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Abstract

The immune system is composed of a diverse array of cell types, each with a specialized role in 

orchestrating the immune response to pathogens or cancer. Even within a single cell ‘type,’ 

individual cells can access a wide spectrum of differentiation and activation states, which reflect 

the physiological response of each cell to the tissue environment and immune stimuli. Thus, the 

cellular diversity of the immune system is inherently quite complex and understanding this 

complexity has greatly benefited from technologies that measure immune responses at single-cell 

resolution, in addition to the systems-level response as a whole. In this Commentary, we focus on 

recent work at the interface of immunology and single-cell genomics and highlight advances in 

technologies and their application to immune cells. We highlight recent single cell genomic 

profiling of T cells in particular, as somatic rearrangements in the T cell receptor (TCR) loci 

enable the tracking of clonal T cell responses through space and time. Finally, we discuss 

opportunities for future use of these technologies in understanding vaccination and the basis for 

effective vaccine-induced immunity.

Single-cell genomic technologies to study the immune system

For decades, immunologists have focused on the single cell as a fundamental unit of the 

immune response, often generating new technologies to advance the possible resolution of 

cellular analysis, such as flow cytometry and in situ fluorescence imaging1,2. As a result, the 

field has accumulated a deep understanding of the immune system, including cell type 
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diversity, cell lineage and differentiation pathways, and cell-cell interactions within tissues, 

to an extent that is largely unrivaled by any other tissue system. However, these studies have 

primarily relied on the expression of cell surface proteins chosen a priori, since most single-

cell methods required the use of monoclonal antibodies recognizing surface proteins. In 

contrast, genomic measurements including DNA or RNA sequencing have generally been 

performed in bulk after the isolation of cell populations using previously identified surface 

markers.

Over the past few years, methods to measure genomic profiles of single cells have 

revolutionized the study of tissue biology, enabling unbiased analyses of cells without prior 

knowledge of cell types or surface markers. Among these methods, single-cell RNA-seq 

(scRNA-seq) stands out as the most rapidly evolving and widely adopted technique. In 

current iterations, this method can generate genome-wide transcriptome profiles – measuring 

thousands of unique gene transcripts – from tens of thousands of single cells per experiment. 

The technological advances in scRNA-seq have recently been reviewed elsewhere3–5, but 

include improvements in: 1) cell profiling throughput, increasing from tens to thousands of 

single-cell profiles per experiment, 2) sensitivity and reproducibility, such as the use of 

unique molecular identifiers for quantification of RNA transcripts, and 3) analytical tools, 

including tools for unbiased single-cell clustering and visualization6, including lineage 

trajectory mapping7. As a result, generation of these datasets is now achievable in most 

laboratories equipped for standard molecular biology, and the analysis of single-cell data is 

increasingly automated.

A series of studies in mouse dendritic cells provided insights into the potential of this 

technology for studies of the immune system. Shalek and Satija et al. performed scRNA-seq 

in stimulated bone marrow-derived dendritic cells (BMDCs), which revealed significant 

transcriptional heterogeneity in cells that appeared similar by cell surface marker profiles8,9. 

Among 18 profiled single cells, 3 appeared distinct by transcriptional profile and were 

classified as a ‘mature’ BMDC differentiation state. The ‘mature’ BMDCs, later verified as a 

distinct cell type10, expressed high levels of genes critical for stimulating a T cell response, 

including Ccr7, Ccl22, and Cd83. In contrast, the other cells, classified as ‘maturing’ cells, 

expressed high levels of inflammatory cytokines, such as Tnf and Il1a. In a second study, the 

same authors expanded the dataset to profile more than 1,700 BMDCs and showed that even 

within ‘maturing’ cells, significant intra-cell type heterogeneity could be observed9. Namely, 

after stimulation with lipopolysaccharide (LPS), a small fraction of these cells exhibited 

precocious behavior and transcribed anti-viral response genes before the rest of the 

population. Importantly, this heterogeneity was functional, since the removal of precocious 

cells or the cytokines secreted by these cells blunted the response of all cells in culture.

To demonstrate that scRNA-seq could also be used to de-convolute more complex cellular 

mixtures, Jaitin et al. analyzed 4,000 single mouse splenocytes11. This analysis identified the 

expected immune lineages in the spleen, such as B and T cells, as well as new cell type 

distinctions. For example, analysis of splenic dendritic cells (DCs) identified at least 4 

subtypes, which were not previously identified using standard cell surface marker 

demarcations. Furthermore, as observed in BMDCs, activation of splenic DCs with LPS led 

to substantial heterogeneity in gene expression across the population. For example, while 
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interferon pathway genes were up-regulated uniformly in all CD4+ DCs after stimulation, 

tumor necrosis factor (TNF) and transforming growth factor-β (TGFβ) pathways were up-

regulated only in a subset of CD4+ DCs. In subsequent studies, similar insights were 

observed in other immune cell types, including in CD4+ and CD8+ T cells, innate lymphoid 

cells (ILCs), macrophages, and hematopoietic progenitors12–16. In nearly every study, 

scRNA-seq revealed previously unrecognized features of each cell type, such as 

heterogeneity within conventional surface marker-defined populations or rare functional 

subsets. For example, in hematopoietic progenitors, scRNA-seq identified significant 

heterogeneity in common myeloid progenitors (CMPs), including cells with restricted 

potential for single myeloid cell fates15. Similarly, in T helper 17 (Th17) cells, scRNA-seq 

identified subsets of pathogenic and non-pathogenic cells, both in vitro and in vivo, and 

nominated critical gene pathways governing their development12,13. In summary, these 

studies demonstrated that scRNA-seq can be used to identify inter- and intra-population 

variability without prior knowledge of cell types or activation states (Fig. 1).

Tracking the T cell response with TCR- and scRNA-seq

One unique feature of scRNA-seq profiles in T and B cells is the presence of RNA 

transcripts that encode for the T- and B-cell receptors, respectively. In T cells, the 

predominant TCR type is generated through somatic recombination of TCRα and TCRβ 
subunit genes, which produces a highly diverse repertoire of nearly 1014 unique 

heterodimers in each individual17. As a result, the genetic sequence of the TCR is uniquely 

informative; not only does it determine antigen specificity, but it also serves as a cellular 

barcode that traces the lineage of each cell. Indeed, initial studies demonstrated the value of 

pairing cellular phenotype with clonal identity. Han et al. performed targeted sequencing of 

TCR and RNA transcripts in primary human T cells and demonstrated that T cells arising 

from the same clonal population could adopt distinct phenotypes18. For example, in a patient 

with colorectal cancer, a clonally-expanded population of tumor-infiltrating T cells adopted 

both regulatory T cell (Treg) and T helper 17 (Th17) phenotypes, indicating phenotypic 

plasticity in cells arising from the same parental clone. Conversely, different expanded T cell 

clones that were predicted to bind a shared antigen (based on TCR sequence specificity) 

shared a common phenotype, suggesting that antigen specificity can also direct T cell 

phenotype.

Two recent advances have enabled pairing T cell clonotype with phenotype at higher 

resolution and throughput. First, development of analytic tools including TraCeR and 

MiXCR have enabled the reconstruction of TCR sequences from scRNA-seq and bulk RNA-

seq data19,20. In these methods, bulk or single-cell RNA-seq is performed using standard 

workflows and reads aligning to the TCR locus are computationally extracted and 

reassembled into contigs based on overlapping sequences within individual reads. These 

methods benefit from the fact that they can be used on existing datasets to faithfully 

reconstruct TCR sequences from a high proportion of single cells (>70% paired TCRα and 

TCRβ), although these methods were designed for compatibility with full-length scRNA-seq 

methods such as SmartSeq2. Second, experimental methods that produce paired TCR-and 

scRNA-seq libraries have been adapted for a number of platforms, including droplet-based 

methods such as InDrops21 and the 10X Genomics platform22,23. These methods split input 
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RNA and produce two sequencing libraries matched by a unique cellular barcode – one for 

whole transcriptome and the second for targeted TCR sequencing, taking advantage of the 

high throughput possible on droplet-based platforms while maintaining a high TCR recovery 

rate (>70%).

These techniques have now been applied to variety of biological systems, revealing complex 

clonal dynamics in the T cell response to pathogens and cancer. Initial descriptions of T cell 

phenotypes in the context of melanoma by Tirosh et al. demonstrated the ability of scRNA-

seq to distinguish not only the major phenotypes of tumor-infiltrating T cells (CD4+, CD8+ 

and Treg) but also a spectrum of activation and exhaustion states defined by co-expression of 

cytotoxic (GZMA, GZMB, IFNG) and inhibitory (PD1, TIGIT, LAG3, CTLA4) genes, 

respectively24. Reconstruction of TCR sequence in individual cells identified clonally-

expanded subsets of tumor-infiltrating T cells which were enriched for exhaustion and 

activation signatures, supporting a link between clonal expansion, T cell activation, and 

exhaustion within the tumor microenvironment. Subsequent studies have shown high 

concordance in phenotype between T cells sharing a common TCR sequence, even within 

different activation states in major phenotype classifications such as Tregs21,22.

Despite the high correlation between TCR sequence and phenotype, additional studies have 

characterized transitions between distinct phenotypic states among clonally related cells. In 

the context of malaria infection, Lönnberg et al. demonstrated a bifurcation between closely 

related but functionally distinct populations of T helper 1 (Th1) and T follicular helper (Tfh) 

T cell subsets25. Inference of the clonal origin of these cells based on TCR sequence 

demonstrated that this bifurcation can occur within single clones of cells sharing an identical 

TCR, suggesting that the progeny of a single parental cell can adopt distinct phenotypic 

states. Within the tumor microenvironment, Li et al. compared TCR sequences shared 

between different phenotypic states to provide insight into the origin and differentiation 

lineages that connect distinct T cell phenotypes. TCR sharing between TIL phenotypes 

suggested that dysfunctional, exhausted CD8+ T cells derive from a differentiation gradient 

which includes partially exhausted, transitional cells, while cytotoxic CD8+ T cells derive 

from distinct clonal populations26. Finally, methods to link TCR sequence to epigenetic 

profile in single cells have enabled interrogation of the cis-regulatory landscapes that 

distinguish both distinct T cell phenotypes and clonal populations within the same 

phenotypic state27. In summary, recent studies combining TCR and scRNA-seq have shed 

light on the diversity of clonal dynamics during T cell response, revealing both convergent 

phenotypes and transitions between distinct phenotypic states within clonally related cells. 

Importantly, these studies required single-cell technologies, since it would be difficult, if not 

impossible, to answer these questions with population measurements.

Moreover, combined scRNA and TCR sequencing has enabled not only tracking of 

productive immune responses, but also novel insights into the origin of responsive T cell 

populations. For example, profiling of phenotypic and clonal dynamics in the context of 

checkpoint blockade immunotherapy in site-matched biopsies revealed that clonal T cell 

expansion following therapy preferentially derives from novel clones not previously 

observed in the tumor rather than reactivation of pre-existing clones28. Additional insights 
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regarding the origins of therapy-responsive T cells enabled by single-cell profiling will have 

important implications for the rational design of effective therapeutic interventions.

Technologies for the future and opportunities for vaccinology

In summary, the advent of single-cell genomic technologies has revolutionized studies of the 

immune system, enabling the de-convolution of complex immunological responses without a 
priori knowledge of cell types or gene pathways. These tools have been particularly useful 

for the analysis of lymphocytes, since linking each cell’s unique antigen receptor sequence 

with its molecular phenotype provides an unprecedented view of the relationships between 

antigen specificity, clonal lineage history, and gene regulation. We primarily focused on 

describing these principles in the context of transcriptome profiling with scRNA-seq. 

However, future studies should also take advantage of other emerging single-cell modalities, 

including methods to profile the epigenome in single cells, such as single-cell assay for 

transposase-accessible chromatin (scATAC-seq)29, multi-modal genomic methods, such as 

those that obtain protein, RNA, and/or epigenomic measurements in the same cell27,30–32, 

and methods that link transcriptome profiling with spatial information33–36. Furthermore, 

emerging methods to pair TCR sequences with cognate peptide-major histocompatibility 

complexes (MHC), and ultimately with transcriptome profiles, will facilitate functional 

profiling of antigen specificity encoded via TCR sequence37–41. Finally, the simultaneous 

measurement of genomic perturbations (with CRISPR/Cas9) and molecular phenotypes in 

single cells will enable the functional dissection of gene networks that drive cell types and 

states42–46.

In patients, scRNA-seq of patient samples has primarily been performed in the settings of 

infection and cancer, and although more extensive studies are needed, we envision that 

scRNA-seq could eventually bring value to clinical decision-making. For example, the 

analysis of the T cell response to checkpoint blockade, as read out by the clonal 

measurement of T cell expansion in the blood48, could inform whether a therapeutic dose 

was achieved in each patient, or to optimize combination therapies with other agents. 

Similarly, tracking the presence, phenotype, and persistence of CAR-T cells post-infusion 

may also be useful clinically. We also envision significant research and clinical applications 

for scRNA-seq in studying the response to vaccines. For example, serial analysis of blood 

cells after vaccination could identify responding immune cell phenotypes and clonotypes, 

gene expression pathways specifically active in clonally-expanded cells, and the differences 

between patients who either respond or are resistant to vaccination. Comparisons between 

vaccine preparations could also identify distinct and shared gene regulatory pathways 

induced by different adjuvants, and whether certain patient characteristics (such as age or 

gender) impinge upon these pathways. Finally, similar technological advances in the 

analysis of B cell responses could be used to understand mechanisms underlying the 

persistence of the vaccine-induced antibody response48. Altogether, these technologies 

should provide new insights into the regulation of vaccine-induced immunity, and ultimately 

provide a molecular basis for improved vaccine design in the future.
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Figure 1. Interrogation of heterogenous immune populations enabled by single-cell genomics.
A heterogenous population of immune cell contains defined cell states characterized by 

previously identified surface markers (red and blue), intermediate (purple) and undefined 

cell states (orange). Bulk genomic profiling relies on isolating cells based on pre-defined 

surface markers, which can lead to profiling of mixed cell states and the absence of 

intermediate cell states (top). Single-cell genomic profiling enables unbiased interrogation of 

heterogenous populations, revealing uncharacterized and intermediate cell states (bottom).
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