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CONSPECTUS:

This Account highlights recent advances and discusses major challenges in investigations of 

cryptic (hidden) binding sites by molecular simulations. Cryptic binding sites are not visible in 

protein targets crystallized without a ligand and only become visible crystallographically upon 

binding events. These sites have been shown to be druggable and might provide a rare opportunity 

to target difficult proteins. However, due to their hidden nature, they are difficult to find through 

experimental screening. Computational methods based on atomistic molecular simulations remain 

one of the best approaches to identify and characterize cryptic binding sites. However, not all 

methods are equally efficient. Some are more apt at quickly probing protein dynamics, but do not 

provide thermodynamic or druggability information, while others that are able to provide such 

data are demanding in terms of time and resources. Here, we review the recent contributions of 

mixed-solvent simulations, metadynamics, Markov state models, and other enhanced sampling 

methods to the field of cryptic site identification and characterization. We discuss how these 

methods were able to provide precious information on the nature of the site opening mechanisms, 

to predict previously unknown sites which were used to design new ligands, and to compute the 

free energy landscapes and kinetics associated with the opening of the sites and the binding of the 

ligands. We highlight the potential and the importance of such predictions in drug discovery, 

especially for difficult (“undruggable”) targets. We also discuss the major challenges in the field 

and their possible solutions.
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INTRODUCTION

In recent years, the number of biologically validated drug targets for complex diseases has 

considerably increased, especially due to large-scale genome sequencing.1,2 Unfortunately, 

many of these potential targets are considered “undruggable”, meaning they are unamenable 

to classic substrate-competitive drug discovery strategies.1 For this reason, significant efforts 

are put towards alternative strategies, including identifying allosteric ligands and 

characterizing hidden (cryptic) allosteric pockets. Cryptic binding pockets are absent in 

unliganded protein structures but open due to protein dynamics. They represent an attractive 

alternative to substrate-competitive sites that have been exploited in a number of high-profile 

targets, including K-Ras,3,4 an oncogene commonly found in human cancers. Despite their 

vast potential, the hidden nature of cryptic pockets makes it difficult to use rational drug 

discovery approaches based on structural experiments or computer modeling. Indeed, most 

known cryptic sites have been found serendipitously. Even the very mechanism of the cavity 

opening and whether it occurs through an induced fit, a conformational selection, or perhaps 

a combination of the two, is still debated in the literature. However, atomistic molecular 

dynamics (MD) simulations provide ways to both model the opening of unknown cryptic 

sites and describe possible binding mechanisms.

After many years of development, MD simulations are finally becoming useful in obtaining 

a detailed molecular description of protein (de)activation and ligand (un)binding. With the 

technological advancements in specialized computer architectures5 for MD simulations and 

distributed computing,6 as well as the parallelization of the MD simulation packages7 and 

their increasing use of GPUs,8 scientists are now able to reach unprecedented system sizes9 

and timescales,10 enabling μs-long simulations on a routine basis. At the same time, both 

protein11–14 and ligand15 force fields are sufficiently accurate to capture the important 

features of target dynamics and ligand binding mechanisms. Prediction of previously 

unknown cryptic binding pockets that have successively been experimentally validated to 

design new drugs shows how promising the approach is, as was the case of HIV integrase 

where MD simulations predicted the opening of a new cleft.16 Still, despite the substantial 

progress, conventional approaches in MD simulations cannot adequately sample many 

biologically and pharmaceutically interesting processes. Among such processes is the 

opening of buried cryptic binding sites which is a prerequisite for their detection. Recent 

studies demonstrate how this challenge can be successfully tackled using MD-based 

approaches, which offer a more dynamic picture of the system (compared to X-ray 

crystallography) and provide high-resolution structural data for drug design.
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In this Account, we review the recent contributions of MD simulations and modelling 

combined with experiments in understanding the nature of cryptic pockets and predicting 

their location.

NATURE OF CRYPTIC POCKETS AND MECHANISMS OF THEIR 

FORMATION

Similarly to all conformational changes of a target associated with ligand binding, the 

discussion on whether cryptic pockets emerge through conformational selection17,18 or 

induced fit19 is still ongoing. The former mechanism implies that the ligand’s role is to 

stabilize specific conformations that are also accessible in the unbound state. The latter 

mechanism proposes that the ligand causes the target to explore regions of the 

conformational space that are practically inaccessible to the unbound form. As discussed 

elsewhere,20 from the experimental point of view, only kinetic experiments might provide a 

clear distinction of the two mechanisms, as the binding rate in the case of conformational 

selection is dependent on the concentration of the ligand, while for the induced fit it is not. 

When the binding mechanism was ascertained experimentally, it emerged that, depending on 

the target, either induced fit or conformational selection are prevalent and in some cases both 

play a role.21,22 In the case of cryptic sites, an extensive analysis of multiple X-ray 

structures of proteins with validated cryptic sites performed by Beglov et al.23 showed that 

cryptic sites tend to be quite flexible which would hint towards conformational selection, but 

they are also almost always close to binding energy hot spots, often exploited by the bound 

ligands, suggesting that an induced fit component is also important for binding. This finding 

is in agreement with our simulations of the cryptic pocket found at the interface between α-

helices H11 and H12 of TEM1 β-lactamase. Long timescale simulations of the system have 

detected this cryptic pocket in the absence of a ligand and suggested roles for both induced 

fit and conformational selection.24 The role of conformational selection was supported 

further by subsequent experiments that detected the cryptic pocket in the absence of ligand.
25 Enhanced sampling simulations of small fragments binding to the pocket are also 

consistent with a picture in which large fluctuations lead to the opening of the pocket 

(conformational selection) which are then stabilized by small molecules wedging between 

the helices (induced fit).26

Analysis of ~90 available crystal structures harboring cryptic sites showed that the main 

conformational changes associated with their opening are linked to: lateral chain rotation, 

loop movements, secondary structure changes, and interdomain motions (Figure 1).23,27 

Cryptic pockets have been also found to play a role at flexible protein-protein interfaces.28

Thus, cryptic pocket opening is associated with conformational changes of the target and the 

extent of such change plays a role in the operative definition of crypticity (i.e., a site “being 

cryptic”). The operative definition of crypticity is based on whether the pocket is present or 

visible in the apo structure and is typically a continuous measure based on measures of 

pocket exposure or steric clash with the ligand. Thus, depending on the chosen threshold, a 

pocket can be considered cryptic or not, and even sites contiguous with the catalytic pocket 

can end up being labelled as cryptic.
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Algorithms for the detection and analysis of pockets per se (including their transient 

formation), are thus instrumental to distinguish and identify the cryptic ones. To this aim, a 

number of pocket analysis tools have been developed by the community. Tools such as 

Fpocket,29 Epock,30 POVME,31 TRAPP,32 and Nanoshaper33 are able to detect and/or 

analyse both stable and transient pockets and exposons focus on transient pockets. When the 

pockets are not particularly buried and the opening mechanism is mainly conformational 

selection, these tools can successfully detect the presence of cryptic pockets in the 

trajectories of the unliganded target.

Finally, the mere detection of a cryptic pocket does not make a target tractable per se. The 

newly found pocket needs to be ligandable. Having a cryptic pocket that is close to a binding 

hotspot and can accommodate chemically diverse fragments increases the chances that they 

are ligandable.23 Some pocket analysis algorithms and mixed solvent simulations also 

provide an estimate of the pocket ligandability.29,32

If a cryptic pocket does not cdirectly coincide with a functional site, then an allosteric 

connection of the remote pocket to the catalytic site or other functionally important sites is 

also needed for its druggability. As allosteric connections are bidirectional, an MD-based 

analysis of allosteric signal propagation from and to the active site of a target can be used to 

discover previously unknown binding sites. For instance, in the case of Hsp90, such a 

method was used to characterize the allosteric “hot spots” involved in interdomain 

communication pathways. One of these binding hotspots is cryptic and was successively 

shown to be druggable.34,35

MIXED-SOLVENT MOLECULAR DYNAMICS SIMULATIONS

To facilitate the exploration of cryptic binding sites, one of the approaches based on MD 

simulations relies on the use of small probes mixed with water molecules that help open and 

stabilize cryptic pockets which are often hydrophobic. These simulations are known as 

mixed-solvent MD simulations.36–39 Probes that were successfully tested were either readily 

miscible with water (e.g., acetic acid, isopropanol, or resorcinol),36,40 or quite hydrophobic 

(e.g. benzene)26,41 and in such cases a repulsive potential is necessary to prevent the probes 

from clustering.37,42 Mixed-solvent MD simulations have been successfully used on a 

number of targets to characterize active and allosteric sites and are relatively simple to set 

up.28,36–38,43 Schmidt et al. tested the performance of various co-solvent compositions on 

seven diverse targets with known cryptic sites and reported that a composition of 90% water 

and 10% phenol was the most effective in opening the cavities without unfolding the 

proteins.44 The pocket occupancy and fragment residence time obtained from mixed-solvent 

MD simulations can also provide druggability estimates, which is important to assess the 

feasibility of targeting a pocket with small molecules.16,36 However, their application to 

cryptic pockets detection still requires substantial sampling of the system. For instance, we 

showed that, in the case of the cryptic pocket of TEM1 β-lactamase, 6 different hydrophobic 

ring probes were able to open the cryptic pocket only in a few 100-ns-long simulations out 

of 32 that we ran for each of the probes. Extending the mixed-solvent simulations with 

benzene to more than 1 μs resulted in the opening of the pocket in 1/3 of the simulations.26 

Sampling problems also affect the ability of mixed-solvent MD simulations to identify 
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deeply buried cryptic pockets as their exploration relies on the diffusion of probe molecules 

around the protein surface and/or overcoming high energy barriers. An additional problem 

with mixed solvent MD is the risk of unfolding the protein with hydrophobic probes44 which 

in some cases can be circumvented through a carefully selected set of position/distance 

restraints.41

COLLECTIVE-VARIABLE-DEPENDENT ENHANCED SAMPLING METHODS

When conventional MD simulations prove ineffective in sampling the event of interest, 

enhanced sampling methods can be used. Such techniques can be practically divided based 

on their dependence on collective variables (CV). In the case of CV-dependent methods, like 

metadynamics,45,46 umbrella sampling,47 and steered MD,48 the process of interest is 

approximated through CVs, i.e. the functions of system’s coordinates that can be as simple 

as a distance between two atoms or as complex as a contact map describing an active state of 

a protein. Unfortunately, choosing suitable CVs can be far from straightforward which is 

why these choices are often guided by experimental data. Recently, metadynamics was 

successfully applied to investigate the binding mechanism of SSR128129E (SSR), a newly 

developed inhibitor of fibroblast growth factor receptor 1 (FGFR1).49,50 This receptor 

tyrosine kinase arose as a potential anticancer drug target due to its involvement in numerous 

essential cellular processes, such as blood vessel formation. SSR was initially discovered 

through high-throughput screening and its binding location was narrowed down to the 

extracellular D3 Ig-like domain, but the exact binding site eluded both X-ray crystallography 

and NMR due to the disordered nature of the domain. Using a range of CVs that describe 

not only the binding process, but also the folding of the domain, the authors were able to 

capture inhibitor’s reversible binding to a hidden pocket formed through the elongation of a 

small α-helix in the D3 domain. The observed binding mechanism was further confirmed 

with a mutational analysis and subsequently used to design more potent inhibitors. Despite 

this success story, using CV methods based on geometric criteria to systematically predict 

cryptic binding sites is challenging as it is difficult to find a set of parameters that adequately 

captures the complexity of the cryptic binding pocket formation in the absence of previous 

information on the location and nature of the pocket.26

The JEDI methodology is a CV-based approach that overcomes these limitations and allows 

to bias sampling towards protein conformations of favorable druggability.51 It uses a 3D grid 

overlapped on a region of interest on a protein surface to determine the location of putative 

pockets, and calculates a druggability score, i.e., a quantification of how adequate those 

pockets are to accommodate a small organic molecule. This druggability scoring was 

inspired by structural bioinformatics methodologies trained on datasets of X-ray 

crystallography-derived binding sites,52,53 with the important difference that the druggability 

estimator was designed to be smooth and continuously differentiable with respect to protein 

atomic Cartesian coordinates. This enables the use of the JEDI score as a collective variable 

for biased MD simulations. Therefore, a typical workflow to seek cryptic pockets with JEDI 

involves working out the druggability score of a protein region covered by a manually placed 

3D grid, and subsequently carrying out biased MD simulations to encourage the protein to 

adopt new conformations that increase (or decrease) the initial druggability score. Because 

the estimator scores favorably hydrophobic cavities suitably sized to accommodate a small 
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molecule, the application of JEDI to a protein region that does not contain a pocket will 

encourage spontaneous sampling of a cavity without requiring a priori knowledge of which 

residues must undergo a conformational change to reveal a cryptic pocket. The process can 

be very rapid, requiring only a few nanoseconds of MD simulation (Figure 2). Current 

drawbacks of the first version of the algorithm include the relatively expensive cost of the 

CV, making long timescale simulations difficult, and support for implicit solvent simulations 

only. The JEDI CV can also suffer from degeneracy, leading to the biased simulations 

becoming stuck in an alternative conformational state that may not accurately describe the 

cryptic pocket owing to the approximate nature of the druggability estimator.

COLLECTIVE-VARIABLE-INDEPENDENT ENHANCED SAMPLING METHODS

One of the most commonly used CV-independent enhanced sampling methods is parallel 

tempering (i.e., temperature replica exchange MD)54 where several replicas of the system 

are run at the same time, but at different temperatures. At regular intervals, an exchange 

between the neighboring replicas is attempted and either accepted or rejected based on the 

Metropolis criterion. The method is usually quite effective (albeit computationally expensive 

as it requires a large number of replicas to span a wide range of temperatures) in studying 

protein conformational landscapes. However when it came to studies of cryptic binding 

sites, it was unable to open the pockets in the targets that were tested, even at temperatures 

of 400 K.26 This is probably due to the entropic nature of the energy barriers involved in 

pocket opening.26 A different approach, based on non-equilibrium MD simulations 

(rotamerically induced perturbations or RIP) was proposed by Kokh et al. to initiate large-

scale protein movements and sample cryptic sites.55 This approach proved useful for a rapid 

evaluation of pocket flexibility. However, RIP is not able to predict folding of protein 

segments, nor the kinetics or thermodynamics associated with the protein motions.56

Considering the hydrophobic nature of cryptic binding pockets, Oleinikovas et al. devised a 

method in which they sample water interactions through scaled Hamiltonians (SWISH).26 

The method is based on a Hamiltonian replica exchange approach and, instead of altering 

the temperature of the replicas as in parallel tempering, it changes the interaction of apolar 

carbons and sulfurs with water oxygen. This renders the protein less hydrophobic at higher 

replicas and allows for more effective exploration of cryptic binding sites compared to 

conventional MD simulations. The method was tested on a range of pharmaceutically 

relevant targets, such as β-lactamase, IL2, and PLK1 in the initial study,26 and NPC2, LfrR, 

p38α, and hPNMT in the follow-up study.41 SWISH was able to successfully detect known 

cryptic binding sites in these proteins, typically within 1 μs of of sampling time with 6–8 

replicas. When combined with probes which stabilized the open cryptic binding sites, it 

became apparent that the formation mechanism of cryptic binding pockets typically involves 

both conformational selection and induced fit. However, the approach combining SWISH 

with probes suffers from the same drawbacks as mixed-solvent simulations where the 

proteins can become denatured when the selected probes are hydrophobic in nature. Such 

behavior is even more pronounced in SWISH simulations where the protein is already 

pushed towards more hydrophilic states. A way to prevent the protein from unfolding is 

either through a more conservative set of scaling factors or by using a contact-map 

restraint41 which is applied on a small set of relevant contacts away from the site of interest 

Kuzmanic et al. Page 6

Acc Chem Res. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that essentially keeps the secondary structure elements folded. Further iterations of the 

method involve a more targeted approach where only the interactions of hydrophobic 

residues with water are scaled which would hopefully also reduce the protein unfolding and 

rendering the contact-map restraint unnecessary. Another advantage of SWISH is that it can 

be easily combined with other enhanced sampling methods, such as metadynamics, if the 

cryptic binding pocket of interest forms through a more complex conformational change, as 

was the case of FGFR1.50

MARKOV STATE MODELS (MSMs)

MSMs are a powerful means to integrate many independent simulations into a map of 

protein’s conformational space that captures long-timescale events far beyond the reach of 

any individual simulation.57 These methods were originally developed to study protein 

folding mechanisms.58 However, they have since proved extremely effective in a wide 

variety of settings.59

Inspired by the conformational selection model, MSMs were first applied to the apo TEM1 

β-lactamase enzyme introduced above.24 The resulting model successfully identified the 

cryptic pocket between helices 11 and 12, supporting a role for conformational selection in 

the opening of such pockets. A second model built in the presence of a known ligand for this 

cryptic site also demonstrated a role for induced fit, consistent with previous applications of 

MSMs to other protein-ligand binding processes60 that revealed an interplay between 

conformational selection and induced fit. In addition to recapitulating the known cryptic 

pocket, subsequent analysis of the β-lactamase MSM revealed at least two additional cryptic 

pockets with allosteric coupling to the active site.25 To test this prediction, an experimental 

thiol labeling assay was applied to detect the exposure of buried residues upon pocket 

opening. The results confirmed the two newly predicted pockets, a role for conformational 

selection in the opening of all three sites, and their ability to allosterically impact function.25 

Since then, MSMs have been applied to hunt for cryptic pockets in a number of other 

proteins.61–63 New adaptive sampling algorithms have also been developed to reduce the 

computational cost of building such models.64 Strikingly, these approaches have revealed yet 

another cryptic allosteric site that is common to multiple β-lactamase families (Fig. 3).65 

Experimental tests have confirmed the existence of this pocket and demonstrated that it 

exerts more potent allosteric control over enzymatic activity than the previously identified 

pockets.65,66 Applications to multiple related proteins are also beginning to reveal the 

sequence-dependence of the probabilities of potentially druggable sites.39,66,67

Having succeeded in detecting cryptic pockets, MSMs are now actively being used to 

intentionally target these sites with small molecules. Hypothetically, this could be achieved 

by taking an individual structure with an open cryptic pocket and applying existing rational 

drug design tools. However, more effective approaches could systematically take advantage 

of all the conformational diversity an MSM captures. One proposal for achieving this end, 

called Boltzmann docking,67 works by docking a library of compounds against a 

representative structure from each state in an MSM and then, using the equilibrium 

probabilities of those states, to calculate a Boltzmann-weighted average docking score. 

Boltzmann docking is related to ensemble docking.68 The primary difference is that 
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Boltzmann docking uses the equilibrium probabilities of each state instead of treating all 

conformations equally. In doing so, Boltzmann docking automatically favors compounds 

that bind to higher probability states over compounds that bind higher-energy (i.e. lower 

probability) states where a greater penalty has to be paid to stabilize the conformation. 

Boltzmann docking has been successfully applied to find new allosteric modulators of 

TEM1 β-lactamase, including both inhibitors and activators that have been confirmed 

experimentally.69 The discovery of activators is intriguing as it suggests the potential for 

enhancing desirable functions in other settings, e.g., to counteract the deleterious effects of a 

disease-causing mutation.

OTHER COMPUTATIONAL APPROACHES

Despite the aforementioned advances in computer software and hardware, MD simulations 

still require a significant amount of computational resources and time to adequately sample 

protein conformational landscapes. Thus, the appeal of inexpensive computational methods 

that rapidly predict cryptic binding sites is evident. Cimermancic et al. recently curated a 

data set of apo and holo protein pairs from the PDB harboring cryptic binding sites 

(composed of ~90 proteins) which they used to build a machine learning model (CryptoSite) 

to predict such sites in proteins considered undruggable.27 The authors initially used over 50 

features they deemed potentially relevant for the cryptic binding site prediction, however, 

only three of them proved to be statistically significant - the average pocket score calculated 

for conformations obtained from MD simulations that rely on a simplified energy landscape, 

the sequence conservation of the site, and the likelihood of binding small-molecule 

fragments. While the approach is certainly fast and remarkably accurate for the testing set, it 

drew criticism due to the overall small size of the training and testing sets, as well as the use 

of a single apo structure in each pair which can lead to an overestimation of the site’s 

crypticity as the pocket could be quite apparent in other apo structures.23,70 Beglov et al. 
expanded the original CryptoSite data set by including these structures and analyzed the new 

set using their own tools (FTMap and FTFlex).23 The authors showed that cryptic binding 

sites in apo structures typically have a strong binding hot spot in their vicinity and that they 

exhibit an above-average flexibility. It should be, however, noted that the analysis of X-ray 

structures has its limitations due to their static nature and the presence of crystal contacts 

that can introduce a range of artifacts.71 Efforts are also underway to identify cryptic pockets 

using Rosetta-based Monte Carlo sampling of the conformational space.72

PERSPECTIVES

The past few years have seen the successful execution of a number of proof-of-concept 

studies that have demonstrated it is possible to computationally identify cryptic pockets and 

then target them with small molecules. Methods based on MD simulations combined with 

algorithms for the detection of pockets, mixed solvents, enhanced sampling, and Markov 

state models are increasingly effective in sampling and identifying cryptic pockets, 

providing high-quality structural models for the design of novel drug-like compounds. Some 

of these methodologies, namely CV-based enhanced sampling methods and MSMs, are also 

able to provide accurate estimates of the free energy penalty associated with the opening of 

the pockets, while simulations with mixed solvents and fragments provide precious 
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information on the ligandability of the newly discovered sites. As many cryptic pockets are 

allosteric, i.e., remote from known functional sites, an important question is whether binding 

of a small molecule at a cryptic pocket has a functional effect on the protein. Even in this 

case, methods to characterize allosteric communication networks based on simulations can 

provide solid predictions. Looking ahead, as many new cryptic pockets are predicted by 

simulations, experimental validation becomes a crucial bottleneck in the search for cheaper 

solutions than the ones currently used. Machine learning approaches predict that a vast 

number of potential drug targets in the human genome harbor cryptic sites. It will be 

exciting to see how many of those, particularly in validated drug targets that small molecule 

drugs have yet to be discovered for, can be targeted by leveraging the cryptic sites predicted 

by simulation-based approaches.
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Figure 1. 
Illustration of common structural changes associated with cryptic binding site formation. a. 
Side chain rearrangements as shown in IL2 (apo: 1M47_A, holo: 1PY2_D), b. loop 

movements in NPC2 (apo: 1NEP_A, holo: 2HKA_C), c. secondary structure changes like 

the partial helix unfolding in LfrR (apo: 2WGB_A, holo: 2V57_A), and d. interdomain 

motions in EF-TU (apo: 1EXM_A, holo: 1HA3_B). Apo structures are show in gray and 

holo structures in slate blue, while red arrows highlight the main structural changes.

Kuzmanic et al. Page 15

Acc Chem Res. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
a. Representative snapshot from the most populated cluster of an equilibrium MD simulation 

of apo VHL. The binding-site lining residues (highlighted in slate blue) adopt a collapsed 

conformation with low druggability score b. A JEDI-biased MD simulation of apo VHL has 

rearranged the binding-site lining residues in a druggable conformation. In both panels an 

overlay of the crystallographic structure of a VHL ligand is displayed in orange sticks. Red 

arrows highlight the main structural changes.
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Figure 3. 
A new cryptic pocket in TEM1 β-lactamase that was discovered with MSMs and 

subsequently confirmed by experimental tests. An open structure (blue) is overlaid on the 

apo crystal structure (gray) with the key catalytic serine (S70) in sticks (orange). The red 

arrow highlights a large loop motion that creates a cryptic pocket adjacent to the active site.
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