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Abstract
Ray tracing (RT) and perspective projection (PP) using fiducial-based registration can be used
to determine points of interest in biplanar X-ray imaging. We sought to investigate the
implementation of these techniques as they pertain to X-ray imaging geometry. The
mathematical solutions are presented and then implemented in a phantom and actual case with
numerical tables and imaging. The X-ray imaging is treated like a Cartesian system in
millimeters (mm) with a standard frame-based stereotactic system. In this space, the point
source is the X-ray emitter (focal spot), the plane is the X-ray detector, and fiducials are in
between the source and plane. In a phantom case, RT was able to predict locations of fiducials
after moving the point source. Also, a scaled PP matrix could be used to determine imaging
geometry, which could then be used in RT. Automated identification of spherical fiducials in 3D
was possible using a center of mass computation with average Euclidean error relative to
manual measurement of 0.23 mm. For PP, RT projection or a combinatorial approach could be
used to facilitate matching 3D to 2D points. Despite being used herein for deep brain
stimulation (DBS), utilization of this kind of imaging analysis has wide medical and non-
medical applications.

Categories: Medical Physics, Radiology, Neurosurgery
Keywords: 2d3d, x-ray analysis, ray tracing, perspective projection, biplanar analysis, x-ray,
fluoroscopy, cartesian

Introduction
In 1895, Wilhelm Roentgen discovered X-rays, which subsequently had an important impact in
medicine for over 100 years [1]. As a major diagnostic tool, X-rays revolutionized medicine by
empowering clinicians to diagnose various conditions such as pneumonia, bony fractures, and
dental cavities. Despite the long history of X-ray use, developments primarily have included
advances in speed, quality, and, more recently, digitization. Computational X-ray analysis has
not been the standard despite the wide use of X-rays around the world. Rather, advancements
in computed tomography (CT) and magnetic resonance imaging (MRI) have been utilized for
3D (three dimension) localization. Nevertheless, X-rays represent a simple, low cost, low
radiation dose technique for which the utility can be optimized.

With the addition of more than a single X-ray plane, stereotactic intraoperative location
(STiL) during deep brain stimulation (DBS) surgeries has been demonstrated to
provide accurate 3D positions using ray tracing (RT) and perspective projection (PP) [2]. RT and
PP assume a Cartesian-based system where from a point source (X-ray emitter focal spot), rays
are created through objects (fiducials) to a detector plane (X-ray cartridge), which are then
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presented on a display plane (the X-ray image). Computationally, RT requires knowledge of the
entire imaging geometry, whereas PP requires knowledge of the 3D points and their associated
projection points in 2D (two dimension). Using these techniques, RT and PP represent
important tools that offer critical analysis of X-rays.

In this paper, we discuss the mathematics involved with RT and PP as well as provide numerical
samples and imaging of each. We analyze a phantom case, a real case, explore automations and
error propagation. These methods effectively compute 3D to 2D (3D-2D) and, for STiL, 2D to 3D
(2D-3D). We explore these techniques using point analysis, but similar techniques can be
expanded using volumes.

Technical Report
In stereotactic neurosurgery, a Cartesian coordinate system can be generated using anatomical
structures in the brain or using a frame-based apparatus. Anatomical points include the
anterior commissure (AC), posterior commissure (PC), and a midline structure to generate the
coordinate system, generally from the middle of AC-PC (MidACPC). Frame-based coordinate
systems typically use an N-localizer apparatus calibrated on a CT or MRI [3-5]. Generally, these
coordinate systems are considered linear and are scaled in millimeters. In the following, we
implement mathematical solutions for point-based registration from 3D (x, y, z) to 2D (U, V)
using RT and PP. These techniques assume that there are no geometrical distortions (scattering
or diffraction), that the focal spot of the X-ray emitter is a point source, that the X-ray detector
can be treated like a plane, and that the center of spheres or pin tips/bases can be treated as
point objects in the system (fiducials). The centers of spheres are used in the majority of cases
as the center is geometrically ideal, but we also utilize pin tips and pin bases in addition to
other stable objects when available, which depends on the X-ray exposure. All objects are
mathematically utilized as points. For the display plane (X-ray image), pixel spacing may be
present from DICOM metadata, but this is often not present in fluoroscopic images. In some
instances, calibration may be needed to determine this scaling and ensure no inhomogeneity in
the image. Also, to maintain a single frame-based coordinate system, the subsequent tables
utilize CRW/BRWLF (Cosman-Roberts-Wells/Brown-Roberts-Wells Localizer Frame, Radionics
CRW Stereotactic System, Integra LifeSciences Corporation, Plainsboro, New Jersey). Fiducial
positions were calculated using CT with the incorporation of important points fused from MRI
in iPlan 3.0 Stereotaxy (Brainlab Inc, Feldkirchen, Germany). Also, the numerical tables utilize
AP (Antero-Posterior), LAT (Lateral), VERT (Vertical) rather than x, y, z. Finally, many of the
solutions provided assume biplanar imaging (two views or poses), but the same mathematical
solutions can allow many more.

Background mathematical solutions
In RT, the geometry of the point source (focal spot size) (P 0) to a fiducial (P1 or P2) forms

a ray that intersects a detector (Pp1 or Pp2) plane, which is seen on a display (Puv1 or Puv2) plane

(Figure 1) [6]. If the stereotactic coordinate system utilized contains an axis orthogonal to the
detector plane, the system is coherent on-axis (COA). Having a COA system makes the
determination of display points more simple, such that the two variable coordinates are
translated, rotated and scaled to the display plane. The display plane can also be rotated
separately. If the detector plane is not COA, then a change of basis transformation is needed to
normalize an axis. For example, in a COA antero-posterior (AP) view, the AP value of all plane
intersections with the AP plane is the same, which allows straightforward utilization of the
other dimensions, lateral (LAT) and vertical (VERT), where the intersections occur. However, a
system that is not COA yields 3D coordinates for which all values have variation, requiring a
normalization prior to projection to the display plane.
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FIGURE 1: Geometry of X-ray Imaging from 3D to 2D. The
imaging takes the form of a Cartesian system based on
stereotactic space. The image source contains a plane that is
parallel to the detector plane with a point source at X-ray
emitter (focal spot). The focal spot generates rays (or lines)
that intersect objects (fiducials) and then intersect the detector
plane. The detector plane is then converted to the display
plane, which is what is seen in the image. This conversion
effectively transforms 3D space to 2D in Ray Tracing (RT) and
Perspective Projection (PP) via Step 1 and Step 2. Keeping the
entire relationship in millimeters with equal scaling (s = 1)
between detector plane and display plane allows visual
inspection of the relationships, which demonstrates that the
scalar distance between projection objects should be the same
between the detector plane and display planes. The normal of
the detector plane is parallel to the normal of a plane that
intersects the point source. For both RT and PP, a
normalization process occurs making 3D space orthogonal to
the display plane. Of note, the initial coordinate system, which
could be the stereotactic coordinate system, is not Coherent
On-Axis (COA) to the detector plane. In PP, a projection matrix
can be generated using knowledge of 3D points (fiducials)
combined with their associated position on the display plane.
A non-skew PP matrix signifies that the angle (theta) is 90
degrees. Coordinates are thought of as 3D (x,y,z) in Step 1,
then in Step 2 are still 3D for RT (x,y,z) or PP (u,v,t). Once
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images are projected on the display plane, they are 2D (U, V).
The PP matrix can be used to determine the location of the
point source. From the intrinsic matrix of PP, the distance
between the image source and the detector plane (focal length)
can be calculated, thereby allowing calculation of the detector
plane location. The point on the detector plane that is closest
to the focal spot can be utilized to calculate the principal point
on the display plane. Finally, in the display plane, we use the
top left corner of the image assigned as (0,0).
η=Normal ofPlane

Ω = = PointSource=X− ray emitter (Focal Spot)P0

κ = Closest Point in detector plane to source

ϵ = Principal Point on display plane

= image source planeΠs

= Detector planeΠp

= Display planeΠuv

and = fiducials in spaceP1 P2

and = points of intersection on detector planePp1 Pp2

and = points of intersection on display planePuv1 Puv2

= ( , ) and ( , )Up1 Vp1 Up2 Vp2

= a point in between source and detector planePi

= a point on image source planePsi

= a point on detector planePpi

= a point on display planePuvi

, , represent stereotactic coordinate axiswhich isi1 i2 i3

normalized to , , , prior to projection on displayi′1 i′2 i′3
plane

x, y, z = 3Dcoordinates

u, v, t = 3Dcoordinates in PP

U = Horizontal 2Dcoordinates on display plane

V = Vertical 2Dcoordinates on display plane

ζ = scalar distance between projection points
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The X-ray detector can be considered as a mathematical plane (equation 1). The X-ray emitter
then functions as a point source that generates rays which intersect fiducials, generating lines
in 3D parametric form (equations 2, 3, 4). When these lines intersect the X-ray detector (Step 1,
Figure 1), there are the points in the detector plane (equations 5, 6, 7). Because the display
plane would vary in presentation, added translation/rotation is required for pixel location,
which can be computed in matrix form incorporating this 2D rotation and translation (equation
8). Here, the 2D presentation of the planar image expects a dimension of the 3D intersection to
be a constant (COA). When not COA, the normalization procedure (Step 2, Figure 1)
is simplified by the use of unit vectors (equation 9) and dot-products between the two
coordinate systems thereby identifying the matrix components.

θ = determines skew angle

ϕ = focal length = Source− image− distance

(SID)

s = scaling between detector plane and display plane

= first vector component of perspective projectiona1
matrix

= second vector component of perspectivea2
projection matrix

= third vector component of perspective projectiona3
matrix

Ax+By+Cz+D = 0 (1)

x = + ⋅x1 a1 r1 (2)

y = + ⋅y1 b1 r1 (3)

z = + ⋅z1 c1 r1 (4)

x = −x1
(A +B +C +D)a1 x1 y1 z1

A +B +Ca1 b1 c1
(5)

y = −y1
(A +B +C +D)b1 x1 y1 z1

A +B +Ca1 b1 c1
(6)

z = −z1
(A +B +C +D)c1 x1 y1 z1

A +B +Ca1 b1 c1
(7)

= ⋅
⎡
⎣⎢
U ′

V ′

1

⎤
⎦⎥

⎡
⎣⎢
r11

r21

0

r12

r22

0

t1

t2

1

⎤
⎦⎥

⎡
⎣⎢
U

V

1

⎤
⎦⎥ (8)

= ⋅
⎡
⎣⎢
x′1
y′2

z′3

⎤
⎦⎥

⎡
⎣⎢

⋅i′1 i1

⋅i′2 i1

⋅i′3 i1

⋅i′1 i2

⋅i′2 i2

⋅i′3 i2

⋅i′1 i3

⋅i′2 i3

⋅i′3 i3

⎤
⎦⎥

⎡
⎣⎢
x1

y2

z3

⎤
⎦⎥ (9)

2020 Sedrak et al. Cureus 12(4): e7904. DOI 10.7759/cureus.7904 5 of 35



In perspective projection (PP) a 3D point in space is associated with a 2D point on the display
plane (equation 10) [7]. Importantly, a 2D point is generated (Step 2, Figure 1) by dividing the
third component (t) with u or v (equations 11-12). A 4x3 conversion matrix is used wherein 11
of the 12 elements are unknowns initially. The three columns represent the projection matrix
components (equations 13-15). Each of these three column components has four numerical
values, but the last value (C43) is scaled to 1 in this homogenous formulation (equations 16-

19). The system is then arranged as a set of overdetermined equations generally, such that each
instance of 3D-2D points generates two equations (equation 20), one for U and another for V.
Therefore, 5.5 3D-2D points are needed to solve the 11 matrix elements, but generally this
system would be solved via a least squares formulation to optimize the matrix and minimize
errors. Lastly, the complete PP matrix is 4x3 (equation 21), but will be subsequently utilized as
its transpose in 3x4 (equation 22).

(x,y, z, 1) ⋅C = (u,v, t) (10)

U = u/t (11)

V = v/t (12)

u = (x,y, z, 1) ⋅C1 (13)

v = (x,y, z, 1) ⋅C2 (14)

t= (x,y, z, 1) ⋅C3 (15)

=C1

⎡
⎣
⎢⎢⎢
C11

C21

C31

C41

⎤
⎦
⎥⎥⎥ (16)

=C2

⎡
⎣
⎢⎢⎢
C12

C22

C32

C42

⎤
⎦
⎥⎥⎥ (17)

=C3

⎡
⎣
⎢⎢⎢
C13

C23

C33

C43

⎤
⎦
⎥⎥⎥ (18)

= 1C43 (19)

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

x1

0

⋮
xn

0

y1

0

yn

0

z1

0

zn

0

1

0

1

0

0

x1

0

xn

0

y1

0

yn

0

z1

0

zn

0

1

0

1

−U1x1

−V1x1

−Unxn

−Vnxn

−U1y1

−V1y1

−Unyn

−Vnyn

−U1z1

−V1z1

⋮
−Unzn

−Vnzn

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⋅ =

⎡

⎣
⎢⎢⎢⎢
C11

C21

⋮
C33

⎤

⎦
⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

U1

V1

⋮
Un

Vn

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

(20)

C =

⎡⎢⎢⎢
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Interpretation of the PP model is generally widespread in computer vision [7]. Next, we utilize
this technique to gain insight into the geometric interpretation of the X-ray system. The
essential elements of the complete PP matrix, here now interpreted as 3x4, include a 3x3
intrinsic parameter and the extrinsic parameters include a 3x3 rotation and a 3x1 translation
(equation 23). The components of the intrinsic parameter are important to note, which include
scalar dimensions, shear, and translation (equation 24). The five intrinsic components are
alpha and beta (which should be equal), theta, and the principal point (U0, V0). Of note, a skew

angle is computed as the absolute value of theta minus pi/2. Again, to calculate these values for
geometric interpretation, the scale of the imaging system (detector plane and display plane)
should be the same or undergo a conversion. For example, the imaging plane may generate
uncalibrated pixels and the stereotactic frame (or anatomic frame) is in millimeters. If the U
and V coordinates on the imaging plane are converted to a millimeter system, interpretation of
the components of the intrinsic parameters is facilitated. Notably, this scaling is not required
for STiL using PP. Next, the vector components (equations 25-27) of the PP matrix are utilized
to calculate components of these intrinsic parameters (equations 28-31). Of note, the expected
result of equation 31 is 0, as in an ideal setting the imaging system would be non-skew (theta =
pi/2 (approximately 1.57) radians or 90 degrees). The next elements calculated are utilized to
generate the point source and the imaging plane. To formulate relevant information, the

negative inverse (-a-1) of the vector component (3x3) of the PP matrix is performed and
multiplied by a translation (equations 32-25). Visually, we see from Figure 1 that a 2D point on
the display plane can be projected back to a plane that intersects the point source and is parallel
to the detector plane. First, by using the translation component of the original PP matrix (b)
and multiplying that with the negative inverse of the vector component, the point source
(Omega) is then determined (equation 36). Picking two more unique 2D points (c, d) in the
display plane generates two more points in the plane that intersect the point source (equations
37-38). Using these three points in the image source plane, two vectors can be created
(equations 39-40). Forward or reverse cross-products of these vectors (equation 41-42) yields
the normal of the image source plane, which is parallel to the detector plane (equation 43). This
result may be expressed as a plane equation wherein the last element (sigma) is not yet known
(equation 44). However, sigma can be determined using components of the intrinsic matrix for
focal length, which in X-ray imaging is equivalent to the Source Image Distance (SID)
(equations 45-46). It is possible, and even likely, under many circumstances that the imaging
system may be slightly skew, so taking the average of each scalar component (alpha and beta)
may yield a good approximation (equation 47). Furthermore, the relationship between focal
length, the point source, and the detector plane tie all these elements together (equation 48). If
the focal length is known, then one can readily calculate the missing component (sigma) of the
detector plane equation.

C =

⎡
⎣
⎢⎢⎢
C11

C21

C31

C41

C12

C22

C32

C42

C13

C23

C33

C43

⎤
⎦
⎥⎥⎥ (21)

=CT
⎡
⎣⎢
a11

a12

a13

a21

a22

a23

a31

a32

a33

a41

a42

a43

⎤
⎦⎥ (22)

C = [ ]K3,3
R3,3 b3,1 (23)

K =
⎡
⎣⎢
α
0

0

−αcotθ
β/sinθ

0

U0

V0

1

⎤
⎦⎥ (24)
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= [ ]a1 a11 a21 a31 (25)

= [ ]a2 a12 a22 a32 (26)

= [ ]a3 a13 a23 a33 (27)

ρ =±1/ | |a3 (28)

= ( ⋅ )U0 ρ2 a1 a3 (29)

= ( ⋅ )V0 ρ2 a2 a3 (30)

cosθ= ( × ) ⋅ ( × )/ | × | ⋅ | × |a1 a3 a2 a3 a1 a3 a2 a3 (31)

− =a−1
⎡
⎣⎢
−a11

−a12

−a13

−a21

−a22

−a23

−a31

−a32

−a33

⎤
⎦⎥
−1

(32)

b =
⎡
⎣⎢
a41

a42

a43

⎤
⎦⎥ (33)

c =
⎡
⎣⎢
Ui

Vi

1

⎤
⎦⎥ (34)

d =
⎡
⎣⎢
Un

Vn

1

⎤
⎦⎥ (35)

Ω =− ⋅ba−1 (36)

Δ =− ⋅ca−1 (37)

Ψ=− ⋅da−1 (38)

= Δ−Ωv1
→

(39)

=Ψ−Ωv2
→

(40)

= ×np
→

v1
→

v2
→

(41)

= ×np
→

v2
→

v1
→

(42)

= (λ,μ,κ)np
→

(43)

λx+μy+κz+σ = 0 (44)

α = | × | sinθρ2 a1 a3 (45)

β = | × | sinθρ2 a2 a3 (46)
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Further evaluation of the geometry reveals that the relationship required for solving the
sigma of the detector plane equation can be alternatively solved using a quadratic solution
(Figure 1) as explained below. First, consider two sets of parametric equations of 3D lines that
emerge from the point source through 3D points (equations 49-54). These lines then intersect
the plane at some points (equations 55-60). Interestingly, PP allows one to determine the 2D
scalar distance, which is a Euclidean distance, on the display plane using a projection of two
3D (we used {1,1,1} and {100, 100, 100}) points using equation 10. This scalar distance is equal
to zeta in equation 61 and could alternatively be measured manually on the display plane. The
final formation when squared reveals an equation that has a single unknown, sigma (equation
62). Finally, sigma can be solved here via the quadratic method (equations 63-64).

ϕ ≈ (α+β)/2 (47)

ϕ = |λ +μ +κ +σ| /x0 y0 z0 + +λ2 μ2 κ2
− −−−−−−−−−√ (48)

= −a1 x1 x0 (49)

= −b1 y1 y0 (50)

= −c1 z1 z0 (51)

= −a2 x2 x0 (52)

= −b2 y2 y0 (53)

= −c2 z2 z0 (54)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)xp1 x1 a1 x1 y1 z1

/(λ ∗ +μ ∗ +κ ∗ ))a1 b1 c1

(55)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)yp1 y1 b1 x1 y1 z1

/(λ ∗ +μ ∗ +κ ∗ ))a1 b1 c1

(56)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)zp1 z1 c1 x1 y1 z1

/(λ ∗ +μ ∗ +κ ∗ ))a1 b1 c1

(57)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)xp2 x2 a2 x2 y2 z2

/(λ ∗ +μ ∗ +κ ∗ ))a2 b2 c2

(58)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)yp2 y2 b2 x2 y2 z2

/(λ ∗ +μ ∗ +κ ∗ ))a2 b2 c2

(59)

= −( ∗ (λ ∗ +μ ∗ +κ ∗ +σ)zp2 z2 c2 x2 y2 z2

/(λ ∗ +μ ∗ +κ ∗ ))a2 b2 c2

(60)

= ( − +( − +( − )ζ12 (√ xp1 xp2)2 yp1 yp2)2 zp1 zp2)2

= ( − +( − )(√ Up1 Up2)2 Vp1 Vp2)2

(61)

= (( − +( − +( − )ζ212 xp1 xp2)2 yp1 yp2)2 zp1 zp2)2 (62)

0 = i + jσ+kσ2 (63)

σ = (−j± −4ik)/2i)√ 2

2020 Sedrak et al. Cureus 12(4): e7904. DOI 10.7759/cureus.7904 9 of 35



Fiducial matching from 3D to 2D
A time-consuming and potentially error-prone task is matching 3D to 2D fiducials for PP. One
method is to utilize knowledge of the geometric setup and perform RT-assisted-matching
(RTAM) for PP. Other options include applying identifiable characteristics or geometry to the
fiducials. Lastly, after matching approximately six points (minimum 5.5), the PP matrix itself
can be utilized to identify further matches.

A fully automatic matching for PP represents an important improvement in the workflow as it
does not require precise projection knowledge between the 3D and the 2D points. It does
require 3D knowledge of the fiducials and identification of the fiducials on 2D, but their precise
correlation between 3D to 2D is not needed. Rather, a combinatorial optimization matching
method (COMM) was implemented for this step to eliminate matching errors.

Mathematically, for a case comprising N (3D fiducials) and K (2D fiducials), where K <= N, the
space of all possible combinations of K in N is:

For each combination, there are K! permutations that must be searched to reach the best
match. Therefore, given that unique combinations where order does need to match both 3D and
2D, the resulting numerical possibilities to investigate are:

As mentioned above, the solution of the PP transformation matrix derives from an
overdetermined system that should be solved as a least squares error computation. Without
additive information for each candidate match, the sum of the squares of the residuals of its
solutions can be used as a metric of the matching quality. In principle, the automatic matching
selection reduces to computation of all possible combinations and permutations keeping the
one with the minimum least-squares error from its PP matrix solution. The previous crude
approach produces very long computation times especially when the numbers K and N grow.

Singular value decomposition (SVD) is the most robust linear solution for PP matrix
computation, but the suitability of QR-factorization, Gaussian Elimination, and Cholesky
Factorization were explored. The methods were used in several test cases and each selected the
same optimum match when minimizing mean square error (MSE). Cholesky factorization
achieved convergence in less than a quarter of the time needed by SVD. Additional measures of
the quality of the PP matrix can be utilized. For example, matrix condition number (CN)
represents a ratio of the largest to smallest singular values (via SVD), which can
eliminate singular or ill-conditioned systems. Theta, which should be 90 degrees (~1.57
radians), determines if the resultant vectors of the PP matrix are distorted as a measure of
skew. Further, geometric constraints can be added if the estimated point source or detector
plane are known. Generally, the fastest is MSE, which is not dependent on other factors or
knowledge, but the addition of other thresholds ensures a consistent optimum result. Due to
the nature of this approach and the prevalence of multicore CPUs/GPUs, a parallel
implementation of the search process can also be implemented. For fiducials of n=8 and k=6,
we get 20,160 possible combinations, and in combination with multiple thresholds, this

σ = (−j± −4ik)/2i)(√ j2 (64)

N !/(K! ∗ (N −K)!) (65)

N !/(N −K)! (66)
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represents a reasonable minimum for most CPUs.

RT fiducial tracking by moving focal spot location
As discussed above, the solution for RT is determined by the geometric properties of X-ray
acquisition. If only some elements are known, a solution might be accomplished iteratively by
changing the point source location and a tentative magnification multiplier until good overlap
with fiducials is accomplished. If the geometry is largely unknown, but PP is possible, then PP
can be used to compute the point source and image plane locations, which can subsequently be
used in RT. This could be particularly useful when measurements are difficult to establish, but a
relatively fixed setup is present.

If the X-ray setup is fixed (Source, Object(s), and Detector), then known changes in geometry
should be compensated quickly using RT. For example, we demonstrate a case of a fixed X-ray
setup with a phantom skull and widely distributed geometric fiducials. In this example, PP is
used to determine the origin point for RT in both AP and LAT views. Then the source position is
displaced linearly by 20 mm and a new image is obtained. From PP, the prediction of the point
source by Euclidean Error of the two exposures was 19.7 mm and 20.0 mm for AP and LAT,
respectively. In RT, simple displacement of 20 mm produced points wherein the fiducials
overlapped without added adjustments (Figures 2-5).

FIGURE 2: AP X-ray image of phantom prior to displacement of
the focal spot. Note the good overlap of the projection points
(red dots) with the objects (spheres, screw tips, electrode tips)
on the image.
AP: Antero-Posterior
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FIGURE 3: LAT X-ray image of phantom prior to displacement
of the focal spot. Note the good overlap of the projection
points (red dots) with the objects (spheres, screw tips,
electrode tips) on the image.
LAT: Lateral
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FIGURE 4: AP X-ray of phantom after the 20 mm displacement
of the focal spot. Note the good overlap of the projection
points (red dots) with the objects (spheres, screw tips,
electrode tips) on the image that were slightly displaced from
the previous image (Figure 2). This was accomplished by only
changing the point source location, indicating that the fiducials
on the display plane were predictable in this fixed setup.
AP: Antero-Posterior; mm: millimeter
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FIGURE 5: LAT X-ray of phantom after the 20 mm displacement
of the focal spot. Note the good overlap of the projection
points (red dots) with the objects (spheres, screw tips,
electrode tips) on the image that were slightly displaced from
the previous image (Figure 3). This was accomplished by only
changing the point source location, indicating that the fiducials
on the display plane were predictable in this fixed setup.
LAT: Lateral; mm: millimeter

PP and orthogonal and non-orthogonal RT
The following tables demonstrate the mathematical solutions for RT and PP. Starting with
orthogonal imaging (COA) in RT, point source and planar data can be combined with objects
(fiducials) and line-detector plane intersections (Table 1). In this case, the source image
distance (SID) is 1168 mm and the pixel spacing is 388 micrometer (um)/pixel when using 2D
fluoroscopy mode using the O-arm2 (Medtronic, Dublin, Ireland). Computing the ray-plane
intersections for all the relevant objects reveals the AP dimension to be constant at -515 (COA),
which allows the use of the LAT and VERT coordinates to be translated directly to image (Table
2). Similarly, the LAT image has a constant LAT dimension of 513 (Table 3).
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Point Source  Detector Plane   

 AP     

AP 653  -515 -515 -515

LAT -7.5  0 100 0

VERT 93  0 0 100

      

 LAT     

AP -5  0 100 0

LAT -655  513 513 513

VERT 5  0 0 100

TABLE 1: 3D Point source and plane coordinates used for RT in 3D. SID is 1168 mm,
which is known for O-arm2. Note the assumed orthogonality of the AP and LAT
planes, which is not necessarily fixed.
AP: Antero-Posterior; LAT: Lateral; VERT: Vertical; SID: Source image distance; RT: Ray tracing.

Object    Intersection   

 AP LAT VERT AP LAT VERT 90-angle of intersection

AC 8.7 -0.8 -11.2 -515 4.645895 -95.8959 9.205316

PC -18.8 -0.4 -11.6 -515 4.84415 -88.8589 8.869997

Midline 5.7 -2.3 41.9 -515 1.882975 0.794222 4.53697

Target: Left STN -8.65882 -12.4276 -15.7972 -515 -16.1984 -99.0553 9.347044

15mmAboveTarget: Left STN -2.35342 -20.1082 -4.56108 -515 -29.9709 -80.8777 8.536699

75mmAboveTarget: Left STN 22.86817 -50.8308 40.38327 -515 -87.8171 -4.52933 6.17375

LFPB 89.4 -46.1 -5.6 -515 -87.4943 -111.338 10.64041

LFPT 74.6 -30 -4.1 -515 -52.9357 -103.08 9.777465

LFSI 77.8 -58 -34.2 -515 -110.045 -165.292 13.38359

LFSS 79.7 -54.5 -21.1 -515 -103.254 -139.459 12.1474

LPPB -92.9 -59.6 -2.7 -515 -89.0831 -56.856 8.311116

LPPT -75.5 -45.9 0.5 -515 -69.0665 -55.3047 7.827933
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LPSI -84 -65.3 -30.9 -515 -99.1016 -103.357 10.50932

LPSS -85 -64.2 -19.6 -515 -97.2366 -85.207 9.694069

RFPB 87.8 49 -4.5 -515 109.2587 -108.486 11.27558

RFPT 72.5 33.5 -2.9 -515 74.9944 -99.9564 10.1855

RFSI 77.1 60.6 -38.4 -515 130.6156 -173.496 14.41237

RFSS 79.3 56.7 -19.7 -515 123.2052 -136.447 12.73938

RPPB -94.1 48.5 -3.9 -515 80.04919 -58.4914 8.51973

RPPT -77 34.1 -1 -515 59.06 -57.4 8.015313

RPSI -86.6 58.3 -26.2 -515 96.41347 -95.2445 10.43098

RPSS -87.4 57.5 -21.5 -515 95.03917 -87.6267 10.08335

Relecdelayed -8.7 12.3 -16 -515 27.44998 -99.4014 9.504477

Rscrew2 42.1 40 41.4 -515 83.31683 -5.65575 6.549156

RScrew1 19.6 46.3 46.3 -515 91.70808 6.884433 6.417344

TABLE 2: Ray-to-detector plane intersections for actual data in the AP view using RT.
Using knowledge of the point source and the detector plane locations in Table 1,
combined with the object positions in AP, LAT, VERT in this table, the location of the
intersections can be calculated. In addition, the angle of the intersection in degrees is
shown relative to the normal of the AP plane.
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; RT = Ray Tracing; AC = Anterior Commissure; PC = Posterior
Commissure; Midline = Midline Structure on Falx; Target: Left STN = Target on Left Subthalamic Nucleus; 15mmAboveTarget: Left STN
= 15 millimeters above target along stereotactic axis of left subthalamic nucleus; 75mmAboveTarget: Left STN = 75 millimeters above
target along stereotactic axis of left subthalamic nucleus; RPPT = Right Posterior Pin Tip; RPPB = Right Posterior Pin Base; RPSS =
Right Posterior Sphere Superior; RPSI = Right Posterior Sphere Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right Frontal Pin
Base; RFSS = Right Frontal Sphere Superior; RFSI = Right Frontal Sphere Inferior; LPPT = Left Posterior Pin Tip; LPPB = Left
Posterior Pin Base; LPSS = Left Posterior Sphere Superior; LPSI = Left Posterior Sphere Inferior; LFSS = Left Frontal Sphere
Superior; LFSI = Left Frontal Sphere Inferior; LFPT = Left Frontal Pin Tip; LFPB = Left Frontal Pin Base; Relecdelayed = Right
Electrode Tip; Rscrew2 = Right Screw 2; RScrew1 = Right Screw 1.

Object    Intersection   

 AP LAT VERT AP LAT VERT 90-angle of intersection

AC 8.7 -0.8 -11.2 19.4598 513 -23.9233 1.8575

PC -18.8 -0.4 -11.6 -29.6233 513 -24.6193 1.888784

Midline 5.7 -2.3 41.9 14.14754 513 71.03217 3.368729

Target: Left STN -8.65882 -12.4276 -15.7972 -11.6506 513 -32.8029 1.882207
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15mmAboveTarget: Left STN -2.35342 -20.1082 -4.56108 -0.13113 513 -12.5894 0.895213

75mmAboveTarget: Left STN 22.86817 -50.8308 40.38327 48.87568 513 73.40412 4.263447

LFPB 89.4 -46.1 -5.6 176.0793 513 -15.3331 8.867123

LFPT 74.6 -30 -4.1 143.7565 513 -12.0061 7.304882

LFSI 77.8 -58 -34.2 156.994 513 -71.6928 8.724066

LFSS 79.7 -54.5 -21.1 159.7454 513 -45.7657 8.395892

LPPB -92.9 -59.6 -2.7 -177.434 513 -10.1051 8.429719

LPPT -75.5 -45.9 0.5 -140.19 513 -3.62912 6.615612

LPSI -84 -65.3 -30.9 -161.473 513 -66.106 8.371011

LPSS -85 -64.2 -19.6 -163.158 513 -43.6337 8.063262

RFPB 87.8 49 -4.5 148.9636 513 -10.7614 7.548125

RFPT 72.5 33.5 -2.9 126.4742 513 -8.40189 6.455383

RFSI 77.1 60.6 -38.4 129.0034 513 -65.8373 7.394104

RFSS 79.3 56.7 -19.7 133.3482 513 -35.5362 7.036344

RPPB -94.1 48.5 -3.9 -152.93 513 -9.7764 7.253758

RPPT -77 34.1 -1 -127.037 513 -5.16979 5.985381

RPSI -86.6 58.3 -26.2 -138.617 513 -46.0887 6.982518

RPSS -87.4 57.5 -21.5 -140.078 513 -38.4414 6.926503

Relecdelayed -8.7 12.3 -16 -11.4762 513 -31.7571 1.830254

Rscrew2 42.1 40 41.4 74.15511 513 66.17295 4.895392

RScrew1 19.6 46.3 46.3 35.97077 513 73.78426 3.921262

TABLE 3: Ray-to-detector plane intersections for actual data in LAT view using RT.
Using knowledge of the point source and the detector plane locations in Table 1,
combined with the object positions in AP, LAT, VERT in this table, the location of the
intersections can be calculated. In addition, the angle of the intersection in degrees is
shown relative to the normal of the LAT plane.
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; RT = Ray Tracing; AC = Anterior Commissure; PC = Posterior
Commissure; Midline = Midline structure on Falx; Target: Left STN = Target on Left Subthalamic Nucleus; 15mmAboveTarget: Left STN
= 15 millimeters above target along stereotactic axis of left subthalamic nucleus; 75mmAboveTarget: Left STN = 75 millimeters above
target along stereotactic axis of left subthalamic nucleus; RPPT = Right Posterior Pin Tip; RPPB = Right POsterior Pin Base; RPSS =
Right Posterior Sphere Superior; RPSI = Right Posterior Sphere Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right Frontal Pin
Base; RFSS = Right Frontal Sphere Superior; RFSI = Right Frontal Sphere Inferior; LPPT = Left Posterior Pin Tip; LPPB = Left
Posterior Pin Base; LPSS = Left Posterior Sphere Superior; LPSI = Left Posterior Sphere Inferior; LFSS = Left Frontal Sphere
Superior; LFSI = Left Frontal Sphere Inferior; LFPT = Left Frontal Pin Tip; LFPB = Left Frontal Pin Base; Relecdelayed = Right
Electrode Tip; Rscrew2 = Right Screw 2; RScrew1 = Right Screw 1.
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The following tables (Tables 4-8) demonstrate the PP solution using 3D coordinates combined
with scaled (in millimeters) U and V screen coordinates for analysis in both AP and LAT
views. The complete PP matrices are computed using SVD with 22 and 26 equations in AP and
LAT, respectively (Table 6). Applying the matrices to the images for all the hyperdense objects
(fiducials, pins, electrode tips) shows overlap in the AP and LAT image (Figures 6, 7). The next
step is to use PP to develop the geometry and compare the results to RT (Table 7). Finally, we
apply biplanar imaging to localize the 3D position (STiL) in both RT and PP. The solution in RT
can be derived from a line-line intersection problem using parametric equations for the lines to
solve for the parameters r, which describes the closest point of intersection (equations 67-69).
After r is solved, the values for x, y, and z can be readily calculated by plugging the value back
into each parametric equation. A skew ray (line-line) intersection computation generating the
closest points of intersection on each ray allows for a Euclidean distance between those points
serving as a quality check between the two images. The biplanar point solution for PP can be
derived by first generating complete matrices in AP and LAT (equations 70, 71). Then the U and
V screen coordinates are used in the four planar systems of equations to solve x, y, and z
simultaneously (equations 72-75). The results for the left electrode tip, converted to MidACPC
coordinates demonstrate a 3D Euclidean error of 0.48 mm and 0.30 mm relative to immediate
postoperative CT for RT and PP, respectively (Table 8).

 Object AP LAT VERT U V

1 RPPT -77 34.1 -1 134.947 149.564

2 RPSS -87.4 57.5 -21.5 98.86 179.35

3 RPSI -86.6 58.3 -26.2 97.348 186.75

4 RFPT 72.5 33.5 -2.9 119.836 191.75

5 RFSS 79.3 56.7 -19.7 71.647 227.815

6 LPPT -75.5 -45.9 0.5 263.74 146.983

7 LPSS -85 -64.2 -19.6 291.933 177.068

8 LPSI -84 -65.3 -30.9 293.507 195.25

9 LFSS 79.7 -54.5 -21.1 298.518 230.707

10 LFPT 74.6 -30 -4.1 247.177 194.656

11 RFPB 87.8 49 -4.5 85.07 199.64

TABLE 4: AP data used for input into PP computation. Here, there is a combination of
3D object points (AP, LAT, VERT) and 2D points on the display plane (U, V).
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; U = Horizontal Axis of Display Plane; V = Vertical Axis of Display Plane; PP =
Perspective Projection; RPPT = Right Posterior Pin Tip; RPSS = Right Posterior Sphere Superior; RPSI = Right Posterior Sphere
Inferior; RFPT = Right Frontal Pin Tip; RFSS = Right Frontal Sphere Superior; LPPT = Left Posterior Pin Tip; LPSS = Left Posterior
Sphere Superior; LPSI = Left Posterior Sphere Inferior; LFSS = Left Frontal Sphere Superior; LFPT = Left Frontal Pin Tip; RFPB =
Right Frontal Pin Base.
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 Object AP LAT VERT U V

1 LPPT -75.5 -45.9 0.5 56.622 164.432

2 RPPT -77 34.1 -1 69.602 166.417

3 RPSS -87.4 57.5 -21.5 56.85 199.482

4 RPSI -86.6 58.3 -26.2 58.369 206.983

5 LPSI -84 -65.3 -30.9 35.246 227.713

6 RFSI 77.1 60.6 -38.4 326.496 226.484

7 LFSI 77.8 -58 -34.2 353.981 232.634

8 RFPT 72.5 33.5 -2.9 323.107 169.639

9 LFPB 89.4 -46.1 -5.6 372.72 175.96

10 RPPB -94.1 48.5 -3.9 44.513 170.195

11 LPPB -92.9 -59.6 -2.7 20.165 170.449

12 LPSS -85 -64.2 -19.6 33.29 204.795

13 RScrew1 19.6 46.3 46.3 233.346 86.749

TABLE 5: LAT data used for input into PP computation. Here, there is a combination
of 3D object points (AP, LAT, VERT) and 2D points on the display plane (U, V).
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; U = Horizontal Axis of Display Plane; V = Vertical Axis of Display Plane; PP =
Perspective Projection; LPPT = Left Posterior Pin Tip; RPPT = Right Posterior Pin Tip; RPSS = Right Posterior Sphere Superior; RPSI
= Right Posterior Sphere Inferior; LPSI = Left Posterior Sphere Inferior; RFSI = Right Frontal Sphere Inferior; LFSI = Left Frontal
Sphere Inferior; RFPT = Right Frontal Pin Tip; LFPB = Left Frontal Pin Base; RPPB = Right Posterior Pin Base; LPPB = Left Posterior
Pin Base; LPSS = Left Posterior Sphere Superior; RScrew1 = Right Screw 1.
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 PP Matrices  

AP Matrix (3x4)   

-0.30417 -1.7812 0.003801 188.3312

0.001436 0.012411 -1.78216 165.1482

-0.00152 6.84E-05 -2.21E-05 1

LAT Matrix (3x4)   

1.785236 0.29387 0.015113 201.1355

0.003202 0.236093 -1.77785 164.6433

2.13E-05 0.001521 7.00E-05 1

TABLE 6: AP and LAT Matrices resulting from SVD calculation in PP from data in
Tables 4, 5. For AP Matrix: MSE 0.312 mm; Matrix Condition Number: 55014.68. For
LAT Matrix: MSE 0.432 mm; Matrix Condition Number: 78991.78. These data are
displayed as a 3x4 format (see equation 22).
AP = Antero-Posterior; LAT = Lateral; SVD = Singular Value Decomposition; MSE = Mean Square Error.

Solutions in AP and LAT Computed from PP  

AP Point Source (AP, LAT, VERT):     

655.7883 -6.05706 93.15404    

Combined Alpha Beta Uo Vo Theta

1173.785 1177.416 1170.154 146.9495 16.4229 1.581723

AP Plane Calculation using Intrinsic Matrix from PP (AP, LAT, VERT):  

-511.98 0 0    

      

-513.434 0 100    

      

-516.476 -100 0    

Focal Distance AP (Quadratic Solution):   

1168.091      

AP Normal-to-Normal Angle (degrees): 2.70572703691867
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LAT Point Source (AP, LAT, VERT):     

-4.4651 -657.583 5.275153    

Combined Alpha Beta Uo Vo Theta

1171.379 1169.453 1173.304 209.5675 101.2284 1.571102

LAT Plane Calculation using Intrinsic Matrix from PP Reverse Cross Product (AP, LAT, VERT): 

0 515.5404 0    

      

0 510.9394 100    

      

-100 516.9381 0    

Focal Distance LAT (Quadratic Solution): 

1171.589      

LAT Normal-to-Normal Angle (degrees): 2.75303244159637

TABLE 7: Solutions computed from PP Matrices derived from Table 6 reveal the
geometry of the biplanar imaging. Here we are able to compute the point source in AP
and LAT. In addition, K-matrix (intrinsic matrix) components are shown including
principal point, skew angle (theta), and a simple average between alpha and beta. The
planes are computed using the focal distance obtained from a quadratic solution and
the normal of the detector plane. The normal of the computed detector plane relative
to the normal of the normalized plane is also shown as the "AP/LAT Normal to
Normal Angle."
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; PP = Perspective Projection; Combined = Simple average of Alpha and Beta for
focal length calculation; Alpha = Alpha length from intrinsic matrix for focal length calculation; Beta = Beta length from intrinsic matrix for
focal length calculation; 

Theta = Angle used to determine skew angle (here presented in radians);

Distance from Point Source to Plane = Focal Length, which was calculated using Quadratic Solution;

AP/LAT Normal-to-normal Angle (degrees) = normal of computed detector plane relative to the associated normal of a normalized
plane.

and = principal pointU0 V0
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 Planned Target O-arm2 CT RT PP

AP -3.5 -3.02 -3.16 -3.32 -3.43

LAT -12 -11.15 -10.8 -10.6 -10.74

VERT -4 -3.71 -3.88 -3.47 -3.76

Rel Post-op CT 1.252996 0.413521 0 0.483425 0.301496

Rel to O-arm2 1.018332 0 0.413521 0.670895 0.581979

Rel to Plan Target 0 1.018332 1.252996 1.507747 1.284562

TABLE 8: Comparison of target localization coordinates for an electrode tip in a
single case. Here, MidACPC coordinates are presented. All Euclidean distances are
compared to the "gold standard" postoperative CT, including the final intraoperative
image (O-arm2) and the originally planned target. RT and PP fair well relative to the
post-op CT with Euclidean distances of 0.48 mm and 0.30 mm as compared to O-arm2
of 0.41 mm.
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; MidACPC = Middle of the Anterior Commissure to Posterior Commissure
point; RT = Ray Tracing; PP = Perspective Projection; Rel Post-op CT = Euclidian Distance relative to the post-op CT; Rel to O-arm2 =
Euclidian Distance relative to the intraoperative O-arm2; Rel to Plan Target = Euclidian Distance relative to original planned target.

FIGURE 6: AP Image demonstrating the applied PP AP matrix
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to objects and overlap in images. Taking formula's 10-12, U
(horizontal) and V (vertical) display coordinates are computed
for all 3D objects and introduced into the display. Cyan colors
show pin tips, pin bases, and the right DBS electrode. Screw
tips from the DBS retaining cap were also included here.
Anterior commissure (AC), Posterior commissure (PC), and
Midline are demonstrated in blue. The left DBS electrode and
original trajectory from left STN target, 15 mm above target and
75 mm above target are in green.
DBS = Deep Brain Stimulation; AP = Antero-Posterior; PP = Perspective Projection; AC = Anterior
Commissure; PC = Posterior Commissure; Midline = Midline structure on Falx; Target: Left STN =
Target on Left Subthalamic Nucleus; 15mmAboveTarget: Left STN = 15 millimeters above target
along stereotactic axis of left subthalamic nucleus; 75mmAboveTarget: Left STN = 75 millimeters
above target along stereotactic axis of left subthalamic nucleus; RPPT = Right Posterior Pin
Tip; RPPB = Right POsterior Pin Base; RPSS = Right Posterior Sphere Superior; RPSI = Right
Posterior Sphere Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right Frontal Pin Base; RFSS =
Right Frontal Sphere Superior; RFSI = Right Frontal Sphere Inferior; LPPT = Left Posterior Pin
Tip; LPPB = Left Posterior Pin Base; LPSS = Left Posterior Sphere Superior; LPSI = Left Posterior
Sphere Inferior; LFSS = Left Frontal Sphere Superior; LFSI = Left Frontal Sphere Inferior; LFPT =
Left Frontal Pin Tip; LFPB = Left Frontal Pin Base; Relecdelayed = Right Electrode Tip; Rscrew2 =
Right Screw 2; RScrew1 = Right Screw 1.

FIGURE 7: LAT Image demonstrating the applied PP LAT matrix
to objects and overlap in images. Taking formula's 10-12, U
(horizontal) and V (vertical) display coordinates are computed

2020 Sedrak et al. Cureus 12(4): e7904. DOI 10.7759/cureus.7904 23 of 35

https://assets.cureus.com/uploads/figure/file/107579/lightbox_a2c9da9075cb11eab8db65ef9a9c2c02-LATOarm.png


for all 3D objects and introduced into the display. Cyan colors
show pin tips, pin bases, and the right DBS electrode. Screw
tips from the DBS retaining cap were also included here.
Anterior commissure (AC), Posterior commissure (PC), and
Midline are demonstrated in blue. The left DBS electrode and
original trajectory from left STN target, 15 mm above target and
75 mm above target are in green.
DBS = Deep Brain Stimulation; LAT = Lateral; PP = Perspective Projection; AC = Anterior
Commissure; PC = Posterior Commissure; Midline = Midline structure on Falx; Target: Left STN =
Target on Left Subthalamic Nucleus; 15mmAboveTarget: Left STN = 15 millimeters above target
along stereotactic axis of left subthalamic nucleus; 75mmAboveTarget: Left STN = 75 millimeters
above target along stereotactic axis of left subthalamic nucleus; RPPT = Right Posterior Pin
Tip; RPPB = Right POsterior Pin Base; RPSS = Right Posterior Sphere Superior; RPSI = Right
Posterior Sphere Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right Frontal Pin Base; RFSS =
Right Frontal Sphere Superior; RFSI = Right Frontal Sphere Inferior; LPPT = Left Posterior Pin
Tip; LPPB = Left Posterior Pin Base; LPSS = Left Posterior Sphere Superior; LPSI = Left Posterior
Sphere Inferior; LFSS = Left Frontal Sphere Superior; LFSI = Left Frontal Sphere Inferior; LFPT =
Left Frontal Pin Tip; LFPB = Left Frontal Pin Base; Relecdelayed = Right Electrode Tip; Rscrew2 =
Right Screw 2; RScrew1 = Right Screw 1.

Next, we consider the situation of uncertain correlation between 3D points to 2D points. For
this, the same patient case discussed above now includes an initial oblique image with the N-

+ ∗ = + ∗xAP aAP rAP xLAT aLAT rLAT (67)
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+ z(A −A ) − A +A = 0P31 P33UAP UAP P43 P41

(72)

x(A −A ) +y(A −A )P12 P13VAP P22 P23VAP

+ z(A −A ) − A +A = 0P32 P33VAP VAP P43 P42

(73)

x(LA −LA ) +y(LA −LA )T11 T13ULAT T21 T23ULAT

+ z(LA −LA ) − LA +LA = 0T31 T33ULAT ULAT T43 T41

(74)

x(LA −LA ) +y(LA −LA )T12 T13VLAT T22 T23VLAT

+ z(LA −LA ) − LA +LA = 0T32 T33VLAT VLAT T43 T42

(75)
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localizer positioned (Figure 8). We start the solution by using a combinatorial
approach. Various thresholds can be analyzed, but here we assume no specific knowledge and
use MSE and the matrix condition number (CN), but include the theta angle result (Table
9). The combination of low MSE, low CN, and theta closest to 1.57 radians identify the
result. The next step is to use the geometric analysis of the point source and plane location
(Table 10). These data are then placed in RT, but require normalization along the AP axis to
make COA (Table 11). The final result produced by RT shows excellent overlap (Figure 9). Note
that the projection can also be performed using PP. Because both methods project the scalar
distance on the detector plane, data from RT and PP should be similar. Here, we randomly
chose the AC point to Midline point yielding a distance in RT of 89.604 mm to PP of 89.694
mm. Finally, in RT, the result between detector plane intersection and display plane
(normalized) is exactly the same (89.604 mm).

FIGURE 8: Oblique image with a setting of combinatorial points
as unknowns 'S'. These screen positions are the input data for
which the association between 3D fiducials and 2D image
points will be generated in PP.
PP = Perspective Projection
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Combinatorials MSE Condition Theta (radians)

1 0.0214 234536 0.7775

2 0.0294 272250 1.9139

3 0.0005 254621 1.304

4 0.0353 208276 1.1685

5 0.0193 278288 3.0104

6 0.0337 205428 1.1826

7 0.0141 294228 1.5808

8 0.0283 271562 0.0184

9 0.0386 285403 0.9659

10 0.0219 238902 0.8718

11 0.0498 241089 0.2657

12 0.0438 244903 1.2075

TABLE 9: Combinatorial approach in the image reveals 12 possible combinations.
Two Thresholds (MSE <0.05 and Matrix Condition Number <300000) were implemented
but the third data point (theta) is presented. Match 7 is the correct combination here
for which theta (in radians) is also closest to pi/2 (~1.57).
Combinatorials = the combinatorial match which accommodated the thresholds; MSE = Mean Square Error; Condition = Matrix
Condition or Matrix Number; Theta = Angle used to determine skew angle (here presented in radians).

PP Result      

AP Matrix  (3x4)     

0.706033 -1.57036 0.001052 217.2948   

0.192262 0.05844 -1.70128 187.6501   

0.001416 0.000382 4.55E-05 1   

AP Oblique Point Source (AP, LAT, VERT):     

-663.821 -160.061 29.78255    

Combined Alpha Beta Uo Vo Theta

1160.582 1158.306 1162.858 185.9213 100.8434 1.570177

Plane Calculation using Intrinsic Matrix from PP Reverse Cross Product (AP, LAT, VERT): 
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497.7189 0 0    

      

494.5064 0 100    

      

524.6757 -100 0    

Focal Distance (Quadratic Solution): 

1161.684      

Normal-to-Normal Angle (degrees): 15.1883448297578

TABLE 10: PP Matrix Result (as displayed in 3x4 form) and Geometric Analysis. Here
we are able to compute the point source in the AP oblique. In addition, K-matrix
(intrinsic matrix) components are shown including principal point, skew angle, and a
simple average between alpha and beta. The plane is computed using the focal
distance obtained from a quadratic solution and the normal of the detector plane. The
normal of the computed detector plane relative to the normalized plane is also shown
(Normal-to-Normal Angle). Note that the expected focal distance for O-arm2 is 1168
mm, whereas here we compute 1161.68 mm.
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; PP = Perspective Projection; Combined = Simple average of Alpha and Beta for
focal length calculation; Alpha = alpha length from intrinsic matrix for focal length calculation; Beta = beta length from intrinsic matrix for
focal length calculation

Theta = Angle used to determine skew angle (here presented in radians)

Distance from Point Source to Plane = Focal Length, which was calculated using Quadratic Solution

Normal-to-Normal Angle in degrees = detector plane normal compared to the normalized plane

     Plane Intersection     

  3D Objects  Uncorrected (Not COA)   Corrected (COA)

 AP LAT VERT AP LAT VERT 90 degree AP LAT VERT

AC 8.7 -0.8 -11.2 469.764 108.3856 -39.2966 5.462477 480.3335 -17.6189 -54.2145

PC -18.8 -0.4 -11.6 466.7983 119.7995 -42.7545 5.469725 480.3335 -5.82648 -57.674

Midline 5.7 -2.3 41.9 467.3978 106.4912 50.25612 1.981663 480.3335 -18.8321 35.38136

Target: Left STN -8.65882 -12.4276 -15.7972 473.3731 96.19302 -49.3322 6.141765 480.3335 -30.3306 -64.2548

and = principal pointU0 V0
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15mmAboveTarget: Left STN -2.35342 -20.1082 -4.56108 476.7589 81.2621 -29.4368 5.639001 480.3335 -45.6281 -44.3498

75mmAboveTarget: Left STN 22.86817 -50.8308 40.38327 489.8675 23.45393 47.59255 6.113697 480.3335 -104.856 32.7165

LFPB 89.4 -46.1 -5.6 494.4183 15.17863 -24.6257 7.853849 480.3335 -114.03 -39.5365

LFPT 74.6 -30 -4.1 486.9663 42.63178 -23.0215 6.709144 480.3335 -85.5838 -37.9315

LFSI 77.8 -58 -34.2 499.9613 0.097427 -70.6215 9.841432 480.3335 -130.034 -85.5544

LFSS 79.7 -54.5 -21.1 497.9987 4.887825 -49.7261 8.998951 480.3335 -124.898 -64.6489

LPPB -92.9 -59.6 -2.7 487.4062 42.51261 -35.7165 7.134157 480.3335 -85.8133 -50.6326

LPPT -75.5 -45.9 0.5 481.8148 62.24453 -27.2393 6.145061 480.3335 -65.3062 -42.1513

LPSI -84 -65.3 -30.9 492.8405 28.97404 -91.2706 9.616863 480.3335 -100.3 -106.213

LPSS -85 -64.2 -19.6 491.4975 31.27634 -68.7843 8.696894 480.3335 -97.7272 -83.7163

RFPB 87.8 49 -4.5 457.478 151.8248 -21.3616 4.317042 480.3335 27.52096 -36.2708

RFPT 72.5 33.5 -2.9 461.7529 135.8253 -20.1775 4.249801 480.3335 10.96017 -35.0861

RFSI 77.1 60.6 -38.4 453.5102 172.7025 -73.0388 6.979179 480.3335 48.7118 -87.9728

RFSS 79.3 56.7 -19.7 454.3771 166.1063 -44.6754 5.55964 480.3335 42.11733 -59.5959

RPPB -94.1 48.5 -3.9 433.689 241.7109 -35.1035 7.051642 480.3335 120.5007 -50.0193

RPPT -77 34.1 -1 443.0508 206.1689 -28.28 5.637865 480.3335 83.7471 -43.1926

RPSI -86.6 58.3 -26.2 431.6135 254.3388 -76.4596 8.9513 480.3335 133.2336 -91.3953

RPSS -87.4 57.5 -21.5 431.5886 253.3842 -67.6729 8.59737 480.3335 132.3184 -82.6044

Relecdelayed -8.7 12.3 -16 462.5526 136.2857 -48.9331 5.653625 480.3335 11.1966 -63.8555

Rscrew2 42.1 40 41.4 453.9262 156.7134 48.17749 1.139342 480.3335 33.16547 33.30172

RScrew1 19.6 46.3 46.3 448.5058 175.8095 56.66613 1.773089 480.3335 53.0142 41.79445

Right Lateral Inferior Rod 0 140 -86 414.5516 327.3861 -158.305 14.19625 480.3335 208.2041 -173.28

Right Anterior Superior Rod 121.24 70 103 448.6916 165.9593 133.5392 3.562061 480.3335 43.45515 118.7045

Right Lateral Superior Rod 0 140 103 405.7873 323.4244 147.7571 10.03155 480.3335 206.6601 132.9292

Right Anterior Inferior Rod 121.24 70 -86 456.701 168.3064 -135.475 9.910497 480.3335 43.63674 -150.439

Left Lateral Inferior Rod 0 -140 -86 536.8558 -123.776 -179.637 17.69033 480.3335 -259.241 -194.623

Left Anterior Superior Rod 121.24 -70 103 500.4178 -26.5012 138.3634 9.221608 480.3335 -155.835 123.531

Left Lateral Superior Rod 0 -140 103 526.0007 -124.104 161.0163 14.06313 480.3335 -256.732 146.1948

Left Anterior Inferior Rod 121.24 -70 -86 509.1922 -25.4946 -143.216 13.22117 480.3335 -157.147 -158.184

Right Posterior Inferior Rod -121.24 -70 -86 495.9658 32.44787 -217.707 14.77749 480.3335 -97.7591 -232.711

Right Posterior Superior Rod -121.24 -70 103 483.5946 30.39441 184.6181 8.094983 480.3335 -96.5218 169.808
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Left Posterior Superior Rod -121.24 70 103 412.2495 296.2062 174.9906 9.486716 480.3335 178.698 160.1758

Left Posterior Inferior Rod -121.24 70 -86 423.1228 300.8166 -202.163 15.09234 480.3335 180.3195 -217.159

TABLE 11: RT Projection from geometric analysis of PP (Table 10) along with
normalization of the axis to keep AP intersection constant. Here we take the point
source and plane data from Table 10, computed from PP, and then generate detector
plane intersection. Because the detector plane is off-axis (not COA), a normalization
procedure is computed as the corrected form, which forces all AP distances to a
constant value (COA). Then the LAT/VERT of the corrected can be translated/rotated
and positioned over the image.
AC = Anterior Commissure; PC = Posterior Commissure; Midline = Midline structure on Falx; Target: Left STN = Target on Left
Subthalamic Nucleus; 15mmAboveTarget: Left STN = 15 millimeters above target along stereotactic axis of left subthalamic
nucleus; 75mmAboveTarget: Left STN = 75 millimeters above target along stereotactic axis of left subthalamic nucleus; RPPT = Right
Posterior Pin Tip; RPPB = Right POsterior Pin Base; RPSS = Right Posterior Sphere Superior; RPSI = Right Posterior Sphere
Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right Frontal Pin Base; RFSS = Right Frontal Sphere Superior; RFSI = Right Frontal
Sphere Inferior; LPPT = Left Posterior Pin Tip; LPPB = Left Posterior Pin Base; LPSS = Left Posterior Sphere Superior; LPSI = Left
Posterior Sphere Inferior; LFSS = Left Frontal Sphere Superior; LFSI = Left Frontal Sphere Inferior; LFPT = Left Frontal Pin Tip; LFPB
= Left Frontal Pin Base; Relecdelayed = Right Electrode Tip; Rscrew2 = Right Screw 2; RScrew1 = Right Screw 1; COA = Coherent
On-Axis.

FIGURE 9: Oblique projection from RT. Input data started with
PP matrix, the geometry was computed for point source and
image plane, and then placed into RT for plane intersection
and normalization. The RT projection shows excellent overlap
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of objects and N-localizer bars (green) of BRWLF (reference 3).
Cyan colors show pin tips, pin bases, and the right DBS
electrode. Screw tips from the DBS retaining cap were also
included here. Anterior commissure (AC), Posterior
commissure (PC), and Midline are demonstrated in blue. The
left DBS electrode and original trajectory from the left STN
target, 15 mm above the target, and 75 mm above the target
are in green. In addition, the N-localizer bars emerge from
points above the ring (blue).
AC = Anterior Commissure; PC = Posterior Commissure; Midline = Midline structure on
Falx; Target: Left STN = Target on Left Subthalamic Nucleus; 15mmAboveTarget: Left STN = 15
millimeters above target along stereotactic axis of left subthalamic nucleus; 75mmAboveTarget: Left
STN = 75 millimeters above target along stereotactic axis of left subthalamic nucleus; RPPT =
Right Posterior Pin Tip; RPPB = Right Posterior Pin Base; RPSS = Right Posterior Sphere
Superior; RPSI = Right Posterior Sphere Inferior; RFPT = Right Frontal Pin Tip; RFPB = Right
Frontal Pin Base; RFSS = Right Frontal Sphere Superior; RFSI = Right Frontal Sphere
Inferior; LPPT = Left Posterior Pin Tip; LPPB = Left Posterior Pin Base; LPSS = Left Posterior
Sphere Superior; LPSI = Left Posterior Sphere Inferior; LFSS = Left Frontal Sphere Superior; LFSI
= Left Frontal Sphere Inferior; LFPT = Left Frontal Pin Tip; LFPB = Left Frontal Pin
Base; Relecdelayed = Right Electrode Tip; Rscrew2 = Right Screw 2; RScrew1 = Right Screw
1; BRWLF = Brown-Roberts-Wells Localizer Frame.

Error propagation with PP
While RT is computationally deterministic, PP utilizes a least squares optimization. Therefore,
error propagation with PP is an important study. First, we evaluate automatic sphere detection
on 3D images (CT) using a “center of mass” calculation and then evaluate potential
errors. Hounsfield units and spherical size were used as thresholds for automatic sphere
detection. This method would expedite acquisition of 3D points from CT imaging. Here, a
comparison between this automation and manual selection is presented (Table 12). While this
is an important step, error propagation in PP becomes relevant. We therefore introduced Monte
Carlo simulation evaluating root mean square (RMS) as a function of the number of references
when introducing random 1 mm errors into 1 million simulations (Figure 10). This reveals that
error propagation is reduced by adding more data, which facilitates the least squares
computation. In our physical setup, the vertical (VERT) distance between spheres had the least
geometric variance. Fixing these points at 8, but increasing this VERT distance between them,
causes a significant reduction in worst-case calculation of a 3D point when a 2-mm artificial
error is introduced (Figure 11). This suggests that a wider geometric spread of fiducials reduces
3D error propagation while using PP.
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Sphere Delta AP Delta LAT Delta VERT Euclidean Error

1 -0.05 0.1 -0.19 0.2205

2 -0.07 0 0.27 0.2789

3 -0.01 0.03 -0.01 0.0332

4 0.05 -0.02 0.16 0.1688

5 0.13 0.13 0.17 0.2504

6 0.11 0.2 0.13 0.2627

7 0.14 0.24 0.18 0.3311

8 0.22 0.17 -0.14 0.3113

Average 0.065 0.1063 0.0712 0.2321

TABLE 12: Comparison of manual selection versus automation for 3D fiducial spheres
using a "center of mass" calculation. Single dimension error calculations are delta
values and 3D errors are Euclidean distances. The average Euclidean error is 0.23 mm
using this automation.
Sphere = Spherical Fiducial identified automatically on CT; Delta AP = Error in Antero-Posterior dimension in millimeters; Delta LAT =
Error in Lateral dimension in millimeters; Delta VERT = Error in Vertical dimension in millimeters; Euclidean Error = Total Euclidean 3D
error.
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FIGURE 10: Monte Carlo simulation of 1 mm artificial error
observing Root Mean Square (RMS) error in millimeters as a
function of the number of references (points) over 1 million
simulations. It is clear from the image that when six references
are present, error propagation can be significant. Increasing
the number of references to eight or more significantly
decreases the propagation of an error.
RMS = Root Mean Square Error

FIGURE 11: Influence of geometry on 3D Euclidean error
propagation. In this image, an artificial error of 2 mm is
introduced into AP, LAT, VERT, U or V values in either AP or
LAT matrix formulations for PP. A worst-case 3D calculation is
computed using AP and LAT PP formulation while fixing the
fiducials at 8. The "Original" is the initial data from an actual
case, whereas "Increased Vertical" has a 30 mm increase in
vertical distance between points. The 3D error computation
reduces from 3.69 mm to 0.6 mm from the "Original" to
"Increased Vertical" datasets. While not a comprehensive
study, this illustrates the impact of the imaging geometry on
error propagation while using PP.
AP = Antero-Posterior; LAT = Lateral; VERT = Vertical; U = horizontal screen coordinate; V =
vertical screen coordinate; PP = Perspective Projection; Original = Initial Dataset from actual
case; Increased Vertical = an artificial 30 mm increase in the vertical distance between points; Y-
axis = 3D Euclidean error in millimeters.

2020 Sedrak et al. Cureus 12(4): e7904. DOI 10.7759/cureus.7904 32 of 35

https://assets.cureus.com/uploads/figure/file/107600/lightbox_a99d5180844911eab090910ca53233f1-GreaterZ3.png


Discussion
X-ray imaging is widespread in various aspects of medicine. Single or multiple-plane
computations, however, have not been widely utilized in standard X-rays imaging. While some
efforts have been reported previously, herein, we have attempted a more comprehensive,
usable, and illustrative approach [8-12]. We also explored various automations and error
propagation. Further, enhanced computing power may facilitate these
computations. Coincidentally, computer vision for 3D-2D rendering applies many similar
principles to those used in X-ray imaging described above [7]. In computer vision, the task is
generally to produce a 2D screen image from a dynamically changing 3D pose, but many
modern applications include 3D-3D such as with virtual reality. Consideration of augmented
reality also applies similar projection techniques superimposed on real-time analysis of
images. Unlike our description for X-rays, the use of perspective projection with camera lenses
may yield radial inhomogeneity (pincushion or barrel distortions) that require other steps or
non-linear solutions.

Herein, we describe some of the mathematical principles of RT and PP applied to X-ray images
and implement them in phantom and actual cases. Importantly, these methods have wide
applications whenever planar images are obtained. Depending on the use case, simply
increasing the number of reference points and the geometric spread ensures a quality
result. However, RT depends more on knowledge of the imaging geometry. Also, application of
scaling on the display image allows an enhanced understanding of the exposed geometry using
PP. Three-dimensional imaging using CT or MRI images has largely overtaken 2D planar
imaging when 3D positions are needed. However, CT/MRI incurs more expense and complexity,
in addition to increased radiation (for CT) dose, without a significant improvement in
resolution for a single target point. Further, the pixel size of an X-ray or fluoroscopy apparatus
in our case were 0.125 mm and 0.388 mm, respectively, whereas the pixel size for 3D imaging is
at best about 0.625 mm-0.8 mm for most current CT or MRI systems. Moreover, 3D imaging
requires image fusion and introduces some artifacts by the nature of the acquisition and
reconstruction techniques. Even though potentially millions of pixels are processed in 3D on
CT/MRI, a single pixel displacement can result in a 0.625 mm error. In 2D imaging, for RT and
PP, image point analysis is also required, but the 2D determination is at a higher resolution
such that a single pixel displacement renders a 0.125 mm error. Therefore, this kind of point
resolution to determine points in space, such as for deep brain stimulation (DBS) leads, can be
sufficiently optimized using these simple X-ray techniques, which correlate well with
preoperative CT/MRI imaging. In addition, as previously published, DBS lead rotation may be
computed from projection X-ray data [2].

Important use cases for X-ray/fluoroscopy imaging include DBS, spine surgery, vascular
interventions, non-vascular interventions, orthopedic interventions, radiosurgery and dental
procedures as well as numerous non-medical applications or basic science laboratories, all of
which can be enhanced with improved computing capacity [13 -16]. Because these systems can
be designed using cost-effective materials, computational enhancements for these use cases
could continue to grow. In addition, current X-ray and fluoroscopy technologies perform well
with RT and PP, even though they were not designed for their use. Considering the mathematics
and the physical nature of the X-ray systems, some assumptions should be considered carefully
before applying RT or PP. Assumptions include that the system behaves like a Cartesian system,
that the focal spot of the X-ray is a point source, that the X-ray detector is a plane, and that
there is no significant scatter, or inhomogeneity in the image. We also assume X-ray and
fluoroscopic imaging behave similarly. Some of these assumptions may not be completely
accurate. For example, the focal spot of an X-ray can vary in size between different
machines. Also, some fluoroscopic detectors may produce inhomogeneity. We also observed 2D
images on some CT scanners, which were not a projection but rather a
reconstruction. Therefore, care must be considered when applying these techniques to an
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imaging system.

Conclusions
Ray tracing (RT) and perspective projection (PP) are useful tools for geometric imaging
computation. RT or PP performs well for X-ray imaging analysis and may be used independently
or together. PP can serve as an initial calibration for RT in a fixed setup when the geometry is
unknown or difficult to measure. Because the pixel resolution of X-ray images is generally
greater than CT/MRI, which also have reconstructive artifacts, these X-ray techniques offer
excellent precision for point analysis. These tools have great importance in functional
neurosurgery, such as with DBS, but can be extended to other medical or non-medical
applications.
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