
CALDER: Inferring phylogenetic trees from longitudinal tumor 
samples

Matthew A. Myers1, Gryte Satas1,2, Benjamin J. Raphael1,*

1Department of Computer Science, Princeton University, Princeton, NJ 08540.

2Department of Computer Science, Brown University, Providence, RI 02912.

Abstract

Summary—Longitudinal DNA sequencing of cancer patients yields insight into how tumors 

evolve over time or in response to treatment. However, sequencing data from bulk tumor samples 

often has considerable ambiguity in clonal composition complicating the inference of ancestral 

relationships between clones. We introduce CALDER, an algorithm to infer phylogenetic trees 

from longitudinal bulk DNA sequencing data. CALDER explicitly models a longitudinally-

observed phylogeny incorporating constraints that longitudinal sampling imposes on phylogeny 

reconstruction. We show on simulated bulk tumor data that longitudinal constraints substantially 

reduce ambiguity in phylogeny reconstruction and that CALDER outperforms existing methods 

that do not leverage this longitudinal information. On real data from two chronic lymphocytic 

leukemia patients, we find that CALDER reconstructs more plausible and parsimonious 

phylogenies than existing methods, with CALDER phylogenies containing fewer tumor clones per 

sample. CALDER’s use of longitudinal information will be advantageous in further studies of 

tumor heterogeneity and evolution.

Primer—Cancer is an evolutionary process where somatic mutations accumulate in a population 

of cells over time. The population of cells that form a tumor is heterogeneous, with subpopulations 

of cells, or clones, containing different complements of somatic mutations. The abundances of 

clones change over time and in response to treatment, due to selection for advantageous mutations 

and/or random genetic drift. To study the forces that shape tumor evolution, cancer researchers use 

DNA sequencing of one or more samples from the same tumor to measure the genomic 

heterogeneity within a tumor. Researchers then employ techniques from phylogenetics to 

reconstruct the somatic mutational history of individual tumors.
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A major challenge in phylogenetic analysis of cancer is that the vast majority of cancer sequencing 

uses DNA from bulk tumor samples; thus, the resulting data is a mixture of DNA sequences from 

cancerous cells with different somatic mutations, as well as from normal cells. Since standard 

phylogenetic techniques are not designed to handle such mixtures, a number of specialized 

phylogenetic mixture algorithms have been developed in the past few years. These specialized 

algorithms derive the composition of each tumor sample as a mixture of clones and infer the 

ancestral relationships between these clones. While phylogenetic mixture algorithms are 

computationally sophisticated, it is often impossible to derive a unique clonal structure and 

phylogenetic tree from bulk tumor data: there are too many ways to separate the mixed data into 

clones.

A promising approach to overcome the ambiguity in bulk tumor sequencing data is to identify 

additional structure in the data. For example, in some cases, multiple tumor samples are sequenced 

longitudinally, i.e., at multiple distinct times during the progression of cancer in an individual. The 

issue of separating the mixed DNA data in each individual bulk tumor sample persists in 

longitudinal sequencing. However, the temporal ordering of longitudinal samples provides 

additional information that reduces ambiguity in the inference of clonal composition and the 

reconstruction of a phylogenetic tree. In this paper, we show how to leverage this temporal 

information to derive more accurate phylogenetic trees from longitudinal bulk tumor samples. We 

introduce a new algorithm, Cancer Analysis of Longitudinal Data through Evolutionary 

Reconstruction (CALDER), that models the structure in longitudinal samples. We show that 

CALDER outperforms existing phylogenetic mixture algorithms that do not utilize temporal 

relationships between samples.

Graphical Abstract
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eTOC Blurb:

Cancer is an evolutionary process in which genetically distinct populations of cells accumulate 

somatic mutations. Reconstructing this evolutionary process from bulk tumor samples is 

challenging, as such samples are mixtures of multiple subpopulations, or clones. We introduce 

Cancer Analysis of Longitudinal Data through Evolutionary Reconstruction (CALDER), an 

algorithm to reconstruct tumor phylogenies from longitudinal bulk DNA sequencing data by 

leveraging the temporal relationships between longitudinal samples. CALDER outperforms 

existing approaches that do not utilize temporal information.

Introduction

Cancer is an evolutionary process, where cells accumulate somatic mutations over time 

(Nowell 1976). As a result of this clonal evolution, most tumors are heterogeneous, with 

populations of cells, or clones, containing different combinations of somatic mutations. The 

clonal composition of a tumor may shift over time, particularly in response to treatment. 

Longitudinal sequencing, or sequencing DNA from tumor samples of the same patient at 

different time-points, is increasingly being used to track the progression of cancer over time 

(M. Griffith et al. 2015; Nadeu et al. 2016; Rose-Zerilli et al. 2016; Haber and Velculescu 

2014). For example, Nadeu et al. (2016) performed longitudinal DNA sequencing of 48 

chronic lymphocytic leukemia (CLL) patients to study the impact of clonal and subclonal 

driver mutations on clonal dynamics and disease progression. In another study, M. Griffith et 

al. (2015) performed longitudinal sequencing of an acute myeloid leukemia (AML) patient 
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and found a clone with a driver mutation in the gene IDH2 that was present in less than 2% 

of the pretreatment sample, but subsequently became the dominant clone after relapse. 

Longitudinal sequencing helps to measure clones that are present in small proportions prior 

to treatment, but become founder clones of a relapse or metastasis. Early longitudinal 

sequencing studies were mostly performed in blood cancers where sample acquisition is 

straightforward. With the advent of noninvasive sampling of circulating tumor DNA 

(ctDNA) and circulating tumor cells (CTCs) – i.e., liquid biopsies (Haber and Velculescu 

2014) – longitudinal sequencing is now possible for many types of cancer. Longitudinal 

sequencing studies allow researchers to track the evolutionary trajectories of cancer and hold 

promise for providing greater understanding of how tumor clones and individual mutations 

interact and respond to treatment.

A fundamental step in studying the evolutionary dynamics of cancer is the construction of a 

phylogenetic tree that describes the ancestral history of somatic mutations and cell lineage. 

The vertices of such a tree correspond to cells (or clones) in the tumor, and edges describe 

ancestral relationships between cells/clones. The problem of constructing a phylogenetic tree 

from measurements of individual taxa is a well-studied problem. However, when analyzing 

DNA sequencing data of bulk tumor samples – each containing thousands to millions of 

cells – one must instead build a phylogenetic tree from mixtures of taxa. In recent years, a 

number of specialized algorithms have been developed to solve this phylogenetic mixture 

problem (Strino et al. 2013; Jiao et al. 2014; El-Kebir, Oesper, et al. 2015; Popic et al. 2015; 

Malikic et al. 2015; Deshwar et al. 2015; El-Kebir, Satas, Oesper, et al. 2016; Satas and 

Raphael 2017; H. Dang et al. 2017; Jiang et al. 2016; Reiter et al. 2017; El-Kebir, Satas, and 

Raphael 2018). While these algorithms are designed to address the complexities of bulk 

sequencing data, none directly integrate the constraint that samples are measured 

longitudinally.

In this paper, we introduce an algorithm, Cancer Analysis of Longitudinal Data through 

Evolutionary Reconstruction (CALDER), that leverages information in longitudinal samples 

to reconstruct phylogenetic trees from longitudinal bulk DNA sequencing data. CALDER 

relies on a model of longitudinally-observed phylogenies as vertex-colored trees where the 

order of colors encodes the temporal order of the samples. We formulate the Longitudinal 

Variant Allele Frequency Factorization Problem (LVAFFP), a generalization of the problem 

of reconstructing a tree from bulk samples where the samples are temporally ordered. We 

derive a combinatorial characterization of the solutions to the LVAFFP as constrained 

spanning trees of a directed graph constructed from the variant allele frequencies (VAFs) of 

somatic mutations. Based on insights on the longitudinal structure of DNA sequencing data, 

we also develop an absence-aware method to cluster mutations into clones. We compare 

CALDER to several existing approaches (Jiao et al. 2014; El-Kebir, Oesper, et al. 2015; 

Malikic et al. 2015) for tumor phylogeny reconstruction on simulated and real longitudinal 

sequencing data. On simulated bulk sequencing data, we show that longitudinal constraints 

reduce the number of phylogenetic trees that describe the data by up to 90%, and on average 

by 30%. On real data from chronic lymphocytic patients (Rose-Zerilli et al. 2016; Schuh et 

al. 2012), we find that CALDER produces more plausible evolutionary trees that respect the 

longitudinal ordering of the data.
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Results

CALDER algorithm

In this section, we describe our CALDER algorithm that infers a clone tree and the clonal 

composition of a tumor from longitudinal bulk DNA sequencing data. First, we introduce a 

model for longitudinally-observed phylogenies as vertex-colored trees in which the order of 

colors encodes the temporal order of the samples. Next, we formulate the Longitudinal 

Variant Allele Frequency Factorization Problem (LVAFFP), a generalization of the problem 

of reconstructing a tree from bulk samples where the samples are temporally ordered. 

Finally, we describe how to model uncertainty in observed mutation frequencies using an 

absence-aware clustering algorithm and formulate the LVAFFP with uncertainty.

Longitudinal observations of tumor evolution

We represent the evolutionary history of a tumor at the single-cell level as an edge-weighted 

binary cell tree P = (V,E), where a vertex v ∈ V is a cell, a directed edge (v, w) ∈ E between 

two cells indicates a parental relationship, the weight of an edge indicates the lifespan of a 

cell, and edges are labeled by the mutation(s) that distinguish child from parent. In 

longitudinal data, we observe a cell tree at a series of time-points t1 < t2 <… < tm during the 

evolutionary process. Let C1,…, Cm be the disjoint sets of cells present at time-points t1,…

tm, respectively. We define a longitudinally-observed cell tree P = (V, E, c) to be a vertex-

colored tree where:

1. Every vertex v ∈ V has a color c(v) ∈ {0,…, m} where c(v) = i indicates that v ∈ 
Ci, and c(v) = 0 indicates that v is not observed;

2. For every path p = r,…, v from the root r to a leaf v, the non-zero colors on the 

path are encountered in numerical order.

Figure 1A shows an example of a longitudinally-observed cell tree.

With bulk sequencing data, we do not observe individual cells directly and instead 

reconstruct tumor evolution at the resolution of clones, or populations of cells that share a 

set of mutations. We define a longitudinally-observed clone tree P = (V,E,c) where each 

vertex v ∈ V corresponds to a distinct population of cells, edges (v, w) ∈ E are ancestral 

relationships, and colors c follow the properties stated above.

Reconstructing longitudinal phylogenetic trees from bulk sequencing data

We first describe the problem of constructing a phylogenetic tree from n single-nucleotide 

mutations measured in m bulk tumor samples from the same individual. For each sample t 
and each mutation i, we compute the variant allele frequency (VAF) ft,i as the fraction of 

reads from sample t that cover position i and contain the variant allele (i.e., a somatic 

mutation) at position i. In the absence of copynumber aberrations, the VAF ft,i is directly 

proportional to the proportion of cells in sample t that contain mutation i. We represent the 

observed data as an m × n frequency matrix F =[ft,i]. As in El-Kebir, Oesper, et al. (2015), 

we assume that each mutation corresponds to a clone (i.e., we assume that mutations have 

been clustered according to their VAFs (Roth et al. 2014; Miller et al. 2014; Jiao et al. 2014). 

Each tumor sample t is then a mixture of clones, where ut,v is the proportion of clone v in 
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sample t. Thus, ut,v≥0 and ∑v = 1
n ut, v ≤ 1. We define the m×n clone proportion matrix U = 

[ut,v].

The fundamental problem in reconstructing a phylogenetic tree from bulk tumor samples is 

to identify the clone tree T and clone proportion matrix U that generated the observed 

mutation frequencies F. Multiple algorithms have been developed to solve this problem in 

various settings (Jiao et al. 2014; El-Kebir, Oesper, et al. 2015; Malikic et al. 2015; Popic et 

al. 2015; Deshwar et al. 2015; Satas and Raphael 2017; El-Kebir, Satas, Oesper, et al. 2016; 

H. Dang et al. 2017; El-Kebir, Satas, and Raphael 2018; Jiang et al. 2016; Reiter et al. 

2017). All of these algorithms rely on the infinite sites assumption, (ISA), which states that a 

mutation occurs at a genomic position at most once during evolution. Under the ISA – also 

known as the perfect phylogeny model (Gusfield 1997) – there is a one-to-one 

correspondence between phylogenetic trees T and a collection of 0 / 1-valued perfect 
phylogeny matrices B whose rows correspond to clones and columns correspond to 

mutations, where bv,i indicates if clone v has mutation i.

Using this one-to-one correspondence, El-Kebir, Oesper, et al. (2015) formulated the 

problem of reconstructing a phylogenetic tree from bulk tumor samples as a matrix 

factorization problem.

Variant Allele Frequency Factorization Problem (VAFFP).

Given frequency matrix F, find perfect phylogeny matrix B and clone proportion matrix U 

such that F = UB.

In the VAFFP, there are no assumptions regarding the temporal relationships between bulk 

sequencing samples. Indeed, often there are multiple factorizations F = UB for a given 

frequency matrix F. Suppose now that the DNA sequencing data is obtained from 

longitudinal sampling of bulk tumor samples at a series of time-points t1 < t2 < …tm. 

Intuitively, the information that samples are longitudinal should provide additional 

constraints on the phylogenetic tree T (or equivalently matrix B) and the clone proportions 

U. We now derive these constraints. First, we recall that the mutation trees T =(VT, ET) 

describe the evolutionary relationships between clones. Vertices v ∈ VT correspond to 

clones, and edges (v, w) ∈ ET correspond to parental relationships between clones. We label 

each edge of a mutation tree with the mutation(s) that distinguish the parent and child vertex. 

Let Mv be the set of mutations present in the clone corresponding to vertex v. Edge (v,w) ∈ 
ET is labeled by the difference Mv \ Mw in mutations between the clones. Under the ISA, 

each mutation appears at most once on an edge in T. Let μ be a mapping from each vertex v 
∈ VT to the mutation on its incoming edge, e.g., μ (v) = j . Without loss of generality, we use 

a single phylogenetic character to represent the set of mutations on each edge. Mutation 

trees are analogous to n-clonal trees as described by El-Kebir, Oesper, et al. (2015). Under 

the ISA, the clones that contain the mutation i are the first clone v that acquired mutation i 
(i.e., μ (v) = i ), and the descendants Δv of v. Thus, we have that the frequency 

ft, i = ∑w = 1
n ut, wbw, i = ut, v + ∑w ∈ Δvut, w.
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The constraints provided by longitudinal samples are derived on a vertex-colored observed 
clone tree PU,B, which is determined by the clone proportion matrix U and perfect 

phylogeny matrix B (together with B’s corresponding mutation tree T). Figure 1B gives an 

example of the construction of PU,B, with further details in STAR Methods. The colored 

vertices in PU,B correspond to non-zero entries in U, and the edges in PU,B maintain the 

ancestral relationships in T: if mutation i precedes mutation j in T, then i also precedes j in 

P. In general, there are multiple clone trees that could be generated from a U and B – for 

example, one could add arbitrarily many unobserved clones with corresponding uncolored 

vertices. However, this construction yields a unique clone tree PU,B. Moreover, if there exists 

a longitudinally-observed clone tree corresponding to the factorization (U, B), then the PU,B 

constructed as described in STAR Methods is longitudinally observed.

Thus, given DNA sequencing data from longitudinal bulk tumor samples, the problem one 

wants to solve is the following variation of the VAFFP.

Longitudinal Variant Allele Frequency Factorization Problem (LVAFFP).

Given frequency matrix F whose rows correspond to longitudinal samples, find a perfect 
phylogeny matrix B and clone proportion matrix U such that F = UB and the observed clone 
tree PU,B is longitudinally observed. Interestingly, given a frequency matrix F obtained from 

longitudinal sampling, it is possible to obtain a factorization F = UB where the observed 

clone tree PU,B is not longitudinally observed (Figure 1C). Thus, the LVAFFP is not 

equivalent to the VAFFP. Moreover, the LVAFFP, like the VAFFP, is NP-complete (see proof 

in Method S1). We characterize solutions to the LVAFFP in STAR Methods and describe 

both an ILP and an enumeration algorithm to solve the LVAFFP in Method S1.

Reconstructing longitudinal trees with uncertain data

In the previous sections, we assumed that the observed mutation frequencies F were the true 

mutation frequencies. On real data, the mutation frequencies are estimated from counts of 

aligned sequence reads and thus the mutation frequencies have uncertainty. This uncertainty 

limits the resolution of tumor subpopulations that can be distinguished, and the standard 

approach is to cluster mutations and infer the phylogeny on these clusters (Roth et al. 2014; 

Miller et al. 2014; Zare et al. 2014). Indeed, we have observed that popular mutation 

clustering algorithms do not explicitly distinguish between mutations that are present at very 

small frequencies in a sample and mutations that are absent (Roth et al. 2014; Miller et al. 

2014). This is particularly problematic in the context of the LVAFFP because the coloring of 

the observed clone tree PU,B depends on the presence and absence of clones in samples. As 

the inferred clones depend directly on the mutation clustering, a clustering error could 

invalidate the correct longitudinal solution.

We address this issue in the context of the LVAFFP by introducing an absence-aware 
clustering algorithm that explicitly models the presence or absence of mutations in a sample. 

This algorithm relies on the principle that if a pair of mutations is present in the same set of 

clones, then the pair will be present in the same set of samples. We leverage this information 

to distinguish between true low-frequency mutations and absent mutations by partitioning 
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the set of mutations into subsets of cooccurring mutations prior to clustering (see STAR 

Methods for details).

Even with the correct clustering of mutations, there remains ambiguity in the solution of the 

LVAFFP. Specifically, given an uncertain frequency matrix F (on individual mutations or 

clusters of mutations), we aim to find an F ≈ F  such that F = UB where the observed clone 

tree PU,B is longitudinally observed. However, for a fixed mutation tree T (with 

corresponding perfect phylogeny matrix B), there may be many possible clone proportion 

matrices U such that F ≈ UB and PU,B is longitudinally observed. In particular, it is 

generally possible to infer a U with all entries strictly positive and many entries having small 

values. These trivially longitudinal solutions are typically uninteresting, as they imply that 

all clones are present at all time-points even through the inferred clonal proportions are very 

small in many samples (see STAR Methods for details). We aim to find longitudinal 

solutions (U, B) where the clones present in each sample are strongly supported by the 

observed frequencies. To address this, we impose two additional constraints on our 

solutions. First, we minimize the number of non-zero entries in U by adding a regularization 

term ∥U∥0 to the objective function. Second, we require that all non-zero entries of U exceed 

a minimum threshold h; that is, we require that ut,v = 0 or ut,v ≥ h for all t, v. These 

additional constraints prevent trivially longitudinal solutions and require that small clone 

proportions are well supported by the data.

To model uncertainty in VAFs during tree reconstruction, we use confidence intervals as was 

done previously (Strino et al. 2013; El-Kebir, Oesper, et al. 2015; Popic et al. 2015; El-

Kebir, Satas, Oesper, et al. 2016; Malikic et al. 2015). Extending longitudinal constraints to 

using generative probabilistic models of observed read counts (Jiao et al. 2014; Satas and 

Raphael 2017; Deshwar et al. 2015) is left for future work. Specifically, we derive a 

confidence interval ft, i
− ≤ ft, i ≤ ft, i

+  for each entry ft,i from the number of reads covering 

position i. Let F− be the matrix of lower bounds on frequency values, and let F+ be the 

matrix of upper bounds. Using these confidence intervals, we formulate the following 

problem.

Longitudinal Variant Allele Frequency Factorization Problem with Uncertainty (LVAFFP-U).

Given frequency matrices F− and F+, find a frequency matrix F , clone proportion matrix U, 

and perfect phylogeny matrix B such that: F = UB, ft, i
− ≤ f t, i ≤ ft, i

+  for all time-points t and 

mutation clusters i, ut,v ∉ (0, h) for all time-points t and clones v, ∥U∥0 is as small as 
possible, and PU,B is longitudinally observed.

Our algorithm, Cancer Analysis of Longitudinal Data through Evolutionary Reconstruction 

(CALDER) formulates and solves this problem as a mixed integer linear program (MILP) 

(see Method S1).

Longitudinal constraints reduce ambiguity on simulated data

First, we use simulated data to assess what fraction of solutions to the VAFFP are 

longitudinal, i.e., solutions to the LVAFFP. We generate 10 mutation trees using the 

simulation procedure described in El-Kebir, Satas, and Raphael (2018), each tree having 

Myers et al. Page 8

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between 4 and 13 vertices. For each tree, we generate 106 frequency matrices F for each 

value m = 2,…,9 samples, resulting in a total of 8×107 F matrices. Further details are in 

STAR Methods. We solve the VAFFP and the LVAFFP for each F, counting the number 

S = SF  of solutions to the VAFFP and the number L = ℒF  of solutions to the LVAFFP. Note 

that because all solutions to the LVAFFP are also solutions to the VAFFP, L ≥ S. Because we 

are primarily interested in the difference between L and S, we restrict our analysis to those 

instances for which L < S. We find that on the 423,328 instances with L < S (representing 

0.5%-11% of the instances for each tree; mean 5.3%, median 3.9%), L ≈ 0.7S on average 

(and also median), with a minimum of L ≈ 0.07S (Figure 2A-B). These results demonstrate 

that even with no error in the VAFs, longitudinal constraints result in fewer possible 

solutions to the VAFFP in a nontrivial fraction of cases.

CALDER accurately recovers tumor evolution on simulated data

We compare CALDER with two existing methods for phylogenetic tree reconstruction on 

simulated bulk DNA sequencing data. We simulate data using the tumor simulation from El-

Kebir, Satas, and Raphael (2018) modified to model longitudinal sampling (see STAR 

Methods for details). We generated 178 simulated tumors using this model, each with 2-5 

longitudinal samples (mean 4.97, median 5) and 65-234 mutations (mean 129.33, median 

126). We ran CALDER, PhyloWGS (Deshwar et al. 2015) and CITUP (Malikic et al. 2015) 

on each collection of simulated tumor samples using the default parameters for each method 

(see STAR Methods and Table S1 for running time and space details). For CALDER we first 

cluster mutations using the absence-aware clustering algorithm described in STAR Methods, 

while for PhyloWGS and CITUP we use their built-in clustering methods. We assess the 

performance of each algorithm using two metrics: (1) tree error, the proportion of inferred 

ancestor-descendant relationships that are incorrect; (2) presence-absence error, the 

proportion of mutations that are incorrectly inferred as present (mutation frequency > 0) or 

absent (mutation frequency = 0). We describe the computation of these quantities in STAR 

Methods.

We find that CALDER infers significantly more accurate trees than other methods, with a 

median tree error of 0.269, as opposed to 0.297 for PhyloWGS and 0.552 for CITUP (Figure 

2C; CALDER vs. PhyloWGS p < 10−3, CALDER vs. CITUP p < 10−30, Wilcoxon signed-

rank test). Additionally, CALDER outperforms PhyloWGS and CITUP in the estimation of 

mutation frequencies F, with a median presence-absence error of 0.199 for CALDER vs. 

0.294 for both PhyloWGS and CITUP (Figure 2D; CALDER vs. PhyloWGS p < 10−29. 

CALDER vs. CITUP p < 10−29. Wilcoxon signed-rank test). The similarity between CITUP 

and PhyloWGS error values is due to the fact that both of them produce trivially longitudinal 

solutions for nearly all 178 simulated tumors: 170 CITUP solutions are trivially longitudinal 

(with 4 other solutions violating the permenant extinction condition), and all 178 PhyloWGS 

solutions are trivially longitudinal. Since mutation frequencies determine clonal proportions, 

these results imply that CALDER better estimates tumor composition across the time-points 

compared to PhyloWGS and CITUP.
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CALDER analysis of longitudinal CLL sequencing data

We apply CALDER to longitudinal sequencing data from 13 chronic lymphocytic leukemia 

(CLL) patients from Rose-Zerilli et al. (2016). We find that longitudinal constraints result in 

fewer phylogenetic trees (i.e., L < S) for 4 of the 7 patients that were sampled at more than 2 

time-points, Figure 3 summarizes CALDER results on patient 9, whose tumor was 

sequenced at 4 time-points during treatment, using targeted deep sequencing of 21 mutations 

that were identified at diagnosis. CALDER finds 110 maximal mutation trees with 9 

mutations, 74 of which yielded longitudinally-observed clone trees (Figure 3A). Figure 3B 

shows an example mutation tree T1 and the corresponding longitudinally-observed clone tree 

P1.

To demonstrate the importance of the regularization term ∥U∥0 and the minimum clone 

proportion h in the LVAFFP-U, we examine in more detail a mutation tree T2 for which 

CALDER did not report a longitudinally-observed clone tree. We compute a clone 

proportion matrix U2 and a mutation tree T2 that minimize ∣ F − F̄ ∣1, where the entries of F̄
are means of the mutation frequency confidence intervals, such that F = U2B2 and the 

corresponding clone tree P2 is longitudinally observed. Figure 3C shows the mutation tree 

T2 and the corresponding longitudinally-observed clone tree found by this approach. This 

resulting clone proportion matrix U2 has many entries ut,v < 0.001 (Figure 3). In particular, 

clone 5 is inferred to be present at all time-points in order to meet longitudinal constraints, 

but has small mixture proportions (< 0.001) at time-points t2 and t3 (Figure 3D). According 

to the structure of the tree T2, the mixture proportion of clone 5 in a sample is equal to the 

difference in frequencies between mutations TSPEAR and SERPINB2. While the 

frequencies of these mutations are well separated at t4, they are indistinguishable (within the 

confidence intervals) at t2 and t3. Thus, the sequencing data does not support the presence of 

these clones, implying that the tree T2 is implausible. This example demonstrates how 

CALDER leverages longitudinal constraints to reduce ambiguity in the inference of clone 

trees and clonal composition.

CALDER infers more plausible trees on longitudinal data than existing methods

We apply CALDER to a CLL patient CLL003 from Schuh et al. (2012) that was previously 

analyzed in the papers introducing the PhyloSub (Jiao et al. 2014), CITUP (Malikic et al. 

2015), and AncesTree (El-Kebir, Oesper, et al. 2015) tumor phylogeny algorithms. For this 

patient, high-depth targeted sequencing was performed at five time-points, and the published 

analysis reported 20 mutations. We excluded 3 mutations whose VAFs were ≫ 0.5 as these 

likely overlap with copynumber aberrations; the published results from AncesTree (El-

Kebir, Oesper, et al. 2015) also exclude the same 3 mutations. We cluster mutations as 

described in STAR Methods, obtaining 4 mutation clusters which we label A, B, C, and D. 

CALDER infers a clone tree containing 4/5 clusters and 15/17 mutations (Figure 4A). This 

clone tree is longitudinally observed and shows a process of ongoing clonal evolution in this 

patient, with mutations in cluster B occurring between t1 and t2, and mutations in cluster C 

occurring between t2 and t3 We see the tumor composition change from consisting primarily 

of clone 4 (containing mutation clusters A and D) at t1, to consisting primarily of clone 3 

(containing mutation clusters A, B and C) at t5.
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We compare the CALDER solution to the published results from PhyloSub (Jiao et al. 

2014), AncesTree (El-Kebir, Oesper, et al. 2015), and CITUP (Malikic et al. 2015) on this 

patient (Figure 4B-D). The maximum-likelihood tree inferred by PhyloSub (Figure 4B) 

violates longitudinal constraints (highlighted in red on the tree), with clone 1 being present 

only at t2 and t5. The tree reported by AncesTree (Figure 4B) includes only 5/17 mutations. 

The corresponding clone tree is trivially longitudinal, with all clones present at all time-

points, and consequently implies that the evolution of these clones occurred before the first 

sample was taken. Many entries in the corresponding clone proportion matrix are very small 

(highlighted in red), and the presence of these clones is not well-supported by the data. For 

example, the presence of clone 3 at time-point t1 is determined by the presence of mutation 

NPY. However, only 0.09% of the total reads (42 of 45,586) at this locus support this 

mutation, which is within the range of the estimated per-base sequencing error rate for 

Illumina sequencers of ≥ 0.1% (Glenn 2011). Overall, we find that the CALDER solution 

for this patient is more plausible than the PhyloSub and AncesTree solutions. Interestingly, 

the tree inferred by CITUP (Figure 4C) is longitudinally observed (but not trivially 

longitudinal), despite the fact that CITUP does not explicitly enforce longitudinal 

constraints. It is possible that the combinatorial optimization algorithm used in CITUP 

favors solutions where U is sparse, leading to a longitudinal solution in this case.

Discussion

Longitudinal sampling is becoming more common in cancer studies. In leukemias and 

lymphomas, obtaining longitudinal samples is straightforward, while in solid tumors, ctDNA 

and circulating tumor cell sequencing technologies are providing the ability to monitor 

cancer patients over time. Longitudinal sequencing enables researchers to gain further 

insight into tumor evolution by revealing shifts in clonal composition over time and/or in 

response to treatment. Here we demonstrated how longitudinal observations inform the 

reconstruction of phylogenetic trees from bulk tumor samples. We introduced CALDER, an 

algorithm that leverages constraints from longitudinal sampling to reduce ambiguities in the 

reconstruction of phylogenies from bulk DNA sequencing data. We also introduced an 

absence-aware clustering algorithm that distinguishes between mutations that are absent in a 

sample and those that are present in low frequency. This absence-aware clustering is 

particularly important for enforcing longitudinal constraints, which rely on the presence and 

absence of clones. In addition, absence-aware clustering is helpful when analyzing cellular 

migration patterns using tumor samples from distinct anatomical sites, e.g., primary tumor 

and metastases samples from the same patient, as studied by El-Kebir, Satas, and Raphael 

(2018). We showed on simulated and real data that CALDER yields more plausible 

phylogenetic trees than existing approaches.

There are several limitations of the present approach and directions for future work. First, as 

with any tumor phylogeny construction algorithm, CALDER relies on clustering of 

mutations into clones. While we presently cluster in advance of phylogeny reconstruction, 

simultaneous absence-aware clustering and phylogenetic reconstruction with CALDER is an 

important future goal, as has been shown previously for methods that do not use longitudinal 

constraints (Satas and Raphael 2017; Jiao et al. 2014; Deshwar et al. 2015; Jiang et al. 

2016). Second, we focused our analysis on SNVs in diploid regions, ignoring copy number 
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aberrations (CNAs) which complicate tumor phylogeny reconstruction (Deshwar et al. 2015; 

El-Kebir, Satas, Oesper, et al. 2016; Jiang et al. 2016). While this was a reasonable approach 

for the leukemias studied here, for highly aneuploid tumors it might be difficult to identify 

diploid regions, and only a small fraction of somatic SNVs may be found in such regions. 

For such highly aneuploid tumors, an extension of the CALDER algorithm to solve 

generalizations of the LVAFFP problem (e.g., as in Deshwar et al. (2015) and El-Kebir, 

Satas, Oesper, et al. (2016)) will be valuable. Third, in both bulk and single-cell DNA 

sequencing data, there is an issue of incomplete sampling, where only a subset of cancer 

clones/cells is measured; for example, clones present in low proportions or in different 

spatial locations may not be measured. Further work extending longitudinal constraints to 

accomodate incomplete sampling is needed.

While CALDER was developed to analyze bulk sequencing data under the infinite sites 

assumption, we note that the longitudinal model we have presented is general, and can be 

extended to analyze other data types including single-cell sequencing, methylation, and gene 

expression data. Some of these data types may require extensive further work to develop an 

algorithm that applies longitudinal constraints. However, even without this work, one can 

apply longitudinal constraints post-hoc to solutions of exiting algorithms to assess their 

plausibility. Finally, while we presented the longitudinal model in the context of cancer 

evolution, we note that no part of the model or algorithm is specific to cancer, and CALDER 

can be applied to other evolving systems. One promising application of, CALDER is to 

study the shifting composition of bacterial populations from longitudinal metagenomic 

samples (Faust et al. 2015).

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ben Raphael (braphael@princeton.edu).

Method Details

Constructing the observed clone tree PU,B

We construct the observed clone tree PU,B from clone proportion matrix U and perfect 

phylogeny matrix B as follows:

1. Add observed clones. For each vertex v ∈ T and the corresponding column j = μ 
(v) of U, we represent the observations of v in the observed clone tree as follows. 

Let ti1 < ti2 <…< ttk be the non-zero entries in column v of U. Add path π(v) = 

v0 → vi1 →… → vik to PU,B. such that c (v0) = 0, and c(viℓ) = tiℓ for ℓ = 1…k.

2. Add mutation edges. Let tvmin = min t; ut, v + ∑w ∈ Δvut, w > 0 , where Δv is the 

set of descendants of v in T. For each edge (v, w) in T, add edge (v′, w′) to PU,B, 

where v′ = argmaxx ∈ π v c x ; c x < twmin  and w′ is the uncolored vertex 

corresponding to clone w.

Myers et al. Page 12

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Remove redundant uncolored vertices. If v is an uncolored vertex with: (1) 

incoming edge (u, v) labeled with mutation i; (2) exactly one outgoing edge 

(v,w); and (3) the edge (v,w) is unlabeled; then replace vertex v and edges (u, v) 

and (v,w) with a single edge (u, w) labeled with mutation i.

Characterizing solutions to the LVAFFP

For a frequency matrix F, let SF = U, B ∣ F = UB  be the set of solutions to the VAFFP, 

and let ℒF = U, B ∣ F = UB and PU,B is longitudinally observed} be the set of solutions to 

the LVAFFP. Note that for all frequency matrices F, ℒF ⊆ SF . El-Kebir, Oesper, et al. 

(2015) and Popic et al. (2015) have previously characterized SF  as a set of constrained 

spanning trees on a particular directed graph, and describe algorithms to enumerate these 

trees. Thus, one approach to solving the LVAFFP is to enumerate all trees corresponding to 

solutions in SF  (solutions to the VAFFP) and check whether the corresponding clone trees 

are longitudinally observed. In the following, we describe a procedure to enumerate ℒF
directly.

First, we review the necessary and sufficient conditions that characterize solutions 

U, B ∈ SF ; these conditions were presented in El-Kebir, Oesper, et al. (2015) and Popic et 

al. (2015). For a vertex v ∈ T, let δv be the children of v. In order for T to determine clones 

with non-negative mixture proportions, the following condition must hold for all samples t 
and clones v,

ft, μ v ≥ ∑
w ∈ δv

ft, μ w .
(1)

This is known as the Sum Condition in El-Kebir, Oesper, et al. (2015). A frequency matrix F 
and mutation tree T = (V, E) (corresponding to perfect phylogeny matrix B) satisfying the 

Sum Condition uniquely determine a clone proportion matrix U with F = UB, as follows:

ut, v = ft, μ v − ∑
w ∈ δv

ft, μ w .
(2)

We will say that a tree T is a solution to the VAFFP (i.e., T ∈ SF) provided that the U 

defined in Equation 2 has non-negative entries.

Figure 1B shows that there are frequency matrices F for which ℒF ⊊ SF . Thus, we are 

interested in deriving conditions on F that characterize ℒF . First, we derive conditions on a 

mutation tree T and clone proportion matrix U for the corresponding clone tree PU,B to be 

longitudinally observed. For a mutation tree T, let Δv be the set of vertices in the subtree of T 

rooted at v. For a clone v, let tvmin = min t; ut, v + ∑w ∈ Δvut, w > 0  represent the first sample 

after its birth, and let tvmax = min t; t ≥ tvmin, ut, v = 0  represent the first sample after its death. 

We have the following result.
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Lemma 1. The following conditions are necessary and sufficient for a proportion matrix U 
and mutation tree T to determine a longitudinally-observed clone tree P:

1. Permanent extinction. For all clones v, ut,v = 0 for all t ≥ tvmax.

2. Lineage continuity. For each edge (v, w) ∈ ET, twmin ≤ tvmax.

Using the relationship between clone proportion matrix U and frequency matrix F (Equation 

2), we can express tvmin and tvmax directly in terms of the frequency matrix as follows:

tvmin = min t; ft, μ v > 0 (3)

tvmax = min t; t ≥ tvmin, ft, μ v = ∑
w ∈ δv

ft, μ w . (4)

Note that Δv disappears from the definition of tvmin, as mutation μ(v) is shared by all clones w 

∈ Δv, and that the strict equality in the definition of tvmax directly corresponds to a mixture 

proportion of 0.

Then, the necessary and sufficient conditions on F for a mutation tree T = (V, E) and a clone 

proportion matrix U to determine a longitudinally-observed clone tree are as follows:

1. Sum condition (SC). For all clones v and samples t, ft, μ v ≥ ∑w ∈ δvft, μ w .

2. Permanent extinction condition (PEC). For all clones v, 

ft, μ v = ∑w ∈ δvft, μ w  for all samples t ≥ tvmax.

3. Lineage continuity condition (LCC). For each edge (v, w) ∈ E, twmin ≤ tvmax.

Trivially longitudinal factorizations

It is not difficult to see that only the zero entries in U determine whether a pair B, U 
correspond to a longitudinally-observed clone tree, as stated in the following Lemma.

Lemma 2. If F = UB for some perfectphylogeny matrix B and clone proportion matrix U, 
and U is strictly positive (i.e., ut,v > 0 for all time-points t and clones v), then the observed 
clone tree PU, B is longitudinally observed.

As a result, we refer to solutions of the LVAFFP with strictly positive U as trivially 
longitudinal. See Supplemental Information Figure S1 for an example. Such trivially 

longitudinal solutions are especially problematic when there is uncertainty in F, i.e., in the 

LVAFFP-U. Specifically, for a fixed mutation tree T, the clone proportion ut, v for a clone v 
at time-point t satisfies ut, v = f t, μ v − ∑w ∈ δvf t, μ w , and thus is equal to the slack between 

the frequency of the mutation on the incoming edge and the sum of the frequencies of the 

mutations on the outgoing edges. Because it is rare that the upper bound ft, μ v
+  on the left 
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term is exactly equal to the lower bound ∑w ∈ δvft, μ w
−  on the right term, solutions to the 

LVAFFP-U can generally be obtained with all entries ut,v > 0.

Enumerating spanning trees

In this section, we use the three constraints from the previous section – i.e., the sum 

condition, permanent extinction condition and lineage continuity condition – to enumerate 

the set ℒF  of solutions to the LVAFFP. Following El-Kebir, Oesper, et al. (2015) and Popic 

et al. (2015), we define the ancestry graph GF = (V,E) for a frequency matrix F to be the 

directed graph with vertices V = {1,…,n} and edges E = {(v,w)∣ft,v ≥ ft,w for all t ∈ [1, m]}. 

The set SF  of solutions to the VAFFP correspond to the set of spanning trees of G where the 

sum condition (SC) is met at each vertex (El-Kebir, Oesper, et al. 2015; Popic et al. 2015). 

Similarly, the set ℒF  of solutions to the LVAFFP is the set of spanning trees where the sum 

condition (SC), permanent extinction condition (PEC) and lineage continuity condition 

(LCC) are met.

We enumerate the set ℒF  by adapting the Gabow-Myers algorithm (Gabow and Myers 

1978) as was done previously for the VAFFP and extensions (Popic et al. 2015; El-Kebir, 

Satas, Oesper, et al. 2016; Satas and Raphael 2017). The Gabow-Myers algorithm iteratively 

builds a spanning tree by considering the addition of a single edge to the growing tree using 

depth-first exploration and backtracking. In our adapted algorithm, we add an edge to the 

tree only if for the resulting subtree T', the SC, PEC and LCC are met. See Method S1 for 

the full details of the algorithm.

Absence-Aware Clustering

When there is uncertainty in variant allele frequencies, there are typically sets of mutations 

whose frequencies are indistinguishable. The standard approach to address this issue is to 

cluster mutations into clones either prior to (Roth et al. 2014; Miller et al. 2014; Zare et al. 

2014) or simultaneously with phylogeny reconstruction (Satas and Raphael 2017; Jiao et al. 

2014; Deshwar et al. 2015; Jiang et al. 2016). In real data, however, it may difficult to 

distinguish between mutations that are present in low proportions and mutations that are 

absent from a sample. Clustering algorithms do not explicitly distinguish between these two 

classes, and thus may group mutations that are present in low proportion in a sample into the 

same cluster as mutations that are absent from a sample. Indeed, we have observed this 

behavior on real data using popular mutation clustering algorithms (Roth et al. 2014; Miller 

et al. 2014). Such clustering errors are particularly problematic in the analysis of 

longitudinal data, where the presence and absence of clones in different samples determine 

whether a specific phylogenetic tree is consistent with longitudinal samples.

We develop an absence-aware approach to cluster mutations into clones. Specifically, this 

approach relies on the principle that if a pair of mutations is present in the same set of 

clones, then they will be present in the same set of samples. Thus, prior to clustering, we 

partition the set of mutations into subsets where each subset of mutations is present in the 

same set of samples. Then we perform clustering independently on each of these subsets of 

mutations.

Myers et al. Page 15

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To perform absence-aware clustering, we first determine the posterior probability of each 

mutation being present in a sample. Let X = 1 indicate the presence of a mutation in a 

sample and X = 0 indicate absence. If V is the number of reads at the locus with the 

mutation, and R is the total number of reads covering the locus, then, the posterior 

probability of a mutation being present is

Pr X = x ∣ V , R ∝ Pr V ∣ R, X = x Pr X = x . (5)

We model read counts with a binomial distribution with probability of success f, such that 

Pr(V ∣ R, X) = Binomial (V ∣ f, R). If the mutation is present, X = 1, we do not know the 

proportion of cells that contain the mutation, and thus we model the probability of success f 
~ Uniform(0,1) or equivalently f ~ Beta (α = 1, β = 1). If the mutation is absent, X = 0, we 

let f = ϵ = 10−4 to account for sequencing errors. With a uniform prior probability Pr(X = x) 

= 0.5, we have

Pr X = 0 ∣ A, R ∝ 0.5 ⋅ Binomial V ∣ f = ϵ, R , (6)

Pr X = 1 ∣ A, R ∝ 0.5 ⋅ Beta − Binomial V ∣ α, β, R . (7)

For a mutation i, we assign a presence/absence profile xi = x1, i, …, xm, i  such that for 

sample t, a mutation is determined to be present (xt, i = 1) if the posterior probability Pr(Xt,i 

= x ∣ At,i,Rt,i) > 0.95. To cluster, we run PyClone (Roth et al. 2014) on each set of mutations 

Ax, such that all mutations i ∈ Ax have the same sample profile xi = x. This yields a set of 

cluster assignments Cx for each sample profile x . The set of clusters we use is then the 

union over all cluster profiles C = UxCx.

To assess the impact of the absence-aware clustering, we compare the results of CALDER 

using clusters from our absence-aware clustering algorithm (‘CALDER-aa’) to CALDER 

using clusters from PyClone (Roth et al. 2014) (‘CALDER-pc’). We evaluate the two 

approaches on 151 tumors, a subset of the 178 tumors used to compare phylogeny inference 

methods in the main text. We find that CALDER-aa and CALDER-pc have comparable 

presence-absence error: CALDER-aa has lower presence-absence error on 58 instances, 

while CALDER-pc has lower presence-absence error on the remaining 93 (Figure S2). Both 

methods have significantly lower error than the original input data (CALDER-aa vs. 

Original p < 10−5, CALDER-pc vs. Original p < 10−9. Wilcoxon signed-rank test). On the 

other hand, we find that CALDER-aa has significantly lower tree error than CALDER-pc (p 
< 2.9×10−23, Wilcoxon signed-rank test). Thus, the absence-aware clustering enables more 

accurate inference of longitudinal tumor phylogenies.

Error-free simulation framework

In order to explore the differences between the VAFFP and the LVAFFP, and particularly, the 

number of solutions to each, we developed an error-free simulation framework. Given a 

mutation tree T and a number m of samples, we first randomly assign clone presence and 
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absence in each sample according to longitudinal constraints. Then, we sample mixture 

proportions from a Dirchlet distribution with uniform α parameters for all clones present 

(e.g., for a sample containing 3 clones, α1 = α2 = α3) to obtain a clone proportion matrix U. 
Finally, we use these mixture proportions to compute a frequency matrix F.

To determine clone presences, each clone is assigned a tvmin ∈ 1, m  and tvmax ∈ 1, m + 1 . The 

root r is assigned trmin = 1 and trmax ∼ U 1, m + 1 . Then, moving down the tree, each clone w 

with parent v is assigned twmin ∼ U tvmin, tvmax − 1  and tvmax ∼ U twmin, m . Each clone v is 

present in all samples t such that tvmin ≤ t < tvmax. Clone mixture proportions for all clones 

present at each time-point t are then a sample from Dir(α1, α2,…αn) where α1 = α2 =…= 

αn = 1/2n. Let Δv represent the set of clones in the subtree of T rooted at clone v, and let 

μ(v) represent the mutation corresponding to this clone. Then, each entry in the frequency 

matrix ft, μ v = ∑w ∈ Δvut, w.

Tumor growth simulation

We adapted an agent-based branching simulation framework from El-Kebir, Satas, and 

Raphael (2018) to simulate longitudinal sequencing data from an evolving tumor. In this 

framework, a population of cells grows according to a branching process, where in each 

generation a cell either replicates (with probability related to the number of driver mutations 

it has) or dies. If a cell replicates, then with probability p = 0.2 it will acquire a new 

mutation, and if so, with probability p = 0.001 this new mutation will be a driver mutation. 

To simulate tumors with subclonal populations whose abundance varies across samples, we 

set the other parameters of the simulation as follows: the minimum number of cells to begin 

taking samples was 107, the fitness advantage s for driver mutations was 0.02, and 40 

generations of the simulation elapsed between subsequent samples. We generated a total of 

178 simulated tumors using different seeds for the random number generator that governs 

the tumor growth and sampling processes. Additional details on the simulation are in El-

Kebir, Satas, and Raphael (2018).

For each simulated tumor, we generate simulated DNA sequencing data from up to 5 

longitudinal samples. Sequencing data was generated using a read depth of 200X, which is 

typical for whole-exome sequencing. To obtain simulated mutation data for each sample, we 

first identify somatic mutations with a VAF > 0.02. Then, for each identified mutation, the 

total number of reads R is sampled from a Poisson distribution with mean 200. The number 

of variant reads is then sampled from a binomial distribution with the true VAF as the rate 

parameter and total reads R as the number of trials.

We compare the cancer phylogeny methods using a single optimal solution output by each 

algorithm. For CALDER, we took the first optimal tree as the solution. For CITUP, we 

selected the first tree with minimal Bayesian Information Criterion (computed by the 

method). For PhyloWGS, we selected the first tree with maximal log-likelihood (computed 

by the method).
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Quantification and Statistical Analysis

Data processing—Confidence intervals for VAFs were estimated from read counts using 

Beta posterior with a uniform prior, using the Bonferroni correction for multiple hypothesis 

as in El-Kebir, Satas, and Raphael (2018). Specifically, let C be a mutation cluster, and let 

at,i and rt,j denote the number of variant reads and reference reads, respectively, for mutation 

i in sample t (note that this formulation is well-defined for clusters of size 1, i.e., individual 

mutations). Assuming a uniform prior on the frequency of cluster C ∈ C in sample t yields a 

beta posterior distribution over frequencies, i.e., Beta 1 + ∑i ∈ C at, i, 1 + ∑i ∈ C rt, i . We use 

Bonferroni multiple hypothesis correction to compute intervals ft, C
− , ft, C

+  from the 

aforementioned beta distribution such that the family-wise type-I error rate is 1 – α = 10%, 

e.g., given a patient with n = 10 mutations, m = 5 samples, and a 90% confidence level, we 

compute intervals using the resulting confidence level of 99.8%. Any mutation i with a 

lower bound frequency ft, i
− > .5 in any sample t was considered to have abnormal copy 

number and was discarded before clustering or enumeration, and intervals for the remaining 

mutations were recomputed with the new value of n. All results in the paper were obtained 

using a precorrection confidence level – = 0.9 and a minimum clone proportion threshold h 

= 0.01. Before enumeration, every interval with a lower bound ft, i
− < ℎ for sample t and 

mutation i was adjusted to ft, i
− = 0 to enable the inference of absences.

Patient 9 from Rose-Zerilli et al. (2016), which we analyze in Figure 3, had 21 mutations 

targeted by deep sequencing. According to the above criterion of ft, i
− > 0.5 for any sample t, 

6 mutations were determined to have abnormal copy number and were not considered for 

analysis.

Metrics for evaluating results on simulated data—We use two metrics to evaluate 

the accuracy of CALDER and competing methods on simulated data. The presence-absence 
error evaluates the ability of methods to identify mutations that are present in the tumor 

samples, and is defined as follows. Let M (i) indicate the mutation cluster containing 

mutation i and let f t, M i  indicate the frequency of this cluster in sample t of the inferred 

frequency matrix F . If mutation i is not present in the tree, then f t, M i = 0. We define 

presence-absence error as:

Presence−absence error F, F = 1
nm ∑

t = 1

m
∑
i = 1

n
1 ft, i ≠ f t, M i . (8)

We define tree error as the proportion of ancestral relationships that are incorrect in the 

inferred tree, as previously described by Satas and Raphael (2017). A pair i and j of 

mutations can have one of four possible ancestral relationships: i is an ancestor of mutation j 
(i ≺ j); j is an ancestor of mutation i (j ≺ i); i and j are clustered together in the tree (M(i) = 

M(j)): i and j are not on the same path to the root (i and j are incomparable). To compute tree 

error, we construct a confusion matrix Q T, T = ℤ4 × 4 whose rows correspond to these 4 

relationships in the ground truth mutation tree T and columns correspond the same 
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relationships in the inferred mutation tree T . Each entry qk,k', indicates the number of pairs 

of mutations (i,j), where i < j, having ground truth relationship corresponding to row k and 

the inferred relationship corresponding to column k'. Given the confusion matrix Q, the tree 
error is computed as:

Tree error Q = 1 −
∑k = 1

4 qk, k

∑k = 1
4 ∑k′ = 1

4 qk, k′
. (9)

Running time and space—Table S1 specifies the running time and memory details for 

the 3 phylogeny inference methods that were run on the simulated data, including the 

average and total resource clone proportion across the 178 instances. All methods were run 

with their default parameters, using the “multievolve” version of PhyloWGS and the 

iterative version of CITUP. CALDER was run on a laptop with an Intel i9-8950HK 

processor and 16 GB of memory. Resource consumption for CALDER also includes the 

resource consumption for running absence-aware clustering on each instance. The other 2 

methods were run on cluster machines with Intel Xeon X5675 processors. PhyloWGS was 

allocated 4 processors to match the number of chains run by default, whereas for CITUP we 

noticed no difference in allocating more than a single processor. Both methods were 

allocated 8 GB of memory, which was not a limiting factor. Note that the entries for memory 

in the “Total” columns are the maximum memory clone proportion across all instances, as 

this is a more meaningful quantity than the total amount of memory.

Data and Software Availability

CALDER is publicly available at github.com/raphael-group/calder. This repository also 

contains instructions for running CALDER, as well as the branching simulation data and the 

code used to generate these simulated tumors.

The Absence-Aware Clustering algorithm is publicly available at github.com/raphael-group/

absence-aware-clustering

The CLL data used in the paper are published previously and available with the original 

publications (Rose-Zerilli et al. 2016; Schuh et al. 2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Infinite sites assumption (ISA)
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a constraint on phylogenetic trees whereby each phylogenetic character (e.g. a genomic 

locus) mutates at most once on the tree.

Integer linear program (ILP)
a linear program in which the variables xi are constrained to integer values.

Linear program (LP)
a type of optimization problem where a linear function f(x1,…,xn) is maximized or 

minimized over a region specified by linear constraints on the variables xi.

Mixed-integer linear program (MILP)
a linear program in which a subset of the variables xi are constrained to integer values.

Perfect phylogeny
a phylogenetic tree whose characters satisfy the infinite sites assumption.
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Highlights:

• Longitudinal sequencing provides additional information for phylogeny 

inference

• CALDER leverages longitudinal information to derive phylogeny from mixed 

samples

• CALDER yields more accurate trees on simulated and real cancer data

• Longitudinal model extendable to other data types such as single-cell 

sequencing
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Figure 1: 
(A) (Left) A cell tree describes the cell division and mutation history of a tumor, where 

vertices are cells and edges are parental relationships. We are typically not able to observe 

this evolutionary process continuously, and instead have a set of observations from discrete 

time-points t1, t2, and t3. (Right) A longitudinally-observed cell tree describes the ancestral 

relationships between the observed cells. Cells are labeled (colored) with the time-point that 

they are observed. (B) (Left) A clone proportion matrix U describes the composition of a 

tumor at each time-point ti, and a perfect phylogeny matrix B (1-to-1 with a mutation tree T) 
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describes the evolutionary relationships between clones. (Right) Construction of the 

observed clone tree PU,B from clone proportion matrix U and perfect phylogeny matrix B.. 
(C) Not all VAFFP solutions correspond to longitudinally-observed clone trees. In this 

example, the frequency matrix F has multiple factorizations. One factorization F = U1B1 

(top) corresponds to a longitudinally-observed clone tree, but another factorization F = U2B2 

(bottom) does not. This is evident in the red highlighted path, which does not respect the 

ordered coloring.
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Figure 2: Comparisons on simulated data.
(A-B) Comparison of the number S of solutions to the VAFFP and the number L of solutions 

to the LVAFFP on 423,328 simulated m×n frequency matrices F which were generated 

uniformly at random from a total of 10 tree topologies, with m = 2,…, 9 and n = 4,…,13 . 

(A) Histogram showing the proportion of solutions to the VAFFP which are also solutions to 

the LVAFFP. (B) Scatterplot showing how the relationship between S and L. Note that we 

exclude instances where L = S. (C-D) Results from CALDER, PhyloWGS, and CITUP on 

178 simulated tumors. (C) The tree error (proportion of ancestor-descendant relationships 

incorrectly inferred) for each method on each tumor. (D) The presence-absence error for 

each method on each tumor.
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Figure 3: Longitudinal constraints reduce ambiguity on real data.
CALDER results on CLL patient 9 from Rose-Zerilli et al. Rose-Zerilli et al. (Rose-Zerilli et 

al. 2016). (A) 110 mutation trees are consistent with the mutation frequencies measured in 

this patient, but only 74 of these trees correspond to longitudinally-observed clone trees. (B) 

Example of a mutation tree T1 and its corresponding longitudinally-observed clone tree P1. 

(C) A mutation tree T2 that does not correspond to a longitudinally-observed clone tree. 

Without the requirement of a minimum clone proportion h, we obtain the longitudinally-

observed clone tree P2. (D) Clone proportion matrix U2 corresponding to T2 has many small 

entries ut,v < 0.001 (highlighted in red). These small proportions are required to meet 

longitudinal constraints. The support for the presence of clone 5 at each time-point t is the 

difference in frequency between mutations TSPEAR and SERPINB2. With the exception of 

t4, this difference is within the confidence bounds of each mutation, and thus clone 5 is 

unlikely to be present at time-points t1, t2, and t3.
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Figure 4: Results from (A) CALDER and previously published results from (B) PhyloSub (Jiao 
et al. 2014), (C) AncesTree(El-Kebir, Oesper, et al. 2015), and (D) CITUP(Malikic et al. 2015), on 
CLL patient CLL003 from Schuh et al. (Schuh et al. 2012).
For CALDER, PhyloSub, and CITUP, edges are labeled by mutation clusters. Mutations that 

CALDER and AncesTree excluded from tree construction are marked in boldface. Clone 

proportions are visualized using TimeScape (Smith et al. 2017).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Branching simulation data This paper https://github.com/raphael-group/calder/tree/master/
branching-sim

Chronic lymphocytic leukemia (CLL) data shown in 
Figure 4

Rose-Zerilli et al., 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861248/

Chronic lymphocytic leukemia (CLL) data shown in 
Figure 4

Schuh et al., 2012 https://www.ncbi.nlm.nih.gov/pubmed/22915640

Software and Algorithms

Cancer Analysis of Longitudinal Data through 
Evolutionary Reconstruction (CALDER)

This paper https://github.com/raphael-group/calder

Absence-Aware Clustering This paper https://github.com/raphael-group/Absence-Aware-Clustering

TimeScape Smith et al., 2017 https://bioconductor.org/packages/timescape/

PyClone Roth et al., 2014 https://github.com/aroth85/pyclone

PhyloWGS Deshwar et al., 2015 https://github.com/morrislab/phylowgs

Clonality Inference in Tumors Using Phylogeny 
(CITUP)

Malikic et al., 2015 https://shahlab.ca/projects/citup/
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