
Exposure to Drinking Water Chlorination by-Products and Fetal Growth and
Prematurity: A Nationwide Register-Based Prospective Study
Melle Säve-Söderbergh,1,2 Jonas Toljander,1 Carolina Donat-Vargas,2,3 Marika Berglund,2 and Agneta Åkesson2

1Science Division, Swedish Food Agency, Uppsala, Sweden
2Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
3School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain

BACKGROUND: Chlorination is globally used to produce of safe drinking water. Chlorination by-products are easily formed, and there are indications
that these are associated with adverse reproductive outcomes.

OBJECTIVES: We conducted a nationwide register-based prospective study to assess whether gestational exposure to the four most common chlorina-
tion by-products [total trihalomethanes (TTHMs)] via tap water was associated with risk of small for gestational age (SGA), preterm delivery, and
very preterm delivery. To date, this is one of the largest studies assessing drinking water TTHM-associated adverse reproductive outcomes.

METHODS:We included all singleton births 2005–2015 (live and stillbirths) of mothers residing in Swedish localities having >10,000 inhabitants, ≤2
operating waterworks, adequate information on chlorination treatment, and a sufficient number of routine TTHM measurements in tap water.
Individual maternal second and third trimester exposure was obtained by linking TTHM measurements to residential history, categorized into no
chlorination, <5, 5–15, and >15 lg TTHM/L. Outcomes and covariates were obtained via the linkage to Swedish health and administrative registers.
Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression using inverse probability weighting. We stratified the
analyses by chlorination treatment (chloramine, hypochlorite).

RESULTS: Based on approximately 500,000 births, we observed a TTHM dose-dependent association with increased risk of SGA, confined to treat-
ment with hypochlorite, corresponding to a multivariable-adjusted OR=1.20 (95% CI: 1.08, 1.33) comparing drinking water TTHM >15 lg to the
unexposed. Similar results were obtained when, instead of unexposed, the lowest exposure category (<5 lg=L TTHM) was used as reference. No
clear associations were observed for preterm delivery and very preterm delivery.
DISCUSSION: Chlorination by-products exposure via drinking water was associated with increased risk of SGA in areas with hypochlorite treatment.
https://doi.org/10.1289/EHP6012

Introduction
Chlorine is globally used in drinking water treatment owing to its
high efficiency in inactivating microbial pathogens and reducing
microbial growth in the distribution system. As a strong oxidant,
chlorine reacts with natural organic matter and other substances in
the water, generating hundreds of chlorination by-products (CBPs)
(Richardson et al. 2007). There is increasing evidence that some
CBPs are genotoxic and carcinogenic (Boorman 1999; Richardson
et al. 2007) but also indications that CBP exposure, such as trihalo-
methanes (THMs), may be associated with increased risk of
adverse reproductive outcomes (Bove et al. 2002; Colman et al.
2011; Graves et al. 2001; Grellier et al. 2010; Nieuwenhuijsen et al.
2000; Tardiff et al. 2006). From epidemiological studies, the
strongest support of an association is for intrauterine growth retar-
dation, resulting in, for example, small for gestational age (SGA)
(Cao et al. 2016; Grazuleviciene et al. 2011; Hinckley et al. 2005;
Kramer et al. 1992; Levallois et al. 2012; Lewis et al. 2006; Smith
et al. 2016; Wright et al. 2003, 2004), but the results are inconclu-
sive, with several studies indicating no association (Hoffman et al.
2008; Ileka-Priouzeau et al. 2015; Iszatt et al. 2014; Jaakkola et al.
2001; Kogevinas et al. 2016; Patelarou et al. 2011; Porter et al.
2005; Rivera-Núñez and Wright 2013; Villanueva et al. 2011). On

the other hand, indications of inverse associations—although
mostly statistically nonsignificant—have been observed for some
other specific adverse reproductive outcomes such as preterm
delivery and very preterm delivery (Grellier et al. 2010).

Assessing the association between CBP exposure and adverse
reproductive outcomes is challenging because of the potential of
exposure misclassification. Given that the formation of CBPs has
a seasonal variation, linked to the content of organic matter, a
correct timing of the exposure in relation to the relevant gesta-
tional effect-window is crucial (Mercier Shanks et al. 2013; Uyak
et al. 2008). Moreover, correct residential information is impor-
tant because there are also spatial variations, and approximately
20% of pregnant women move and often resettle in a new county
(Miller et al. 2010). The selection of a suitable unexposed refer-
ence area is another challenge. Because chlorination of public
drinking water is commonplace, most assigned unexposed refer-
ence areas are those with private wells in rural areas, potentially
introducing, for example, contextual confounding. The alterna-
tive has been to use municipal areas with low, but not zero, CBP
exposure as the reference group (Hrudey 2009), resulting in
reduced exposure contrast and an increased probability of mis-
classified exposure.

With strong emphasis on reducing the aforementioned short-
comings, we conducted a nationwide register-based prospective
cohort study among singleton births in Sweden during 2005–
2015 in order to assess the association between gestational expo-
sure to the four most common CBPs, the total trihalomethanes
(TTHMs: chloroform, bromoform, bromodichloromethane, and
dibromochloromethane), in drinking water and the risk of SGA,
preterm, and very preterm delivery.

Methods

Study Area and Study Population
As study area, we selected all localities (coherent and densely
populated areas) in Sweden having a population of >10,000
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inhabitants (∼ 60% of the total population) in order to be able to
include a large study population with a wide range of CBP expo-
sure while avoiding inclusion of areas not receiving municipal
drinking water. Localities were excluded if a) there were changes
in chlorination treatment of the drinking water between 1994 and
2010 (SWWA 1996, 2014); b) CBPs were detected in the drink-
ing water, but no chlorination was reported in the drinking water
production; c) three or more water utilities provided drinking
water to the locality or within municipal borders; d) two different
utilities provided drinking water with differences in mean CBP
concentrations >10 lg=L; or e) CBPs were measured for a pe-
riod of <4 y during 2005–2015 (with the exception of utilities
with no chlorination). In total, 83 localities were included in the
study area (∼ 40% of the total Swedish population) (Figure 1).

The study population was identified as all mothers giving
birth (live and stillbirths) from 1 January 2005 to 31 December
2015 with an official residential registration in any of the localities
in the study area during their pregnancy. Data was provided by the
Swedish Medical Birth Register (at the National Board of Health
and Welfare), linked to the Longitudinal Integration Database for
Health Insurance and Labour Market Studies (LISA; Statistics
Sweden) and a national register for regional divisions based on
real estate (Geografidatabasen; Statistics Sweden) by the personal
identification number (a unique 10-digit number assigned to all
Swedes) (Figure 1). From the 738,538 newborns (including 2,578
stillbirths) and 457,524 mothers, we excluded nonsingleton births
and all mothers with occupational TTHM exposure (registered as
professional swimmers or coaches and swimming pool lifeguards).
Because this was a register-based study, where the individuals are
nonidentifiable after matching, informed consent was not obtained.
The study was approved by the Regional Ethics Review Board in
Stockholm.

Exposure and Covariates
The CBP drinking water concentrations, sampled at the end users
(tap) in the study area, were obtained from a register administered
by the Geological Survey of Sweden (n=4,272 confirmed
TTHM analyses). The drinking water utilities in Sweden are
obliged to follow the national drinking water regulations [SLVFS
2001:30 (Swedish National Food Agency 2001)], at least meas-
uring four tap water samples yearly at the end user, preferably
distributed over time and over the distribution system, with three
additional samplings per every 1,000m3 of drinking water pro-
duced per day (the TTHM should not exceed 100 lg=L).
Although a strong effort was made in assigning an appropriate
and as robust as possible CBP exposure for each individual preg-
nancy, no additional collection of household water samples or
data on drinking water consumption was performed. For the ex-
posure, we used a multiannual monthly average of TTHM for
each locality (i.e., with one or two waterworks). By using a multi-
annual average for each month and locality, we a) accounted for
seasonal variations (Andersson et al. 2019b), b) reduced the
weight of single extreme values, and by reducing the influence of
locality-specific differences in monitoring programs we also c)
minimized the number of pregnancy dropouts. The multiannual
monthly average TTHM were then used to estimate a trimester-
specific (3 months) average for each single pregnancy.

The third trimester was considered the most relevant effect-
window for SGA, but we also assessed exposure during the sec-
ond trimester because this time period could be relevant (Lewis
et al. 2006). For preterm and very preterm delivery, we focused
only on the second trimester exposure because the short exposure
period in the third trimester for the children born preterm
increases the likelihood of missing data on TTHM exposure
(dropouts) among the exposed preterm or very preterm delivery

cases. Because season highly affects the occurrence of natural or-
ganic matter and other substances in raw water in Sweden (the
precursor materials for CBP formation), estimating a mean
TTHM for the total gestation (all three trimesters) was not con-
sidered appropriate.

The individual maternal TTHM exposure was then categorized
into a) no chlorination (reference, only mothers living in localities
with no chlorination), b) <5 lg TTHM/L, c) 5–15 lgTTHM=L,
and d) >15 lg TTHM/L. We were unable to assess the exposure
to single CBPs/THMs due to the too low concentrations (chloro-
form was the principal THM, whereas other THMs often were
below the limit of detection). Due to a combination of seasonal dif-
ferences in birth rates and the frequency of tap water monitoring, a
higher number of pregnancies were assigned third trimester expo-
sure, compared with second trimester exposure. In total, 11% of
the pregnant women changed locality during the second or third
trimester. In cases where the woman had moved outside the study
area or had changed locality during the exposure-relevant effect-
window (third or second trimester for SGA, and second trimester
for preterm or very preterm delivery), the birth was excluded from
that particular analysis (this also applied to women in the reference
area). Moving within a locality did not result in exclusion.

We obtained information on the sex and year of birth for each
child and the following maternal covariates from the Swedish
Medical Birth Register: age, body mass index (BMI), previous
miscarriages, parity, smoking (gestational week 30–32), use of
drugs with suspected teratogenic effects (Class 3) (Nörby et al.
2013), sick leave/being on disability as reported by the mother,
and maternal diagnosis of pregnancy-related conditions catego-
rized according to the International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision (ICD-10;
WHO 2016): preexisting and pregnancy-related diabetes (ICD-10
codes O24.0–24.9), preeclampsia (ICD-10 code O14), preexist-
ing and pregnancy-related hypertension (ICD-10 codes O10 and
O13.9), and high weight gain (ICD-10 code O26.0)/low weight
gain (ICD-10 code O26.1) as reported by antenatal care. From
LISA we obtained information on country of birth, highest
attained education, and household income. We also collected
locality-related information such as raw water source, size of the
locality, and permanent chlorination treatment used. The latter
enabled separate assessments of newborns of mothers living in
localities with water treatment plants using exclusively chloram-
ine or hypochlorite (the two most commonly used disinfectants in
the study area).

Outcomes
The outcomes were term SGA (excluding preterm delivery for
both cases and noncases), preterm delivery (born before gesta-
tional week 37) and very preterm delivery (born before gesta-
tional week 32). SGA was registered at delivery care defined as
<− 2 standard deviations (SDs) from the average weight at the
gestational age and sex at partus (Mar�sál et al. 1996). Preterm
and very preterm delivery were defined according to the regis-
tered days of gestation made at antenatal care (calculated based
on ultrasound evaluations and/or date for last menstrual period).

Statistical Analyses
Logistic regression was used to estimate the odds ratios (ORs)
and corresponding 95% confidence intervals (CIs). To reduce de-
pendency for multiple births by the same mother, we clustered
the models (intragroup correlation) by anonymized maternal
identification as received by the data provider. Confounders were
selected based on current knowledge of risk factors for SGA, pre-
term, and very preterm delivery and on available data in the
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registers. We used standardization (inverse probability weight) to
adjust for confounding in order to reduce bias due to missing data
on covariates (Hernán and Robins 2020). First, models were
adjusted for the risk factors considered most relevant (Model 1):
maternal age (<25, 25–<30, 30–<35, 35–<40, ≥40 y), BMI (at
registration to antenatal care: <18:5, 18.5–24.9, 25–29.9,
≥30 kg=m2), birth region (Nordic/Europe/Africa/North and South
America/Asia/other), attained education (elementary school/sec-
ondary education/postsecondary education), household income
(yearly quartiles by year of birth), and smoking at gestational week

30–32 (no, 1–9, >9 cigarettes/d). Second, in Model 2, we further
adjusted for additional risk factors related to the outcome: previous
miscarriages (yes/no), parity (nulliparous, 1, 2, ≥3), sick leave/
being on disability, use of teratogenic drugs (yes/no), maternal dia-
betes (yes/no), preeclampsia (yes/no), maternal hypertension (yes/
no), maternal weight gain (high/normal/low weight gain) and year
of birth (continuous). Linear trends across categories were tested
using the median TTHM concentration within categories as a con-
tinuous variable. In a sensitivity analysis, we assigned the <5-lg
TTHM/L exposure category as the reference in order to minimize

Figure 1. Study area, study population, and exposure categorization (average of the four most common trihalomethanes). Note: TTHM, total trihalomethanes.
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any impact of possible contextual confounding linked to the local-
ities using no chlorination treatment. All analyses were performed
on live and stillbirths combined because conditioning the analyses
to live births may introduce a bias via the opening of new path-
ways through unmeasured confounding. Nevertheless, for some
assessments we performed additional analyses excluding stillbirths
for comparison. All statistical analyses were performed using Stata
(version 14.1; Stata Corporation) and the statistical significance
level was set at 0.05.

Results
Among 576,483 pregnancies with third trimester exposure infor-
mation, we ascertained 10,887 cases of term SGA. Among
548,619 pregnancies with second trimester exposure, we ascer-
tained 25,874 and 4,046 cases of preterm and very preterm deliv-
ery, respectively (Table 1). We observed some differences in
baseline population characteristics across the exposure groups for
maternal age, country of birth, attained educational level, house-
hold income, and sick leave/disability pension (Table 1). As
expected, groundwater was a common source of raw water in
localities with no chlorination (the unexposed reference) (Table 2).
In localities with the exclusive use of chloramine treatment,
groundwater was uncommon, whereas it was the dominating
source in areas using hypochlorite. The size of the localities dif-
fered between the exposed and the areas with no chlorination,
mainly because drinking water producers in large cities generally
use chlorination, especially chloramine.

Small for Gestational Age
Based on exposure during the third trimester, comparing the high-
est TTHM exposure (>15 lg TTHM=L) to the unexposed for all
chlorination treatments, we observed statistically significant associ-
ations with increased odds of SGA in the crude and multivariable-
adjusted Model 1, corresponding to OR=1.21 (95% CI: 1.11,
1.31, ptrend <0:001) and OR=1.13 (95% CI: 1.04, 1.24, ptrend
<0:001), respectively. After further multivariable-adjustment
(Model 2), the OR for SGA was 1.05 (95% CI: 0.95, 1.16)
when comparing the highest exposure to unexposed (Table 3).

In the assessments stratified by chlorination treatment, we
observed for hypochlorite statistically significantly increased
odds of SGA comparing the highest TTHM exposure group
with the unexposed reference, OR=1.20 (95% CI: 1.08, 1.33,
ptrend <0:001). If we excluded stillbirths from these analyses,
the results remained very similar, OR=1.19 (95% CI: 1.07,
1.32). Excluding the unexposed group from the analysis and instead
assigning the lowest TTHM exposure group (i.e., <5 lg TTHM=L)
as the reference, the OR for the highest TTHM exposure remained
essentially the same: OR=1.21 (95% CI: 1.09, 1.35, ptrend <0:001)
(Table 3). When chloramine was used as the disinfection treatment,
we observed OR=0.91 (95% CI: 0.80, 1.03, ptrend = 0.4) comparing
the highest TTHM exposure group to the unexposed reference
(Table 3). These results did not appreciably change when we
assigned the lowest TTHM exposure group (i.e., <5 lg TTHM=L)
as the reference.

Changing the assessment from third to second trimester expo-
sure gave essentially the same results: no overall association with
risk of SGA, comparing the highest exposures to the unexposed
reference (see Table S1). In agreement with the third trimester
exposure, there was a statistically significantly increased risk in
areas using hypochlorite: OR=1.15 (95% CI: 1.03, 1.28, ptrend =
0.007). When <5 lgTTHM=L was used as reference, we
observed OR=1.09 (95% CI: 0.98, 1.22) for the highest TTHM
exposure group. No associations were observed for chloramine.

Preterm and Very Preterm Delivery
For all different chlorination treatments combined, TTHM expo-
sure during the second trimester, the OR for preterm delivery
from Model 1 indicated associations with lower risk, comparing
the highest TTHM exposure to the unexposed reference [OR=
0.93 (95% CI: 0.88, 0.99)] (Table 4). In the further multivariable-
adjusted model (Model 2), the ORwas 0.94 (95% CI: 0.88, 1.00).
In localities having exclusive treatment with chloramine, the cor-
responding OR for preterm delivery was 0.90 (95% CI: 0.83,
0.98) (Table 4). However, no association was observed when
<5 lgTTHM=L was assigned as the reference (excluding the
unexposed group from the analysis). Likewise, in localities hav-
ing exclusive treatment with hypochlorite, we observed no asso-
ciation between TTHM exposure and preterm delivery when
comparing the highest exposure to <5 lg TTHM=L [OR=0.95
(95% CI: 0.88, 1.02)]. For very preterm delivery and all chlorina-
tion treatments combined, the multivariable-adjusted OR (Model 2)
indicated a significant inverse association, OR=0.82 (95% CI:
0.69, 0.98, ptrend = 0.04), comparing the highest TTHM exposure to
the unexposed reference (Table 4). However, in the analyses strati-
fied by chlorination treatment (chloramine or hypochlorite), we
observed no clear associations, although the number of cases was
limited and the confidence intervals wide.

Discussion
The present nationwide register-based cohort, including >500,000
singleton births, is one of the largest studies assessing CBP expo-
sure and adverse reproductive outcomes. Based on address and
average-trimester–linked TTHM concentrations in tap water, we
observed dose-dependent associations with increased risk of SGA,
confined to treatment with hypochlorite but not to chloramine. For
preterm and very preterm delivery, the results indicated no clear
associations, although there were some indications of an inverse
association.

Although several epidemiological studies have indicated that
CBP exposure is associated with an increased risk of SGA
(Tardiff et al. 2006), reproductive and developmental animal
studies generally show no indication of adverse reproductive
effects, alternatively, showing that the effect is secondary to any
adverse toxicological effect occurring in the dams (Colman et al.
2011). However, CBPs formed by the drinking water treatment
are numerous, and there is experimental evidence where individual
CBPs (e.g., THMs) have caused lower fetal body weight or growth
retardations as the primary effect (Schwetz et al. 1974; Smith et al.
1987, 1989, 1992). The toxicity of the majority of the CBPs is
likely due to the formation of reactive intermediates (Colman et al.
2011) and linked to the indications that to some CBPs have the
potential to pass placental barrier (Christian et al. 2001).

Most previous epidemiological studies assessing CBP expo-
sure and adverse reproductive outcomes did not consider different
chlorination treatments. Several studies in which hypochlorite
was the only treatment indicated an association between TTHM
exposure and increased risk of SGA (Aggazzotti et al. 2004;
Grazuleviciene et al. 2011; Källén and Robert 2000), although no
association has also been observed (Villanueva et al. 2011). In
comparison with previous studies, the TTHM concentrations in
the present study were low, irrespective of the type of chlorina-
tion treatment. Although the THMs are mainly formed after treat-
ment with hypochlorite, lower concentrations of THMs are also
produced by chloramine being hydrolyzed into free chlorine
(Hua and Reckhow 2007). Accordingly, in the present study the
prevalence of high TTHM exposure (>15 lg=L) was consider-
ably more common in areas using hypochlorite (44%) as com-
pared with chloramine (15%). In addition to the fact that
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Table 1. Baseline population characteristics by individual maternal average exposure to the four most common trihalomethanes (TTHMs), during the second
(n=548,619) and third trimester (n=576,483), expressed as proportions (%).

Variables Categories
No

chlorination

Second trimester Third trimester

<5 lgTTHM=L 5–15 lg TTHM/L >15 lg TTHM=L <5 lgTTHM=L 5–15 lg TTHM/L >15 lgTTHM=L

n 66,008 262,177 138,672 81,762 263,687 168,449 78,439
Average lg TTHM=L — 0.76 9.0 24 0.75 9.2 24
Outcome SGAa 1.8 1.9 2.2 2.0 1.9 2.2 2.1

Preterm delivery 5.1 3.8 4.1 4.0 3.8 4.1 4.0
Very preterm

delivery
0.80 0.27 0.24 0.38 0.27 0.25 0.38

Sex of child Female 51 52 51 51 52 51 51
Year of birth 2005 8.2 8.1 7.7 7.4 8.2 7.6 7.2

2006 8.6 8.3 8.1 7.9 8.3 8.0 7.8
2007 8.8 8.4 8.4 8.3 8.4 8.4 8.3
2008 8.9 8.9 8.7 8.8 8.8 8.8 8.9
2009 9.3 8.9 9.2 9.1 8.8 9.3 9.2
2010 9.5 9.7 9.8 9.8 9.7 9.7 9.9
2011 9.3 9.4 9.4 9.6 9.4 9.4 9.6
2012 9.3 9.5 9.6 9.7 9.5 9.6 9.8
2013 9.2 9.6 9.6 9.5 9.7 9.5 9.6
2014 9.3 9.7 9.8 9.9 9.7 9.8 9.9
2015 9.4 9.5 9.8 10 9.5 9.8 9.8

Maternal age (y) <25 17 10 11 14 10 12 14
25–29 33 26 28 30 26 29 30
30–34 32 38 37 35 38 37 35
35–39 15 22 19 17 22 18 17
>40 2.9 4.9 4.1 3.6 4.8 3.9 3.5

Maternal BMI
(kg=m2)

<18:5 2.4 2.8 2.7 2.5 2.9 2.6 2.6
18:5–<25 59 65 63 61 65 63 61
25–<30 26 22 23 25 22 24 25
≥30 13 10 11 12 9 11 12

Prior
miscarriages

Yes 20 22 21 21 22 21 21

Parity Nulliparous 44 45 47 45 45 46 45
1 37 37 37 37 38 37 36
2 13 13 12 13 13 12 13
≥3 5.6 4.7 4.7 5.9 4.7 5.0 6.1

Country of birth Nordic 80 73 73 70 73 73 69
Europe, other 6.3 6.4 7.1 9.1 6.3 7.0 9.3
Africa 2.9 5.3 5.4 4.3 5.2 5.3 4.3
North/South

America
1.0 2.5 1.8 1.5 2.5 1.6 1.5

Asia 9.4 13 13 16 13 13 16
Attained

education
Elementary

school
11 11 11 12 10 11 12

Secondary
education

39 32 32 31 32 32 31

Postsecondary
education

50 58 58 57 58 57 57

Household
income
(quartile)

First 16 16 17 21 15 17 22
Second 29 22 25 28 22 26 27
Third 40 30 34 33 30 35 33
Fourth 15 33 23 18 33 22 18

Sick leave/early
retirement

Yes 0.22 0.15 0.11 0.11 0.2 0.1 0.1

Smoking: gesta-
tional week
30–32 (ciga-
rettes/d)

1–9 3.9 2.6 3.3 3.3 2.6 3.3 3.5
>9 0.94 0.94 0.87 0.95 0.69 0.89 1.0

Drugs (suspected
teratogens)

Yes 0.053 0.043 0.043 0.051 0.046 0.042 0.047

Maternal
diagnosis

Diabetes 1.9 1.3 1.5 2.7 1.3 1.6 2.7
Preeclampsia 2.9 2.5 2.6 2.6 2.4 2.5 2.5
Hypertension 1.5 1.8 1.2 1.6 1.9 1.2 1.6
High weight gain 0.014 0.012 0.014 0.097 0.012 0.040 0.12
Low weight gain 0.015 0.0015 0.0051 0.012 0.00076 0.0065 0.013

Note: —, not applicable; BMI, body mass index; NA, not possible to evaluate the coverage; SGA, small for gestational age, excluding preterm delivery; TTHM, total trihalomethanes.
aExcluding preterm delivery: based on n=548,619 for second trimester exposure and n=552,372 for third trimester exposure. There was no missing information except for BMI, sick
leave, and smoking (8%, 13%, and 6% respectively).

Environmental Health Perspectives 057006-5 128(5) May 2020



T
ab

le
2.
A
re
a-
sp
ec
if
ic

ch
ar
ac
te
ri
st
ic
s
by

av
er
ag
e
to
ta
lt
ri
ha
lo
m
et
ha
ne

(T
T
H
M
)
ex
po
su
re

(s
ec
on
d
an
d
th
ir
d
tr
im

es
te
r)
an
d
ch
lo
ri
na
tio

n
tr
ea
tm

en
ts
fo
r
al
lb

ir
th
s,
ex
pr
es
se
d
as

pr
op
or
tio

ns
(%

).

V
ar
ia
bl
es

a
N
o

ch
lo
ri
na
tio

n

A
ll

C
hl
or
am

in
e

H
yp
oc
hl
or
ite

<
5
l
g
T
T
H
M
=
L

5–
15

l
g
T
T
H
M
=
L

>
15

l
g
T
T
H
M
=
L

<
5
l
g
T
T
H
M
=
L

5–
15

l
g
T
T
H
M
=
L

>
15

l
g
T
T
H
M
=
L

<
5
lg

T
T
H
M
=
L

5–
15

lg
T
T
H
M
=
L

>
15

lg
T
T
H
M
=
L

Se
co
nd

tr
im

es
te
r

n
66
,0
08

26
2,
17
7

13
8,
67
2

81
,7
62

17
2,
32
0

15
,2
40

33
,9
96

27
,8
03

28
,7
68

43
,8
93

A
ve
ra
ge

l
g
T
T
H
M
=
L

—
0.
76

9.
0

24
0.
67

8.
0

25
1.
3

10
23

W
at
er

so
ur
ce

Su
rf
ac
e
w
at
er

5
87

83
57

97
99

80
17

25
41

G
ro
un
dw

at
er

95
13

17
43

3
0.
00
66

20
83

75
59

C
hl
or
in
at
io
n
tr
ea
tm

en
t

C
hl
or
am

in
e

0
86

17
45

10
0

10
0

10
0

—
—

—
H
yp
oc
hl
or
ite

0
15

25
55

—
—

—
10
0

10
0

10
0

C
hl
or
in
e
di
ox
id
eb

0
1.
8

60
0.
18

—
—

—
—

—
—

C
hl
or
in
e
ga
s

0
0

1.
6

0.
00
13

—
—

—
—

—
—

Po
pu
la
tio

n
(n
)

<
20
,0
00

25
1.
2

1.
4

3.
5

0.
48

0
0

7.
9

5.
1

6.
3

20
,0
00
–2
00
,0
00

75
60

34
41

71
85

25
92

83
50

>
20
0,
00
0

0
39

65
56

28
15

75
0

12
44

T
hi
rd

tr
im

es
te
r

n
66
,0
08

26
3,
68
7

16
8,
44
9

78
,4
39

17
3,
26
5

22
,2
04

34
,2
37

28
,5
27

48
,7
31

42
,4
77

A
ve
ra
ge

l
g
T
T
H
M
=
L

—
0.
75

9.
2

24
0.
66

8.
9

25
1.
3

10
22

W
at
er

so
ur
ce

Su
rf
ac
e
w
at
er

5
97

80
56

97
96

74
18

38
40

G
ro
un
dw

at
er

95
13

20
44

3.
2

4.
5

26
83

62
60

T
re
at
m
en
t

C
hl
or
am

in
e

0
86

19
44

10
0

10
0

10
0

—
—

—
H
yp
oc
hl
or
ite

0
16

34
56

—
—

—
10
0

10
0

10
0

C
hl
or
in
e
di
ox
id
eb

0
2.
0

50
0.
36

—
—

—
—

—
—

C
hl
or
in
e
ga
s

0
0.
00
11

1.
5

0.
01
0

—
—

—
—

—
—

Po
pu
la
tio

n
(n
)

<
20
,0
00

25
1.
2

2.
8

3.
5

0.
49

0.
00
90

0
8.
2

8.
2

6.
1

20
,0
00
–2
00
,0
00

75
60

35
40

72
72

29
92

65
48

>
20
0,
00
0

0
39

62
57

28
28

71
0

27
46

N
ot
e:
—

,n
ot

ap
pl
ic
ab
le
;T

T
H
M
,t
ot
al
tr
ih
al
om

et
ha
ne
s.

a N
o
m
is
si
ng

da
ta
.

b U
se
d
in

co
m
bi
na
tio

n
w
ith

ch
lo
ri
te
or

ch
lo
ri
te
an
d
ch
lo
ri
ne

ga
s.

Environmental Health Perspectives 057006-6 128(5) May 2020



chloramine is less reactive than hypochlorite, consequently form-
ing fewer CBPs, including TTHMs (Hua and Reckhow 2007),
there are also differences in the types of CBPs generated between
the two methods (WHO 2000). Thus, our TTHM-associated find-
ing for increased risk of SGA for drinking water treated with hy-
pochlorite, but not chloramine, could be due to quantitative as
well as qualitative differences in the formation of CBPs. It could
also be due to a lower exposure misclassification in the areas
using hypochlorite because it is well established that THMs are
reasonably good proxies for total CBPs when this chlorination
method is used. Because other CBPs are formed when chlor-
amines are used, TTHMs become less representative of the total
CBPs.

In the present study, SGA was predefined in the Swedish
Medical Birth Register according to <− 2 SD below the sex- and
gestational age–specific average weight at partus (corresponding
to the 2.3rd percentile). Although this cutoff is more stringent,
capturing mainly moderate-to-severe cases of SGA (increasing
the specificity—less of a threat to validity) as compared with
those studies using the 10th percentile as cutoff, we may not cap-
ture the full effect of the CBP exposure.

We observed no clear associations between TTHM and pre-
term or very preterm delivery in the present study although
there were some indications of inverse associations, as also
suggested in some previous epidemiological studies (Grellier
et al. 2010). Because maternal infections may induce preterm
delivery (Pararas et al. 2006), it has been hypothesized that
chlorination of drinking water may cause a lower occurrence of
maternal infections (Jaakkola et al. 2001), which could poten-
tially explain the inverse associations. Yet, no studies have con-
firmed this link. An alternative explanation for these previous
inverse findings could be selection bias introduced by restrict-
ing the analyses to only live births (Hernán et al. 2002; Lewis
et al. 2007). Although we were able to include the stillbirths in
the present study, we were not able to include pregnancies
resulting in spontaneous abortion. Because we observed no
clear dose–response and because the results were highly de-
pendent on the choice of reference area, the most reasonable
interpretation of our findings is that TTHM, or chlorination per
se, was not linked to preterm or very preterm delivery at the
TTHM concentrations appearing in the present study.

As in any epidemiological study, the present work suffered
from limitations. Foremost, we consider exposure misclassifica-
tion as the most important issue, which also highlights the com-
plexity of the assessment. First, we were unable to assess the
drinking water consumption or the exposure via any other rele-
vant routes. We observed in a previous survey that the vast ma-
jority of the adult population in Sweden is consuming unheated
tap water (99.8%) (Säve-Söderbergh et al. 2018). On the other
hand, the THMs are highly volatile and therefore ingestion, inha-
lation, and dermal exposure could be equally important routes of
exposure (Backer et al. 2000; Xu et al. 2002), indicating that non-
consumers of tap water are also exposed to the THMs. Some
studies have tried to reduce the misclassification by collecting in-
formation on water consumption and on showering/bathing habits
(Danileviciute et al. 2012; Grazuleviciene et al. 2013), and others
measured the blood concentrations of THMs (Smith et al. 2016;
Zhou et al. 2018). However, because THMs are easily absorbed
and have a short half-life, the blood concentrations fluctuate, with
high peaks of the most volatile CBPs seen shortly after shower-
ing, complicating the use of biomarkers of exposure (Backer et al.
2008). Second, we applied the same average TTHM concentra-
tion to the whole locality. Because most of the water treatment
plants were small (<10% distributed drinking water to localities
with more ≥100,000 inhabitants), with a more rapid water distri-
bution turnover, the spatial variation in exposure within the net-
work is likely less pronounced. Third, to avoid the impact of
missing CBP tap water data for a specific month and locality, we
assigned the trimester average exposure for each pregnancy.
Although a more precise exposure period could have been prefer-
able, the knowledge is still limited on the gestational age for the
specific effect-windows for the outcomes evaluated in the present
study, resulting in the trimester-specific average being the most
appropriate. Fourth, we cannot exclude that CBPs other than the
four most common THMs were responsible for the observed
association because the concentrations and composition of CBPs
in Sweden are dependent on several raw water–related factors
(Andersson et al. 2019a; Lavonen et al. 2013).

Besides exposure misclassification, confounding needs to be
reflected upon. Although we have good information on many im-
portant risk factors and have used inverse probability weighting
to account for unequal distribution of risk factors, we cannot fully

Table 3. Associations between average trihalomethane (TTHM) exposure (third trimester) for full-term small for gestational age expressed as odds ratios
(ORs) and 95% confidence intervals (CIs).

Treatment Components
Total births

(n)
No chlorine

(OR)
<5 lgTTHM=L
[OR (95% CI)]

5–15 lgTTHM=L
[OR (95% CI)]

>15 lgTTHM=L
[OR (95% CI)] ptrend

a

All chlorination treatmentsb Cases (n)
552,372

1,100 4,712 3,484 1,592
Noncases (n) 61,404 248,494 157,913 73,674
Crude 1.00 (ref) 1.06 (0.99, 1.13) 1.23 (1.15, 1.32) 1.21 (1.11, 1.31) <0:001
Model 1 1.00 (ref) 1.00 (0.92, 1.08) 1.18 (1.08, 1.27) 1.13 (1.04, 1.24) <0:001
Model 2 1.00 (ref) 0.93 (0.85, 1.01) 1.10 (1.01, 1.20) 1.05 (0.95, 1.16) 0.009

Chloramine Cases (n)
283,385

1,100 3,136 401 667
Noncases (n) 61,404 166,953 20,646 32,214
Model 1 1.00 (ref) 1.07 (1.00, 1.15) 1.03 (0.91, 1.08) 1.06 (0.91, 1.18) 0.2
Model 2 1.00 (ref) 0.90 (0.82, 0.99) 0.94 (0.82, 1.08) 0.91 (0.80, 1.03) 0.4
Model 2 1.00 (ref) 1.01 (0.89, 1.14) 0.96 (0.86, 1.06) 0.4

Hypochlorite Cases (n)
177,048

1,100 576 988 884
Noncases (n) 61,404 26,660 45,489 39,947
Model 1 1.00 (ref) 1.11 (1.00, 1.25) 1.16 (1.06, 1.28) 1.18 (1.07, 1.30) <0:001
Model 2 1.00 (ref) 1.09 (0.96, 1.23) 1.14 (1.04, 1.26) 1.20 (1.08, 1.33) <0:001
Model 2 1.00 (ref) 1.14 (1.03, 1.26) 1.21 (1.09, 1.35) <0:001

Note: Model 1 was adjusted for maternal age, BMI, household income, attained education, smoking at week 30, and country of birth by inverse probability weighting. Model 2 was as
Model 1 additionally adjusted for previous miscarriages, parity, sick leave/early retirement, use of teratogenic drugs, diabetes, preeclampsia, hypertension, weight gain, and year of
birth. BMI, body mass index; ref, reference; TTHM, trihalomethanes.
aptrend: linear trends across categories were tested using the median TTHM concentration within categories as a continuous variable.
bChloramine, hypochlorite, chlorine gas, chlorine dioxide in single or combined treatment.
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exclude that some unmeasured confounding may have affected our
results. For example, differences in study area–specific characteris-
tics such as larger localities in exposed areas could not be con-
trolled for in the analyses. However, because the results remained
essentially the same by changing the reference area from no chlori-
nation to the lowest exposure category (<5 lgTTHM=L), this
potential impact seemed limited.

Several important strengths need to be highlighted. This is
one of the largest prospective studies, assessing adverse repro-
ductive outcomes in relation to TTHM exposure, and we were
able to adjust for most relevant confounders at an individual
level. The Swedish Medical Birth Register and the Statistics
Sweden registers have a high coverage, close to 100% (Källén
and Källén 2003; Ludvigsson et al. 2016), which, for example,
reduced the risk of a biased selection of the pregnancies included.
Moreover, because the maternal and delivery care is publicly
funded in Sweden, there is likely no bias introduced by mothers
not visiting the antenatal care because of their economic situa-
tion, resulting in similar data quality of the information gathered
during pregnancy across the regions. Despite the aforementioned
shortcomings linked to the exposure assessment, strong effort
was made to accurately classify the exposure. The individual
maternal TTHM exposure assigned was based on residential and
temporal information at an exposure-relevant effect-window. In
contrast to most previous studies, we were able to include an
unexposed reference population that was served by municipal
drinking water and not by private wells. This substantially
improved the comparability with the exposed populations and
minimized the risk of introducing contextual confounding related

mainly to differences between urban and rural areas. Nevertheless,
potential remaining contextual confounding related to differences
in locality characteristics, such as size, cannot be fully excluded. In
any case, the sensitivity analysis performed, based on the lowest
exposure (<5 lg TTHM=L) as the reference, supported our con-
clusion. Moreover, based on detailed information on drinking
water production, we were able to stratify our analyses by the
chlorination treatment, something that few previous studies have
been able to consider.

In conclusion, the results of the present study provide the
evidence that CBP exposure via drinking water is associated
with increased risk of SGA in areas with hypochlorite treat-
ment, but not chloramine, potentially due to CBP formation dif-
ferences. There was no clear association for preterm or very
preterm delivery.
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