analysis, we used a first-difference design,64 to evaluate the relationship 

between the pre-post change in HyADS and pre-post change in ZIP code-level 

hospitalization/ERVs (Supplementary Note 2). This model took the form:

ΔAstℎmapr = β0 + β1ΔHyADSpr + Δλpr + Δθpr + Δεpr (4)

where ΔAsthmapr represents the differences between counts of ZIP code-level asthma 

hospitalization/ERVs in the year prior to Q2-2015 and the year after Q2-2015 and 

ΔHyADSpr represents the ZIP code-level difference in HyADS exposure to the three 

facilities with energy transitions from the year prior to Q2-2015 to the year after Q2-2015. 

We took differences in meteorological and demographic variables (Δλpr and Δθpr) by 

subtracting the average value between Q2-2014 and Q1-2015 from the average value 

between Q3-2015 and Q2-2016. This estimator is unbiased when εpr is independent of 

ΔHyADSpr, Δλpr, and Δθpr. In a separate model, we allowed for non-linearity in the 

association between ΔHyADSpr and ΔAsthmapr by specifying quintiles of ΔHyADSpr. In 

both the difference-in-differences and first-difference models, we accounted for correlation 

within ZIP codes using Liang and Zeger cluster-robust standard errors.65 We also completed 

a sensitivity analysis, using baseline population weights rather than adjusting equation (3) or 

(4) for population.

Individual-level case time-series analysis

We used a case time-series analysis that included 207 participants under observation in the 

year prior and year after the June 2016 Mill Creek scrubber installation. The case time-series 

design is a within-person analysis that allows for control of individual-level confounders 

similar to other case-only methods such as case-crossover and self-controlled case-series 

designs.66,67 Unlike the case-crossover design, the case time-series design does not rely on 

the assumptions of risk-set sampling.68 It maintains the temporal structure of the time series 

format, which allows for modelling of trends over time. It can also accommodate count data 

and account for over-dispersion and autocorrelation in counts within stratum (i.e., the 

individual). The conditional Poisson model assumes no unmeasured confounding that is not 

homogeneous within strata. We have adjusted for measured time-varying meteorological 
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variables and seasonal trends. The model also assumes no residual autocorrelation of counts 

(to this end we adjust for the lagged residuals). We also relax the assumption of the Poisson 

distribution to allow for overdispersion of counts and assessed the relationship between 

exposure to coal-fired power plant emissions and monthly average daily SABA use with the 

following conditional quasi-Poisson model:

log[E(Inℎaler_useim)] = αi + β0 + β1 T + β2HyADSim + λim + sm + rim − 1 (5)

assuming a quasi-Poisson distribution to account for overdispersion. Inhaler_useim is the 

average daily count of SABA uses for individual i in month m (conditional on the total 

number of SABA uses for individual i), αi is a parameter for individual level effects (see 

Equation (6) for more detail), T is the number of days elapsed since May 2015, HyADSjm is 

the total HyADS exposure in participant i’s ZIP code in month m, λim is a vector of 

meteorological variables including natural cubic splines for temperature, relative humidity, 

wind speed, atmospheric pressure, and mold counts, and linear terms for ambient pollen 

concentrations (i.e., weed, tree, grass), and sm, a harmonic term with 2 sine-cosine pairs and 

a period of 12 months to account for seasonal trends. The model adjusts for autocorrelation 

by adding the residuals rim-1 for individual i in month m-1, which were estimated as the 

residuals of a model fitted as in Equation (5) without the residual term and lagged by one 

month.66,69 The parameters αi are not estimated by the model, but are rather conditioned 

out, by conditioning on the sum of total number of inhaler uses for each individual i, ∑i 

Inhaler_useim, resulting in a multinomial model with likelihood:

Inℎaler_useim ∣ ∑
m

Inℎaler_useim ∼ Multinomial (πm),

πm = exp( β0 + β1 T + β2Him + λim + sm)
∑j exp( β0 + β1 T + β2Hij + λij + sj)

(6)

where j ∈ the subset of months, m, with observations for each participant i. Next, we sought 

to directly test the relationship between the June 2016 Mill Creek energy transition and 

SABA use. Unlike the Q2-2015 energy transitions, the June 2016 Mill Creek unit 3 scrubber 

installation resulted in fairly uniform reductions in exposure to plant emissions across 

Jefferson County (Figure 4b). This precluded the assembly of a control group based on 

exposure change analogous to that in the ZIP code-level difference-in-differences analysis. 

Instead, we implemented an interrupted time-series design, which construes each person’s 

study time during the pre-installation period as a control for his or her time during the post-

installation period. To do so, we modified Equation (5), replacing HyADSim with a single 

indicator variable–cntrlim–of exposure to the SO2 control installation at Mill Creek in June 

2016, which took the value of 1 beginning May 2016 (Mill Creek unit 3 was turned off in 

May for the June control installation) and 0 otherwise. We also added an interaction between 

cntrlim and T to estimate trends in changing SABA use over time. A negative coefficient for 

the cntrlim variable would indicate that the average number rescue inhaler uses decreased 

after the scrubber installation. Likewise, a negative β on cntrlim*T would indicate a 

downward linear trend in rescue inhaler use over time after the installation.
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To assess the sensitivity of the individual-level analysis, we evaluated the association 

between the June 2016 Mill Creek event and two different binary specifications of SABA 

use: any use and high use. We followed a similar model specification as in Equation (5), but 

used a logistic regression model and substituted for the Inhaler_useim variable an any SABA 

use variable (monthly average of ≥1 use/day vs. <1 use/day) and a high SABA use variable 

(monthly average of ≥4 uses/day vs <4 uses/day).

Data availability

The ZIP code-level asthma hospitalization/ERV data are available from the authors 

following submission of an analysis proposal and written approval granted by the Louisville 

Metro Public Health and Wellness. The AIR Louisville monthly medication use data are 

considered Protected Health Information (PHI) under the Health Insurance Portability and 

Accountability Act of 1996 (HIPAA) in the U.S., and as such may be accessible from the 

authors for analysis only after specific written authorization of access following HIPAA 

guidelines and IRB approval. We provide Jefferson County ZIP code-level monthly HyADS 

estimates on GitHub at https://github.com/joanacasey/ky_asthma_coal.

Code availability

An R package is available on GitHub for running the HyADS model (https://github.com/

lhenneman/disperseR). We also provide analysis code on GitHub at https://github.com/

joanacasey/ky_asthma_coal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Power plant locations, emissions, and exposure. The locations of the four coal-fired power 

plant facilities, total SO2 emissions (larger graduated grey circles indicate higher emissions), 

and HyADS exposures at the ZIP code level within Jefferson County, KY, USA in 2012. 

Unit and facility data downloaded from the U.S. Environmental Protection Agency Air 

Markets Program.50
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Figure 2: 
Quarterly mean ZIP code-level HyADS exposure in Jefferson County, Kentucky, USA. a. 
From 2012–2017 stratified by coal-fired power plant unit. 983 = Clifty Creek; 1363 = Cane 

Run; 1364 = Mill Creek; 6166 = Rockport. b. Absolute change in quarterly ZIP code-level 

HyADS and mean percent reduction across the two stated years in the stated quarter.
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Figure 3: 
Quarterly ZIP code-level counts of asthma hospitalizations/ERVs in Jefferson County, 

Kentucky, USA. a. County-wide from 2012–2016. b. By ZIP code from 2012–2016. Dates 

are presented year-quarter. Data provided by the Louisville Metro Department of Public 

Health and Wellness.
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Figure 4: 
Spring 2015 coal-fired power plant events and counts of ZIP code-level asthma 

hospitalization/ERVs. a. Trends in count of ZIP code-level asthma hospitalization/ERVs 

from Q1-2012 to Q4-2016. The dashed line notes Q2-2015, where the transition took place 

late in the quarter. Prior to Q2-2015, trends in ZIP code-level counts of asthma events appear 

parallel, providing evidence that we meet the parallel trends assumption of difference-in-

differences analysis. b. Difference-in-differences results with 95% CI from an OLS model 

(Equation [3]) with a binary specification of pre-period HyADS (high [≥ 32,500] vs. low [< 

32,500]. The model was adjusted for annual total population, percent non-Hispanic Black 

individuals, unemployed individuals, and individuals living below the federal poverty 

threshold, quarterly mean temperature, wind speed, relative humidity, and atmospheric 

pressure, and included fixed effects for year, quarter, and ZIP code. Liang and Zeger cluster-

robust standard errors were used.
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Figure 5: 
Monthly mean ZIP code-level HyADS exposure from Mill Creek power plant in Jefferson 

County, Kentucky, USA, 2015–2017. a. Stratified by Mill Creek power plant unit. b. 
Average change in monthly mean ZIP code-level coal-fired power plant air pollution 

exposure (HyADS) between 2015 and 2016.
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Figure 6: 
Monthly average daily SABA use before and after the June 2016 Mill Creek SO2 scrubber 

installation. Orange represents the period prior to the scrubber installation and navy blue 

after. Points are monthly average daily predicted SABA use from the adjusted model. 

Relative risks (RR) from a conditional Poisson case interrupted time-series model, which 

should be interpreted within-individual. Model was adjusted for temperature, humidity, 

windspeed, ambient pollen (grass, tree, and weed), mold counts, and long-term and seasonal 

trends. Lagged residuals were used to account for autocorrelation.
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Table 1:
Association between coal-fired power plant events and ZIP code-level HyADS emissions 
exposures in the 35 Jefferson County ZIP codes with population greater than 5.

Percent change was calculated Estimates provided from an ordinary least squares linear regression model 

adjusted for quarterly mean temperature, wind speed, relative humidity, and atmospheric pressure, and quarter 

and ZIP code. Included Liang and Zeger cluster-robust standard errors.

Coal-fired power
plant transition date % Δ HyADS (95% CI)a,b

 Q2-2013 11 (6, 16)

 Q4-2014 −27 (−31, −23)

 Q2-2015 −55 (−61, −47)

 Q2-2016 −29 (−33, −24)
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Table 2:
Estimates of relative risk of a ZIP code-level asthma hospitalization/ERV related to each 
coal-fired power plant event in the 35 Jefferson ZIP codes with population greater than 5.

Estimates provided from a quasi-Poisson regression model with a ZIP code-level annual population offset and 

adjusted for annual percent non-Hispanic Black individuals, unemployed individuals, and individuals living 

below the federal poverty threshold, quarterly mean temperature, wind speed, relative humidity, and 

atmospheric pressure, and year, quarter, and ZIP code. Includes Liang and Zeger cluster-robust standard errors.

Coal-fired power
plant transition date RR (95% CI)a

 Q2-2013 1.08 (0.96, 1.19)

 Q4-2014 0.90 (0.75, 1.06)

 Q2-2015 0.81 (0.70, 0.92)

 Q2-2016 0.91 (0.80, 1.03)
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