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Abstract

Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are 

produced endogenously and have important biological roles in most mammalian tissues. The 

recognition that these gasotransmitters have a role in physiological and pathophysiological 

processes has presented opportunities to harness their intracellular effects either through inhibition 

of their production; or more commonly, through inducing their levels and or delivering them by 

various modalities. In this review article, we have focused on an array of NO and H2S donors, 

their hybrids with other established class of drugs, and the various engineered delivery platforms 

such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the 

rationale for their development.
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1. Introduction

Nitric oxide (NO) is a ubiquitous gaseous free radical and hydrogen sulfide (H2S) a gas that 

bears the pungent smell of rotten eggs; both are toxic, yet they are recognized as having 

multiple roles in normal physiology. In 1992, the journal Science referred to NO as the 

“Molecule of the Year” and in 1998 the Nobel Prize in Physiology and Medicine was 

awarded to Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad for the major discoveries 

surrounding it. Thus, for many years NO reined supreme as a signaling wonder molecule. 

However, in 1996 a new player came on the scene when Abe and Kimura in a landmark 

study established the physiological role of H2S as a neuromodulator [1]. The elucidation of 

relevant enzymes and cellular signaling mechanisms led to the induction of H2S into a 

family of small molecule signaling compounds called gasotransmitters. A term first used by 

Wang in 2002, gasotransmitter refers to the gaseous nature of these compounds at standard 

temperature and pressure [2]. There are currently three compounds that qualify as 

gasotransmitters: carbon monoxide (CO), nitric oxide (NO), and H2S. For a molecule to be 

considered a gasotransmitter, three specific criteria must be met: 1) Endogenous production; 

2) Free permeability through cell membranes; and 3) Well-defined biological targets and 

functions [2]. Over the years, much attention has focused on creating well-defined chemical 

tools to probe the NO and H2S physiology in an attempt to determine their signaling roles in 

biological systems. The acknowledgement of NO and H2S as gasotransmitters has led to an 

interest in pharmacological application of these gases. To that end, many NO and H2S 

“releasing” compounds, also termed “donors”, have been developed/designed that have been 

and are continuing to undergo intensive investigation. However, a limiting factor to the use 

of NO and H2S as therapeutic agents are their delivery to the target organs, in many cases in 

a sustained manner. In this review we provide an overview of the various NO and H2S-

donating single agents and hybrid compounds together with the various platforms that are 

used for their delivery. This is an evolving landscape that is at the interface of basic life/

physical sciences and complex medical applications.

2. Endogenous production of NO and H2S

NO is synthesized in all cells by nitric oxide synthase (NOS)-dependent (L-arginine- NO 

pathway) and independent (nitrate-nitrite-NO pathway) pathways (Fig 1). NO is synthesized 

by three major isoforms of NOS including constitutive neuronal (nNOS/NOS1), endothelial 

(eNOS/NOS3), and inducible (iNOS/NOS2), reviewed in [3]. The expression levels of these 

enzymes varies in different tissues; nNOS and eNOS produce low concentrations of NO for 

short periods of time, whereas iNOS produces relatively higher levels and for longer time 

periods. NOS-independent NO production from nitrate and nitrite comes from the stomach 

following protonation of swallowed salivary nitrite (Fig 1) [4]. For details and in-depth 

presentation of this general area please see Gheibi et al in this special issue [5].

Endogenous production of H2S is a result of direct enzymatic desulfhydration of cysteine, 

catalyzed by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), and indirect 

desulfhydration catalyzed by 3-mercapto-sulfurtransferase (3-MST) in the presence of 

reductants (Fig 2) [6]. CBS is present mostly in the central nervous system and the liver, 

while CSE is primarily responsible for H2S production in the cardiovascular system. 3-MST 
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is located predominantly in the mitochondria and produces H2S in concert with cysteine 

aminotransferase (CAT) [7–11]. Non-enzymatic production of H2S (Fig 2) is responsible for 

a limited amount of H2S in mammalian cells [12] and is mediated through reducing 

elemental sulfur or organic polysulfides via glucose-supported and thiol-dependent reactions 

[13–15].

3. NO and H2S signaling, their interactions and cross talk

NO reacts with the active site of soluble guanylate cyclase (sGC) and produces cyclic GMP 

(cGMP) (Fig 3). cGMP activates cGMP-dependent Protein Kinase G (PKG), which 

phosphorylates multiple substrates [16]. In general, an increase in cGMP leads to smooth 

muscle relaxation, vasorelaxation, and decrease of platelet aggregation [17, 18]. NO can 

modify proteins by S-nitrosylation of cysteine residues [19–21], which may lead to either 

progression or inhibition of various diseases [22]. S-nitrosylation of NF-κB and matrix 

metalloproteinase 9 (MMP9) promotes cell death whereas S-nitrosylation of caspase-3, 

caspase-9, and c-Jun N-terminal kinase prevents activity and inhibits apoptosis [23]. 

Hypoxia-inducible factor-1 (HIF-1), estrogen receptor and NF-κB are redox sensitive 

transcription factors that are regulated by S-nitrosylation [24].

H2S can also increase cGMP levels by inhibiting PDE5A, the enzyme that is involved in its 

catabolism [25]. H2S interacts with ATP-sensitive potassium (KATP) channels leading to 

vasorelaxation in vascular smooth muscle [26] and enhancing cardiovascular function [27]. 

Voltage-dependent calcium channels are also important targets of H2S [28]. H2S signaling 

may be through sulfuration (S-sulfhydration) of target proteins, where a sulfhydryl group (-

SH) is transferred to a cysteine residue to form hydropersulfide (-SSH) [29, 30] or persulfide 

groups [31]. H2S also reacts with S-nitrosothiols to form thionitrous acid (HSNO), the 

smallest S-nitrosothiol [32]. HSNO can be metabolized to NO+, NO, and NO−, all of which 

have distinct physiological effects. Thus, HSNO can act a signaling molecule that may play 

a key role in cellular redox regulation [32].

NO and H2S bind avidly to hemoglobin [2] leading to the formation of nitrosyl hemoglobin 

and sulfhemoglobin, respectively [33]. This competition for the common hemoglobin sink 

can potentiate the biological activity of the other. NO and H2S can interact with each other, 

affecting each other’s bioavailability and reactivity [34–36]. For example, NO inhibits CBS 

activity by binding to the heme group of the enzyme [37] and NaSH inhibits a recombinant 

form of bovine eNOS by an interaction between co-factors such as NADPH or 

tetrahydrobiopterin [38, 39]. NO can increase H2S biosynthesis through increases in 

expression of CBS and CSE enzymes in vascular smooth cells [26, 40]. H2S increases NO 

levels by increasing IL-1β-induced iNOS expression in vascular smooth cells [41] through 

NF-κB activation by a mechanism involving the ERK1/2 signaling cascade. In bovine 

arterial endothelial cells, H2S has been shown to increase eNOS activation either indirectly 

by inducing its phosphorylation through an Akt-dependent mechanism [42] or directly by 

inducing Ca2+ release from the intracellular storage in the endoplasmic reticulum [43]. In 

human umbilical vein endothelial cells L-cysteine supplementation stimulated NO 

production, while inhibition of CSE blocked it [44]. Emerging data show that the interaction 

between H2S and NO can also generate polysulfides (H2Sn; H2S2 and H2S3) [45], reviewed 
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in [3]. Some of the main features of NO and H2S signaling and their interactions are 

depicted in Fig 3.

4. Synthetic H2S donors and H2S-NSAID Conjugates

The need for chemical tools to study H2S biology grew out of an interest in determining the 

physiological roles of H2S. These tools include probes for the detection of H2S, which 

change their spectroscopic properties in response to H2S, CBS and CSE inhibitors, which 

reduce endogenous production of H2S, and H2S donors, which are compounds designed to 

release H2S under specific conditions. To study H2S in a physiologically relevant manner, 

donors with variable release rates and triggers are needed. We do not attempt to provide a 

comprehensive description of all available H2S donors here; rather, we critically examine 

recent developments in H2S donor chemistry, highlight specific examples of donors, and 

discuss important considerations in designing and choosing donors for biological studies and 

translation to H2S-releasing therapeutics.

4.1. Small molecule H2S donors

4.1.1. Sulfide salts—The most commonly used H2S donors employed in biological 

studies are sodium hydrosulfide (NaSH) and sodium sulfide (Na2S). Although routinely 

referred to as H2S donors, sulfide salts are simply solid analogs of H2S gas, providing 

instantaneous access to the biologically relevant forms of sulfide (H2S and HS–) in aqueous 

media. Sulfide salts have been extremely important in the establishment of H2S as a 

gasotransmitter, and these salts have been applied to evaluate the biological roles and 

therapeutic potential of exogenous H2S delivery.

One of the first studies on exogenous H2S delivery by Wang used aqueous NaSH solutions 

in the in vitro evaluation of rat aortic rings [46]. Exogenously delivered NaSH led to a 60% 

greater relaxation versus controls, showcasing the properties of H2S as a vasorelaxant. In a 

separate study by Du, exogenous delivery of NaSH via IV injection in rats with oleic acid-

induced acute lung injury (ALI) alleviated symptoms by diminishing IL-6 and IL-8 levels, 

while simultaneously increasing IL-10 levels in the lung tissues [47]. This landmark study 

also provided verification of the hypothesis that down-regulation of endogenous H2S 

production in the cardiovascular system is involved in ALI pathogenesis and disease 

progression.

Despite these successes in early work, Na2S and NaHS are not ideal H2S donors for several 

reasons. First, they are instantaneously converted into H2S/HS−, which is starkly different 

from biological H2S signaling, which is tightly regulated by CSE and CBS. Second, 

commercial sulfide salts are impure, contaminated with polysulfides and other potential 

sulfur signaling species. Finally, without special precautions to prevent oxidation and 

volatilization, solutions of H2S quickly become depleted, creating inconsistencies in the 

amount of H2S added across a treatment group in an experiment because all animals or cell 

groups cannot be treated simultaneously.

4.1.2. Hydrolysis-Triggered H2S Donors—Several types of H2S donors have been 

developed that begin releasing H2S as they dissolve in water. Release rates vary, and some 
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have pH-dependent release profiles. A few well studied classes of hydrolysis-triggered H2S 

donors are shown in Figure 4.

4.1.2.1. Lawesson’s Reagent and GYY4137: Lawesson’s reagent (LR) is a chemical 

reagent used widely for the thionation of amides, esters, and ketones to their corresponding 

sulfur analogs [48]. LR is commercially available, making it a popular choice for biologists 

studying H2S physiology. Importantly, LR releases H2S in aqueous media over a much 

longer period than sulfide salts, making it a useful early candidate for the evaluation of 

sustained H2S release. Much of the preliminary work in the field was performed with LR, 

but drawbacks, namely its low water solubility and lack of detailed kinetic analyses, led 

researchers to examine a water-soluble derivative of LR, called GYY4137. Synthesized via 

the reaction of morpholine and LR at room temperature, GYY4137 is easily prepared and 

purified before in vitro or in vivo administration. Many early studies on H2S biology applied 

GYY4137 as an H2S donor, but this compound also possesses drawbacks. Firstly, the 

preparation of GYY4137 yields the compound in a dichloromethane (DCM) complex, 

obfuscating biological data generated using the prodrug because DCM is metabolized into 

CO, another gasotransmitter with effects related to H2S [49]. Also, a lack of proper control 

compounds in many studies using GYY4137 further complicates the interpretation of the 

observed biological effects with exogenous GYY4137 delivery.

Xian et al. more recently developed a series of donors with structures related to GYY4137 in 

the form of phosphonamidothioates, denoted as JK donors [50]. The synthesis of these 

compounds was accomplished by combining Lawesson’s reagent with various amino acids, 

yielding a series of phosphonamidothioates analogous in structure to GYY4137. In their 

initial report, the authors found that in aqueous media at neutral and mildly basic pH, JK 

donors released low concentrations of H2S. In contrast, under mildly acidic conditions (pH ≤ 

6.0), JK donors cyclized via nucleophilic addition of the carboxylic acid functionality of the 

amino acid, promoting H2S release by breaking the weak P–S bond. Across the series of JK 

donors, lower pH accelerated release rates, while a GYY4137 control showed no release 

profile variability at various pHs. H2S release profiles could also be tuned by altering the 

canonical R group substituent of the amino acid component of the donor. The authors 

observed that any substitution at the amino acid R group (i.e., R ≠ H) promoted cyclization, 

and thus showed faster release profiles at neutral and basic pH over the unsubstituted donor. 

The JK donors (25 and 50 μM) showed efficacy in reducing cellular damage resulting from 

anoxia/reoxygenation (A/R) treatment with H2O2 in vitro. JK-type donors were also 

successful in reducing infarct size per area-at-risk via intracardiac injection in mice in an I/R 

model. JK donors, specifically JK-1, have been used in several biological studies since the 

initial report. In one key example, Lefer showed that JK-1 exhibited protective effects in 

multiple organs by reducing oxidative stress, improving exercise capacity, and attenuating 

rene-angiotensin-aldosterone system activation [51]. Due to their modular nature and 

activity, we expect JK-type H2S donors to be a valuable chemical tool moving forward for 

investigating the cardioprotective effects of H2S.

4.1.2.2. Dithiolthiones: 1,2-Dithiole-3-thiones (DTTs) are a group of compounds in the 

family of hydrolysis-triggered H2S donors. There is also evidence that they are triggered by 
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intracellular enzymes, although the specific enzymes have not been identified [52]. 

Synthesized by the reaction of elemental sulfur and anethole, DTTs are easy to derivatize 

and can be readily attached to other molecules to make a wide variety of drugs and/or 

polymer-DTT conjugates. Substituted DTTs appear to hydrolyze cleanly, with the thione 

species being converted into a carbonyl [53]. However, in this study, complete hydrolysis 

required 48 h at 120 °C in a DMSO/H2O mixture. The authors noted that hydrolysis under 

physiological conditions was very slow and did not present any data at 37 °C. However, they 

did observe activity of several DTTs as COX-1 and COX-2 inhibitors, with less potency 

noted for the hydrolyzed DTTs against both targets. Therefore, DTTs may have bioactivity 

aside from their potential H2S-donating properties.

4.1.3. Thiol-Triggered H2S Donors—Thiol-triggered H2S donors are the most 

common class of non-hydrolysis-triggered synthetic donors. Free thiols are abundant 

nucleophiles in mammals and offer a platform from which thioldisulfide exchange can be 

used to accomplish H2S release after nucleophilic attack. A number of thiol-triggered H2S 

donors are shown in Figure 5.

4.1.3.1. N-Benzoylthiobenzamides: Among the first nucleophile-triggered H2S donors 

were the N-(benzoylthio)benzamides developed by Xian and coworkers [54]. Synthesized 

from substituted derivatives of thiobenzoic acid, a series of N-benzoylthiobenzamides were 

assessed for H2S release, with a range of different release rates observed. The H2S release 

mechanism was confirmed with the formation of N-acetylcysteine, cystine, and benzamide. 

In cell studies, a selected N-(benzoylthio)benzamide protected human keratinocytes against 

methylglyoxal (MGO)-induced cell damage, an issue prevalent in diabetics [55]. These 

donors have shown cardioprotective effects in animal models of myocardial I/R injury, 

displaying a reduction in infarct size over controls [56].

4.1.3.2. Arylthioamides: Arylthioamides (ArC(S)–NH2) are a class of donors that was 

first reported by Calderone and coworkers [57]. In this work, twelve arylthioamides were 

synthesized and evaluated for H2S release. All donors released H2S in response to cysteine. 

Release studies were conducted at relatively high concentrations of donor and thiol (1 mM 

and 4 mM, respectively), leading to rapid peak release time. The arylthioamides released 

only small amounts of H2S, exhibiting maximum concentrations between 3–21 μM from 1 

mM donor concentrations. The fast rise to a steady state concentration suggests these donors 

are fast-releasing compounds; however, this quick rise to maximum concentration in 

solution is quite misleading as the peak H2S concentration represents a small fraction of the 

total available H2S. Some of the donors released H2S in the absence of a thiol trigger, 

indicating that they are not exclusively thiol-responsive. Alterations in ring electronics 

modulated release rates, but not in any clear pattern. One donor, p-hydroxybenzothioamide, 

was evaluated in a rat aortic ring contraction study and promoted vasodilation at 1 mM in the 

presence of noradrenaline (NA) without adding exogenous cysteine. Due to the sustained 

H2S release profile of p-hydroxybenzothioamide and ease of conjugation to other 

compounds, arylthioamides have been conjugated to a variety of drugs as conjugates, 

including NSAIDs. In one key example, the development of a naproxen-

hydroxybenzothioamide conjugate, ATB-346, was described [58]. The efficacy of ATB-346 
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as an anticancer drug was investigated, revealing that it induced apoptosis in human 

melanoma cells in animal studies. ATB-346 has also shown efficacy in reducing 

gastrointestinal tract injury while maintaining chemopreventative activity against colorectal 

cancer when compared to naproxen controls [59]. Further studies on ATB-346 are underway 

by Antibe Therapeutics, where a phase II GI safety study was completed in 2017.

4.1.3.3. S-Aroylthiooximes: S-Aroylthiooximes (SATOs) are a class of thiol-triggered 

donors developed by Matson and coworkers [60]. SATOs (ArC(O)–S–N=CR2) are 

synthesized by condensation of an aryl aldehyde or ketone and an S-aroylthiohydroxylamine 

(SATHA, ArC(O)–S–NH2) in the presence of catalytic trifluoroacetic acid in a reaction 

analogous to oxime formation. A series of substituted small molecule SATOs were 

synthesized by varying both the substituent on the SATHA and the aldehyde or ketone. 

SATOs released H2S in the presence of cysteine and other thiols but did not show release in 

the presence of amines or water alone, suggesting SATOs possess stability in aqueous 

media. H2S release was measured with the methylene blue method as well as 

amperometrically using an H2S-sensitive electrode. A predictable electronics trend 

correlating the substituent on the SATHA ring with H2S release was observed by fitting 

release half-lives to a Hammett plot. Under the conditions tested, H2S release half-lives 

ranged from minutes to hours.

Although thiol-triggered H2S donors have shown efficacy in releasing H2S with well-defined 

release mechanisms, this subset of donors exhibits poor tissue targeting capabilities due to 

the ubiquitous nature of thiols inside cells. The design of thiol-triggered H2S donors in the 

future must incorporate targeting capabilities to mitigate potential off-target effects. 

Strategies researchers could use to accomplish this important task include the use of 

targeting peptides, macromolecular scaffolds for increased circulation, and innovative 

molecular design with the capability for selective thiol reactivity.

4.1.4. Light- and Enzyme-Triggered H2S Donors—Light-triggered prodrugs are 

useful tools for studies in vitro and hold promise as potential therapeutics due to the 

bioorthogonality of visible light as a trigger. Visible light possesses a unique advantage over 

other triggers because it enacts H2S release without major perturbation of native biochemical 

processes. However, light application only triggers H2S release in areas of the body where 

sufficient light penetration is possible. After prodrug administration, light of a particular 

wavelength can trigger release at the site of interest, potentially minimizing any off-target 

effects through direct spatiotemporal control over release.

Enzymes are of great importance to all living organisms and act on one or more specific 

biological substrates. In addition, utilizing enzymes as prodrug triggers often allows for 

specific targeting capabilities to a tissue of interest. Importantly, overexpression of enzymes 

is commonly symptomatic of many diseases, offering another layer of targeting capability to 

treat diseases with clever implementation of enzyme-triggered prodrugs. Several classes of 

light-triggered and enzyme-triggered H2S donors are shown in Figure 6.

4.1.4.1. Geminal-dithiols: Xian reported one of the first examples of light-triggered H2S 

donors in the form of geminal dithiols (ArCH2–S–C(CH3)2–S–CH2Ar).[61] The ortho-
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positioned nitro group photolyzed when irradiated with UV light (365 nm) to produce an 

unstable geminal dithiol intermediate. This intermediate hydrolyzed to yield H2S rapidly in 

aqueous media along with a benzyl alcohol byproduct. Xian’s donors released their full 

payload within ~30 min, with no H2S release being observed in the absence of UV light. 

Due to the acid-catalyzed hydrolysis mechanisms of gemdithiols, H2S release was 

accelerated at low pH as compared to slower release at higher pH. Modifications of the 

bridging groups in some of the compounds yielded trends in release rate, with bulky 

aromatic bridging groups leading to slower release compared to faster release from alkyl 

bridging groups. These differences in observed release rates were the result of alterations in 

sterics and electronics.

4.1.4.2. α-Thioetherketones: Connal and coworkers developed a small molecule prodrug 

that incorporated a UV-responsive α-thioetherketone linkage with the ability to decompose 

into a thioaldehyde species and benzophenone, byproducts that are recognized as safe by the 

FDA [62]. The thioaldehyde generated H2S in the presence of an amine, yielding an imine 

byproduct. Possessing similar functionality to Connal’s thioetherketones, Singh and 

coworkers developed light-activated H2S donors using a p-hydroxyphenacyl phototrigger 

[63]. The methylene blue assay validated efficient H2S release from this family of donors 

with a maximum peaking concentration of 40 μM from 50 μM donor. Confocal microscopy 

confirmed Singh’s donors released both H2S and two equivalents of fluorophore in response 

to UV light (410 nm), providing a means of tracking H2S release in real time. More recently, 

the authors reported on a water-soluble derivative of this light-triggered donor which 

reached peak H2S concentrations of 45 μM in 30 min from 100 μM donor concentration, as 

measured by the methylene blue assay. Additionally, these donors exhibited no cytotoxicity 

towards HeLa cells at concentrations up to 20 μM both before and after photolysis [64]. This 

work exemplifies a step towards spatiotemporally controlled H2S release.

4.1.4.3 Enzyme-Triggered H2S Donors: Wang developed the first series of esterase-

triggered H2S donors [65]. The release mechanism of these donors hinges upon a well-

known lactonization reaction named “trimethyl lock” (TML), which has been widely used to 

release a variety of drugs [66]. Wang’s TML system first relies on the cleavage of a phenolic 

ester by an esterase, after which steric repulsion of three methyl groups places the resulting 

phenol in close proximity to a thioester, promoting lactonization. This cyclization reaction 

results in release of H2S from the thiocarbonyl group. The authors synthesized several TML 

derivatives in this study through variations of the phenolic ester moiety and addition or 

removal of the methyl substituents on the aromatic ring. Because three specifically placed 

methyl groups are required to drive lactonization after ester cleavage, Wang proposed that 

removing these substituents would offer a means of slowing H2S release in this system. As 

hypothesized, derivatives lacking aryl methyl groups exhibited longer release times, ranging 

from 45–99 min, while prodrugs containing the three methyl groups showed release rates 

ranging from 13–29 min. A variety of NSAID-TML hybrids were additionally synthesized 

and evaluated for their efficacy as anti-inflammatory agents, successfully inhibiting secretion 

of TNF-α.
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In another example of enzyme-triggered H2S donors, Chakrapani and coworkers utilized a 

protected geminal dithiol as an H2S releasing moiety [67]. Instead of employing Xian’s 

photocleavable functionality, the authors utilized a para-nitro benzyl thioether as a protecting 

group for the geminal dithiols. The nitro group on the benzyl linker underwent reduction to 

an amine in the presence of E. coli nitroreductase (NR). The resulting unstable aniline then 

underwent 1,6-elimination to release the deprotected geminal dithiol, which in turn rapidly 

hydrolyzed to generate H2S and p-aminobenzyl alcohol as a byproduct. The donors showed 

H2S release out to 45 min using a fluorescent BODIPY probe, with peak instantaneous H2S 

concentrations reaching 30 μM in the presence of NR. In vitro studies using E. coli strains 

showed that the donor rescued the bacteria from oxidative stress caused by administration of 

common antibiotics, suggesting that H2S production in bacteria may possibly be a 

mechanism leading to antibiotic resistance. Not much is known about the interactions of 

H2S in prokaryote organisms, or about the function of H2S in related areas of human 

physiology such as the microbiome. To elucidate the role of H2S in these symbiotic systems 

and/or directly in prokaryotes, new varieties of chemical tools will need to be designed, 

synthesized, and tested.

5. Engineered H2S delivery platforms

While small molecule donors comprise the vast majority of H2S donors reported thus far, 

they possess several limitations when considering their use in biological systems. For 

example, many small molecule H2S donors are inherently hydrophobic, which limits 

solubility in aqueous environments and may result in low bioavailability. Additionally, the 

reactive nature of H2S donors incurs low stability in biological environments. 

Macromolecular donor systems offer a means to modulate the chemical, physical, and 

pharmacokinetic properties of a donor molecule without extensively changing its chemical 

nature. For example, hydrophobic donor molecules may be incorporated into hydrophilic 

polymers, either through covalent linkages or non-covalent sequestration, to improve 

solubility and circulation time. Importantly, the larger size of polymeric prodrugs allows for 

increased permeability in the leaky vasculature of tumors, providing additional targeting 

capabilities that small molecule donors usually do not possess [68]. Furthermore, the 

surrounding polymer structure may shield the incorporated donor motif against unintended 

degradation by biological nucleophiles. In addition, other materials such as peptides, 

nanoparticles, and inorganic assemblies may be used to encapsulate, bind, or covalently 

attach H2S donors, providing modular release platforms with multiple tuning handles. As 

such, there has been increased interest in macromolecular H2S donor systems; recent 

reviews provide an in-depth look at their development [69–71]. Here we provide a brief 

overview of some notable macromolecular H2S donor systems and their contributions as 

biological tools for delivering H2S. Of course, delivery of NO has many of the same 

challenges as H2S delivery, and similar engineered systems have been developed for NO 

delivery, several of which are highlighted graphically in Figure 7. NO delivery systems are 

discussed in section 7.
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5.1. H2S-releasing polymers

5.1.1 ADT-Polymer conjugates—Perhaps the simplest strategy for creating 

macromolecular H2S donor systems is the covalent attachment of donor molecules to linear 

polymers. To this end, a variety of covalently attached macromolecular H2S donors have 

been developed. 5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH) is a popular 

DTT that can be easily appended to polymers via common coupling chemistry. ADT-OH is 

the active metabolite in anethole trithione (a drug used in the treatment of dry mouth) and 

possesses bioactivity aside from releasing H2S, as noted above [72]. In addition, it lacks a 

clear mechanism of release, and the factors that affect release rate are not known. Despite 

these issues, ADT-OH has been conjugated onto several polymer systems, the first of which 

was reported by Hasegawa in 2014 [52]. In this work, ADT-OH was conjugated to the chain 

end of poly(ethylene glycol) (PEG), resulting in PEG-ADT. Conjugation to the polymer 

enhanced water solubility of the drug, significantly reducing toxicity in vitro in RAW-Blue 

macrophages. The PEG-ADT conjugates entered RAW cells through endocytosis, while 

small molecule ADT-OH predominantly diffused across the cell membrane. The authors 

attributed differences in cytotoxicity between small molecule and polymeric donors to a 

variance in intracellular distribution due to unique pathways of cellular entry. Furthermore, 

the slower release of H2S from PEG-ADT relative to ADT-OH resulted in enhanced 

potentiating effects on LPS-induced inflammation in RAW-blue macrophages. The same 

group also created polymer micelles containing ADT units [73]. Similar to PEG-ADT linear 

polymers, the micelles showed less cytotoxicity than small molecule ADT-OH in vitro. 

Unexpectedly, PEG-b-PADT micelles enhanced the inflammatory response in 

gardiquimode-stimulated murine macrophages, whereas ADT-OH slightly decreased the 

inflammatory response under similar conditions. These studies collectively show the ability 

of polymeric and micellar systems to attenuate certain toxic effects of H2S donors by 

controlling their entry into cells.

5.1.2. SATO-Polymer conjugates—In another example of macromolecular systems 

with covalently attached H2S donor molecules, Matson and coworkers developed water-

soluble polymers conjugated with H2S releasing-SATO groups through a post-

polymerization modification of pendant aldehydes [74]. In later work, the authors prepared 

amphiphilic block copolymers with SATO-functionalized hydrophobic segments, which 

readily formed spherical micelles in aqueous solutions [75]. Unlike small molecule and 

water-soluble polymeric SATO donors, H2S release from SATO-containing micelles was 

limited by diffusion of triggering cysteine molecules into the hydrophobic micelle core. As a 

result, SATO-containing micelles experienced drastically slower H2S release kinetics, 

exhibiting a 9-fold increase in release half-life relative to the small molecule SATO analog. 

Additionally, the polymer micelles showed greater efficacy in decreasing the viability of 

HCT116 colon carcinoma cells compared to small molecule H2S donors, highlighting the 

significance of H2S release rates in biological systems. To further expand this study, the 

authors developed a method for systematically tuning the H2S release rate from SATO-

containing micelles through control of micelle core mobility [76]. In this work, a plasticizing 

comonomer was incorporated into the core-forming block of SATO-conjugated polymer 

amphiphiles to produce a series of SATO-containing micelles with varying amounts of 

micelle core mobility. The H2S release rate varied over 20-fold throughout the series of 
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polymer micelles, signifying that diffusion of triggering cysteine molecules into the micelle 

core could be precisely controlled by tuning the chemical composition of the core-forming 

block. Altogether, these studies show the potential for macromolecular H2S donors in 

overcoming the challenges small molecule donors face in biological systems.

5.1.3. Arylthioamide-Polymer conjugates—In 2016, Davis et al developed 

amphiphilic block copolymers conjugated with H2S-releasing arylthiobenzamide groups 

through thionation of pendant benzonitrile groups [77]. The authors controlled the 

placement of thiobenzamide groups to form amphiphilic block copolymers with H2S-

releasing groups in either the corona-forming or core-forming blocks. The polymer 

amphiphiles both formed micelles in aqueous buffered solutions. Faster H2S release from 

corona-functionalized versus core-functionalized micelles was attributed to the shielding 

effect of the micelle core limiting the rate of hydrolysis for thiobenzamide groups 

sequestered within it. Furthermore, H2S delivered from slow-releasing, core-functionalized 

polymer micelles produced a slow, sustained increase in cytosolic ERK signaling activity 

and a smaller but more rapid increase in plasma membrane-localized protein kinase C 

activity in HEK293 cells. These results demonstrate the potential for modifying specific 

cellular signaling pathways through release of H2S with spatiotemporal control.

5.1.4. Geminal Dithiol-Polymer conjugates—As mentioned above, light-triggered 

donors are promising tools for spatiotemporally controlled release of H2S in biological 

systems. As such, geminal dithiol donors were recently incorporated into macromolecular 

donor systems. Li reported a polymeric H2S donor system based on conjugation of 2-

nitrobenzenemethanethiol to pendant ketones on a water-soluble polymethacrylate [78]. The 

rate of H2S release from the copolymer exhibited positive correlation with the UV light 

intensity, while in the absence of irradiation, no release was observed. Additionally, the 

water-soluble polymeric donor and its H2S-releasing photodegradation product exhibited no 

cytotoxicity towards human fibroblast cells at concentrations up to 1 mg/mL. While this 

work lacked a demonstration of light-triggered release at a site of interest in a biological 

environment, it represents a promising step forward in the development of H2S donors with 

spatiotemporally controlled release.

5.2. Microparticles and fibers

Macromolecular donors based on polymer assemblies (e.g. micelles or liposomes) and 

water-soluble polymers can circulate throughout the bloodstream, thereby delivering H2S 

systemically. In contrast, larger polymer assemblies or supramolecular structures (e.g. 

microparticles or hydrogels) persist in the area where they are implanted, leading to a 

localized release of H2S. Localized delivery can be particularly advantageous if the donor is 

implanted at a site of interest. Additionally, the larger size of these assemblies provides an 

increased shielding effect for donor moieties sequestered within them, leading to longer or 

sustained release of H2S.

5.2.1. Microparticles—In 2015, Bowden et al. reported polylactide microparticles 

system functionalized with thiobenzamide groups as a system for sustained delivery of H2S 

[79]. Ring-opening copolymerization of L-lactide and a 4-hydroxythiobenzamide-
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functionalized lactide monomer afforded polymers decorated with pendant thiobenzamide 

groups along the backbone. From the functionalized polylactides, two sets of spherical 

microparticles were generated with average diameters of 12 ± 4 and 0.5 ± 0.1 μm. The 

microparticles experienced 10% weight loss after four weeks at pH 7.4, suggesting the 

potential for prolonged H2S delivery. Degradation of the microparticles should result in 

increased exposure of H2S-releasing thiobenzamide groups, therefore a long timescale of 

degradation should elicit sustained delivery of H2S. However, the authors could not 

quantitatively measure H2S levels due to low thiobenzamide loadings in the microparticles, 

slow microparticle degradation, and rapid loss of H2S from aqueous solutions. Despite this 

limitation, this work demonstrates the potential for microparticle systems that can deliver 

H2S in a sustained manner.

5.2.2. Electrospun Fibers—Wang and co-workers reported the first electrospun H2S-

releasing microfibers in 2015 based on a biodegradable polycaprolactone (PCL) polymer 

matrix.[80] A solution of PCL at different concentrations (6%, 8%, and 12%) and a thiol 

activated H2S-donor (NSHD1) were subjected to electrospinning to yield microfibers with 

diameters ranging from 0.5 to 1.5 μm. An increase in microfiber diameter was observed with 

increasing PCL concentration. H2S release half-lives for the microfibers were longer than 

NSHD-1 alone, with measurable H2S levels extending past 24 h. Release rate depended on 

fiber thickness, with thicker fibers releasing more slowly than thinner ones. Additionally, the 

H2S-releasing microfibers protected H9C2 cardiomyocytes subjected to oxidative stress by 

addition of H2O2. They also enhanced proliferation of 3T3 fibroblasts, which is potentially 

useful for wound healing. In later work, the authors incorporated JK-1, a hydrolysis-

triggered H2S donor, into PCL fibers using a similar electrospinning technique [81]. The 

JK-1-doped PCL fibers showed an extended H2S release profile over the small molecule in 

solution, which is expected for a hydrolysis-triggered donor. Furthermore, one-time 

application of PCL-JK1 nanofibrous scaffolds to full-thickness cutaneous wound models in 

mice showed successful wound regeneration over 20 d with increased healing rates relative 

to control non-doped PCL fibers.

5.3 Hydrogels

Beyond use in PCL microfibers, the JK-1 H2S donor has also been encapsulated in a 

hydrogel system for the potential treatment of indivertible disc degeneration (IDD) [82]. 

Hydrogels are networks of polymer chains, held together by chemical or physical crosslinks, 

and expanded by water. In this work, JK1 was encapsulated within the porous network of a 

collagen hydrogel to generate Col-JK1 gel. The gel could be slowly degraded by MMP9, an 

enzyme that is overexpressed under IDD conditions. Degradation of the collagen gel caused 

release of JK1 molecules into the low pH environment of the inflamed tissue, which 

subsequently released H2S. As expected, the shielding effect of the surrounding hydrogel 

structure resulted in slower H2S release from Col-JK1 relative to the small molecule alone. 

Additionally, the presence of MMP9 led to increased degradation of the hydrogel structure, 

and accelerated release kinetics. Furthermore, Col-JK1 successfully inhibited apoptosis in 

nucleus pulposus cells and prevented degradation of extracellular matrix (ECM), indicating 

its potential for IDD treatment. While this system marks progress towards enzyme-triggered 
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macromolecular donors, substantial release of H2S in the absence of MMP9 denotes the 

need for further development of these systems.

The robust SATO-forming reaction has also been leveraged to prepare H2S releasing 

amphiphilic peptide systems, some of which form hydrogels. For example, an amphiphilic 

peptide with the sequence IAVEEE was modified by attaching an aryl aldehyde to the N-

terminus to form a SATO-based aromatic peptide amphiphile [83]. The SATO-containing 

peptide amphiphiles self-assembled in aqueous media to form nanofibers that gelled in the 

presence of calcium, affording hydrogels using 1 wt.% peptide, which exhibited sustained 

H2S release with a peaking time of ~120 min. In vitro studies using mouse brain endothelial 

cells showed minimal toxicity of the gels. More recently, a similar SATO-based aromatic 

peptide amphiphile system was testing for the treating occlusive diseases such as intimal 

hyperplasia (IH) [84]. The peptide gels inhibited vascular smooth muscle cell (VSMC) 

proliferation and IH in ex vivo human vein cultures. The peptide gels promoted HUVEC 

proliferation and transmigration, suggesting H2S donor gels such as these could aid in 

recovery after vascular intervention. Other peptide-based H2S-releasing SATO systems have 

also been recently reported [85–89]. We envision that SATO-peptide gels have a promising 

future for in vivo studies where localized H2S delivery is imperative to enact desired 

physiological effects.

6. NO and its applications

NO has a very diverse chemical biology and function; for example, it has a role in vascular 

relaxation [90], has anti-thrombolytic and anti-inflammatory effects [91], is involved in 

neurotransmission, immune-response facilitation, has antipathogenic response [92–94], has a 

central role in angiogenesis and is a mediator of the vascular endothelial growth factor 

(VEGF) [95], it displays antiatherosclerotic properties [96], and has a dichotomous role 

cancer biology [97]. Many of its actions follow a biphasic dose-response, which ranges from 

physiological, cytoprotective effects at relatively low concentrations to cytotoxic effects at 

much higher concentrations, reviewed in [3, 98–101]. In the following sections, we have 

reviewed some of the means by which NO is utilized to meet a particular clinical need and 

means by which its delivery is manipulated.

6.1. Classical synthetic NO donors

Before discussing synthetic NO donors, it is worthwhile to note that the FDA approved NO 

inhalation for treatments of patients with acute respiratory distress syndrome (ARDS) and 

for newborns with pulmonary hypertension in 1999 [102]. NO inhalation was shown to be 

beneficial in patients with post-cardiac arrest, extracorporeal membrane oxygenation 

(ECMO), cardiopulmonary bypass (CPB), sickle cell disease (SCD), acute chest syndrome 

(ACS), and lung and heart transplants [102]. However, NO inhalation as a means of drug 

therapy has potentially serious side effects. These include formation of nitrite (NO2
−), which 

can react with the alveolar lining fluid producing nitric acid; formation of peroxynitrite 

(OONO−) if NO reacts with superoxide anions; reaction with oxyhemoglobin to yield 

methemoglobin leading to systemic hypoxemia, and others. These side effects limit the use 
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of NO inhalation as a viable therapeutic modality, and caution must be exercised when doing 

so.

Nitrovasodilators (Fig 8), which include nitroglycerine (glycerol trinitrate), amyl nitrite, 

isosorbide mono- and dinitrate, erythrityl tetranitrate, and sodium nitroprusside are 

medications that are taken sublingually, orally, or subcutaneously for the treatment of angina 

pectoris and other coronary artery diseases. Nitroglycerine has been used effectively for over 

100 years, and the other organic medicinal nitrates have been available since the 1930s. 

Because NO has a dichotomous role in cancer biology, with some reports suggesting that 

NO possesses anti-tumor properties, while others implicate NO in tumor promotion, in 

theory, these medications can inhibit or promote the development of cancer. For example, 

isosorbide mononitrate and dinitrate were shown to inhibit angiogenesis, tumor growth, and 

metastasis in mice [103], while feeding glyceryl trinitrate to F344 rats induced 

hepatocellular carcinomas [104]. A novel NO donor, 3-morpholino-sydnonimine (SIN-1, Fig 

3) and its analog, a dual-acting NO-releasing and reactive oxygen-scavenging hybrid 

compound SA-2, were shown to lower elevated intraocular pressure that is associated with 

degeneration of the optic nerve and loss of retinal ganglion cells [105] by increasing 

superoxide dismutase enzyme activity. A seminal review on synthetic NO donors is given by 

Wang et al [106].

6.2. Classical NO-NSAID conjugates

Considerable epidemiological, interventional, and animal studies have established 

nonsteroidal anti-inflammatory drugs (NSAIDs) as the prototypical chemopreventive agents 

against many forms of cancer [3, 25, 100, 101, 107–109]. Chronic NSAID use eventually 

causes some degree of gastrointestinal (GI) erosions, which eventually may lead to ulcers, 

with most having cardiovascular (CV) and renal side effects. In order to overcome these 

potential side effects, nitric oxide-releasing NSAIDs (NO-NSAIDs), also known as COX-

inhibiting nitric oxide donors (CINODs) were developed [110, 111]. The rationale for their 

development was essentially based on the observations that within the GI system, NO can 

enhance the local mucosal defense mechanisms, offsetting the decreases in prostaglandins 

(PGs) that come about due to cyclooxygenase (COX) inhibition following chronic NSAID 

use [112]. NO-NSAIDs have safer GI profiles compared to their corresponding parent 

NSAID in animals [113–120] and humans [121, 122].

NO-NSAIDs are traditional NSAIDs linked to a NO-releasing group via a chemical spacer. 

The three key structural components of this class of NO-NSAID are: the traditional NSAID 

moiety; the spacer, which can be either aliphatic or aromatic; and the NO-releasing group, 

which initially was a nitrate ester as shown in Fig 9 A and B. In evaluating these NO-

NSAIDs in cell culture against a variety cancer cell lines, it was shown that positional 

isomerism greatly influenced all cell kinetic parameters that influence cellular mass. For 

example, the ortho and para positional isomers of NO-aspirin were significantly more potent 

than the meta isomer, and when the spacer was aliphatic the activity was considerably lower 

[123–125].

A second generation of NO-releasing aspirins uses furoxan derivatives as NO donors [126], 

(Fig 9–C). Unlike the nitrate esters which required enzymatic metabolism for NO release 
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[127–129], the furoxan-based NSAID hybrids released NO in the presence of plasma, GSH, 

or albumin, that is through thiol-triggered mechanisms [130]. Another class of NO-releasing 

“aspirin-like” compounds have also been described where the acetyl group on the aspirin has 

been replaced by acyl groups containing nitroxy NO-releasing moieties (Fig 9 D and E). All 

these compounds have exhibited reduced GI toxicity compared to aspirin, and have strong 

anti-inflammatory properties [131].

6.3. NO-releasing coxibs

Selective cyclooxygenase-2 inhibitors (Coxibs) such as celecoxib, rofecoxib, and valdecoxib 

were developed to overcome the GI side effects of traditional nonselective NSAIDs [132], 

which are attributed to inhibition of COX-1. Overall, this class of compounds has a very 

good GI safety profile in the short term; however, this appears to be less robust with long-

term use. However, total inhibition of COX-2 can lead to an eicosanoid imbalance by down-

regulation of PGI2 and unaffected levels of TXA2 leading to increased chances of CV side 

effects events [133] as confirmed by several large-scale clinical trials, reviewed by [100, 

134]. NO is cardioprotective in much the same way as PGI2 and it also inhibits both platelet 

aggregation and adhesion. Coxibs that release NO do exhibit a safer CV profile as 

exemplified by VA 694 showing significant improvement of coronary flow and a reduction 

of endothelial dysfunction [135]. Some examples include NO-celecoxib [136], NO-

rofecoxib [137], NO-valdecoxib [138], VA 694 [135] (Fig 10 A–D, respectively); some 

others such as (pyrazoyl)benzenesulfonamides are derivatives of celecoxib [139] (Fig 10E), 

and a diazen-1-ium-1,2-diolate [140] (Fig 10F, an example of a NONO-coxib). There are a 

number of newly described NO-coxibs that are at various stages of preclinical development 

[141–148]; these compounds have enhanced solubility and appear to be more potent. 

Therapeutic applications of these prodrugs are diverse.

6.4. Diazeniumdiolate-based NO-releasing compounds

Diazeniumdiolates (NONOates) are prodrugs that are revealed upon hydrolysis or metabolic 

activation form the parent NONOate anion, which further decomposes to release up to two 

moles of NO and the parent amine [149, 150] (Fig 11A). These prodrugs have an array of 

applications that are largely depend on the O-2 protecting group (‘R’, Fig 11A) and its 

mechanism of activation. Vinyl protected prodrug V-PYRRO/NO (Fig 11B) is activated by 

cytochrome P450 to release NO and shows hepatoprotective properties against a variety of 

toxins [151]. Glutathione (GSH)-activated arylated prodrug JS-K (Fig 11C) has anticancer 

activity [152–155]. Primary amine diazeniumdiolate prodrug AcOM-IPA/NO (Fig 11D) 

[156, 157] was reported to release nitroxyl (HNO) on protonation at N-2 (see Fig 11A for 

numbering); with possible applications in treating heart failure, alcohol abuse, and cancer 

[142, 158, 159]. Secondary amine diazeniumdiolate ions are protonated at N-3 to release NO 

[149].

6.5. NONO-NSAIDs

NONO-NSAIDs are based on linking a N-diazen-1-ium-1,2 diolate functional group to an 

NSAID and can potentially generate 2 equivalents of NO (Fig 11E). NONO-NSAIDs do not 

require redox activation before NO is released [160], whereas nitrate esters require a three-

electron reduction [161]. The first agent reported in this class had a NONOate (O2-
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unsubstituted N-diazen-1-ium-1,2-diolate) attached via a one-carbon methylene spacer to the 

carboxylic acid group of a traditional NSAID (aspirin, ibuprofen, indomethacin) [162] (Fig 

11A, R = (1) or (2)). The next series of NONO-NSAIDs (aspirin, ibuprofen, indomethacin) 

possessed an O2-acetoxymethyl-1-[N-(2-hydroxyethyl)-N-methylamino]diazen-1-ium-1,2-

diolate moiety as the NO donor (2-HEMA/NO) [160] (Fig 11A, R = 3). Because in their 

synthesis a secondary dialkyamine was used, this led to a number of possible new NONO-

NSAIDs. Close inspection revealed that upon hydrolysis it was possible to release one equiv 

of the corresponding nitrosoamine, a biologically toxic compound. To overcome this 

concern, a second-generation of O2-acetoxymethyl-protected (e.g., PROLI/NO) releasing 

NONO-NSAIDs was developed where a diazeniumdiolate ion obtained from an amine such 

L-proline, was used, the N-nitroso derivative of which is nontoxic [163] (Fig 11A, R = 4). 

As a class, all NONO-NSAIDs are reported to be devoid of GI toxicity, with no inhibitory 

effects on either COX-1 or COX-2, but have potent anti-inflammatory properties, consistent 

with acting as prodrugs requiring metabolic activation to release the parent NSAID.

6.6. HNO-NSAIDs

Decomposition of diazeniumdiolates can lead to formation of nitroxyl (HNO) and/or NO 

[149]. Potential actions of HNO are in overcoming heart failure [159], preconditioning 

against myocardial infarction [164], and treating alcohol abuse [158]. Using Angeli’s salt 

(Na2N2O3) to generate HNO, the first anticancer activity of HNO was reported in 2008 

[165]. Recently two new NONO-NSAIDs were prepared by derivatizing both a primary and 

secondary amine diazeniumdiolate with aspirin to produce O2-

(acetylsalicyloyloxymethyl)-1-(N-isopropylamino)-diazen-1-ium-1,2-diolate (IPA/NO-

aspirin) and O2-(acetylsalicyloyloxymethyl)-1-(N,N-diethylamino)-diazen-1-ium-1,2-diolate 

(DEA/NO-aspirin) [166] (Fig 11A). Both have shown enhanced GI safety profiles, strong 

anti-inflammatory properties, and significantly enhanced cytotoxcity compared to either 

aspirin or the parent diazeniumdiolate toward nonsmall cell lung carcinoma cells (A549), but 

were not toxic toward endothelial cells (HUVECs) suggesting cancer-specific sensitivity.

6.7. JS-K and PABA/NO

The diazeniumdiolate prodrugs, JSK [O2-(2,4-dinitrophenyl)1-[(4-

thoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] (Fig 11C) and PABA/NO [O2-[2,4-

dinitro-5-(N-methyl-N-4-carboxyphenylamino) phenyl] 1-N,N-dimethylamino)diazen-1-

ium-1,2-diolate] (Fig 11F) were designed to be activated as anticancer agents by glutathione-

S-transferase (GST)-induced release of NO [167]. The rationale for this was based on the 

observation that GST (specifically GST-π, a key phase II detoxification enzyme, is 

frequently over-expressed in cancer tissue [168, 169]. JS-K [155, 168, 170–173], and 

PABA/NO [174–176] have shown promise as anti-cancer agents. In order to improve the 

selectivity for cancer cells, hybrids of O2-(2,4-dinitrophenyl)diazeniumdiolates and 

oleanolic acid (OA) have been prepared [177], (Fig 11G). The rationale for these hybrids 

was based in part on the observation that OA imparts additional hepatic selectivity and a 

synergetic biological profile to the GSTπ-activated moiety [178], reviewed in [101].
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6.8. RRx-001: an NO modulatory anticancer agent

RRx-001 (Fig 12B) also known as ABDNAZ (1-bromoacetyl-3,3-dinitroazetidine) is a novel 

aerospace-derived compound under active investigation as a chemo-, immuno-, and 

radiosensitizer. RRx-001 demonstrated antitumor activity and minimal toxicity in phase II 

clinical trials and has received clearance from the FDA and the EMA for phase III, 

multicenter studies in subjects with relapsed/refractory solid tumors (Clinical Trial 

registration: NCT03699956) [179–181]. This compound contains a unique, highly energetic 

organic nitro functional group called a gem dinitroazetidine that has not been used to date 

for medical and pharmaceutical applications. In an aerospace setting, compounds containing 

this energetic functionality, such as 1,3,3 trinitroazetidine, are designed to fragment 

explosively to propel rockets [182]. Modification of this structure by removing one of the 

nitro groups and substituting it with a bromoacetate group resulted in RRx-001, a 

nonexplosive that may be used to treat cancer [183], reviewed in [101]. RRx-001differs from 

other NO-donating compounds in that the molecule induces local, endogenous, and biphasic 

production or release of NO, rather than fragmenting to release NO systemically. This 

activity is closely linked to the metabolism of RRx-001; on infusion, the compound rapidly, 

irreversibly, and selectively binds to hemoglobin at a key NO binding site [184], and with 

glutathione [185, 186] in directly increasing oxidative stress [187]. While the RRx-001 

glutathione adduct is rapidly excreted, RRx-001-bound hemoglobin remains in circulation 

for the duration of the lifetime of the red blood cell [188].

6.9. Light triggered NO donors

Photodynamic therapy (PDT) is a novel approach for treatment of various pathologies 

including cancer and infectious diseases. The therapy is based on the interaction of a 

photosensitizer (PS), light and oxygen. None of these is individually toxic, but the 

combination produces a photochemical reaction that leads to the production of ROS and/or 

singlet oxygen (1O2) [189]. Cell death then occurs by apoptosis, autophagy or necrosis and 

the outcome depends on the PDT dose and localization of the PS [190, 191]. PDT is a 2-

stage procedure. After the administration of a light-sensitive PS, tumor loci are irradiated 

with a light of appropriate wavelength that can be delivered to virtually any organ in the 

body by means of flexible fiber-optic devices [191]. Most PSs used in cancer therapy belong 

to the protoporphyrin family and are based on a tetrapyrrole structure [192]. An ideal 

sensitizer must have an absorption peak between 600 and 800 nm (red to deep red), higher 

wavelengths do not have enough penetration and do not excite oxygen to its singlet state, 

thus reducing generation of ROS that are required for cytotoxic effects [193].

The NO influence the response of the tumor cells to PDT [194, 195]. Activated PS can 

induce the production of NO by increasing the expression of constitutive NOS [196] or that 

of iNOS [197], and as discussed in this review and elsewhere [3, 100] NO has a dual role in 

cancer biology.

6.9.1. NO donors and PDT—This is an area of intense interest for medicinal chemists 

and its potential applications for cancer therapeutics. Many groups have synthesized NO 

donors to promote PDT-mediated anti-tumor cytotoxicity. Examples of photochemical NO 

releasing compounds incorporating various transition metals are, Roussin’s red salt anion 
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[Fe2S2(NO)4
2−], and a ruthenium-nitrosyl complex where the NO is caged by coordination 

to the transition metal center; and a Cr(III) nitrito complex where the NO is caged by 

bonding to another oxygen, releasing NO by homolytic cleavage of the MO–NO bond, the 

chemistry of these compounds has been reviewed by Ford [198]. Another PS of interest is a 

silicon-phthalocyanine compound (Pc4) [196]. Recently, a series of photo responsive N-

nitrosoaniline based NO donor polymers [amphiphilic diblock copolymers, PEO45-b-

PoNBN25 (BP1), PEO45-b-PpNBN30 (BP2), and PEO45-b-PBN46 (BP3)] were synthesized 

by nitrosation of 4-aminobenzyl alcohol-based precursors [199]. Using appropriate probes, 

photo-mediated NO release from BP1 vesicles was confirmed in HeLa cells. Furthermore, 

BP1 was shown to be effective in a corneal wound-healing model.

6.9.2. Clinical applications of PDT—Ocular infection due to microbial contamination 

is one of the main risks associated with the wearing of contact lenses. Recently an NO-

releasing soft contact lens that releases NO under daylight exposure was reported to be safe 

and have good activity against of Staphylococcus aureus [200]. PDT has been effectively 

used to treat Bowen’s Disease (BD), also known as squamous cell carcinoma in situ 

(SCCis), which most often is caused by exposure to ultraviolet light but may also occur as a 

result of Human Papillomavirus, arsenic exposure, or chronic radiation dermatitis [201]. 

Studies have shown that PDT is equally or more effective than conventional therapies such 

as 5-fluorouracil and cryotherapy in treating BD [202]. PDT has been used to treat cancers 

of the head and neck, prostate, bladder, lung, skin, gastrointestinal tumors, intraperitoneal 

malignancies, and others have, reviewed in [191].

6.10. Dual NO-H2S donors

Recently, a new class of anti-inflammatory pharmaceuticals were described in which an NO-

releasing and an H2S-donating moiety were covalently attached to an NSAID backbone, 

thus releasing both NO and H2S; these chimeras have been termed NOSH-NSAIDs [203, 

204] (Fig 13). The rationale for their development was based on the chemistry of NO and 

H2S, and the structural components of NO-NSAIDs and H2S-NSAIDs thus postulating that 

a hybrid capable of releasing both of these gasotransmeters might be more potent and 

effective than either one alone [203]. A number of these compounds have been reported; 

nitrate was used for NO release and this was attached to the parent NSAID through an 

aliphatic spacer, while one of the following moieties, 5-(4-hydroxyphenyl)-3H-1, 2-

dithiole-3-thione (ADT-OH), or 4-hydroxy benzothiazamide (TBZ) or lipoic acid were used 

for H2S release. NOSH-NSAIDs displayed greater GI safety profiles compared to their 

parent counterparts and displayed strong antioxidant properties [205–207]. NOSH-aspirin, 

(NBS-1120) exhibited strong anti-inflammatory [203, 206], anti-pyretic, analgesic, and 

antiplatelet properties similar to its parent compound, aspirin [206]. NOSH-aspirin inhibited 

the growth of eleven different human cancer cell lines of six different histological subtypes 

with IC50s that were in the low to mid nanomolar ranges [203]. Using HT-29 colon cancer 

cells as a model, this growth inhibition was as a result of reductions in cell proliferation, 

G0/G1 cell cycle arrest, leading to increased apoptosis [208]. The efficacy of NOSH-aspirin 

at different concentrations was also compared to that of aspirin using an in vivo xenograft 

mouse model of colon cancer chemoprevention [206]. NOSH-aspirin dose-dependently 

inhibited tumor growth, and tumor mass and was at least 5-fold more potent than aspirin. Of 
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note, NOSH-aspirin was also efficacious against established tumors in a xenograft model of 

colon cancer [208]. Clearly, as a chemo-preventive and chemotherapeutic agent, NOSH-

aspirin is superior to aspirin both in terms of efficacy and safety. Qualitatively similar results 

have been reported for both NOSH-naproxen [207] and NOSH-sulindac [205]. With regards 

to efficacy of NOSH-naproxen in a xenograft model of colon cancer, it is important to note 

that while treatment of animals with NOSH-naproxen significantly reduced tumor growth 

and tumor mass with no overt sign of GI toxicity, naproxen-treated mice died due to GI 

bleeding [207]. Interestingly, when examining cell growth inhibition in the presence of the 

three individual components of NOSH aspirin (ADT-OH, a small molecule NO donor, and 

aspirin), the cocktail had an IC50 of 450 μM, a 9,000-fold difference compared with that of 

the intact NOSH-aspirin. These results indicate that cancer cell growth inhibition is 

influenced by more than simply delivering DTT and NO concurrently with aspirin, but the 

reasons for this synergy, although largely unknown, may have to do with generation of more 

potent entities such as persulfides.

Apart from being active against cancer and having potent anti-inflammatory properties, 

NOSH-aspirin (NBS-1120) and NOSH (NBS-1100, a molecule where butyl nitrate and 

ADT-OH are directly linked together, Fig 13) have protective effects in drought-stressed 

Medicago sativa L. Plants [209]. Plants were pre-treated with NOSH or NOSH-aspirin by 

foliar spraying and then exposed to moderate water deficit, while NO and H2S inhibitors 

(cPTIO and HT, respectively) were also employed. Phenotypic and physiological data 

showed that pre-treatment with the NOSH chimeras induced acclimation to subsequent 

drought stress and improved recovery following rewatering. This was accompanied by 

modified reactive oxygen and nitrogen species signaling and metabolism, as well as 

attenuation of cellular damage as evidenced by altered lipid peroxidation and proline 

accumulation levels. Furthermore, real-time RT-qPCR analysis revealed the differential 

regulation of multiple defense-related transcripts including enzymatic antioxidants [209].

Another H2S-NO hybrid molecule (ZYZ-803, Fig 13) has been shown to have efficacy in 

isoprenaline-induced heart failure [210]. The cardioprotective effect of ZYZ-803 was more 

potent than that of the H2S and/or NO donor alone. ZYZ-803 increased expression of CSE 

and eNOS activity. Blocking CSE and/or eNOS suppressed ZYZ-803-induced H2S and NO 

production and cardioprotection. ZYZ-803 increased VEGF and cGMP levels and also 

upregulated the endogenous antioxidants glutathione peroxidase (GPx) and heme 

oxygenase1 (HO-1). ZYZ-803 also induced angiogenesis in human umbilical vein 

endothelial cells (HUVECs) with STAT3 as well as CAMKII in mediating this effect [211].

7. Engineered NO delivery platforms

Delivering NO in a temporally and spatially controlled fashion can be challenging because 

of its potential release from the conjugated system in the first few minutes after 

administration. Of concern is also that some of the metabolic decomposition products can 

potentially be toxic [212]. To overcome these limitations and others, many different delivery 

platforms have been developed; some include polymers, nanoparticles, liposomes, 

dendrimers, and porous materials [213–219] (Figure 7).
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7.1. Polymers

Bio-polymeric scaffolds should be non-toxic, biodegradable, and biocompatible. They can 

be either naturally occurring, such as sugar-based materials including chitosan, dextran, and 

hyaluronic acid [220–224], or synthetic polymers such as dendrimers. Polymer-based 

materials that are used for NO delivery could be used as coatings, films, or ointments. These 

polymers may contain RSNOs, nitrosamines, NONOates, or other NO-releasing entities, 

which overcome the limitations of their therapeutic use. This mode of NO delivery allows 

for controlled kinetic release, which may last for days [225] or even weeks [226]. The most 

common preparation strategy is based on dispersing thiol- or amine containing compounds 

in polymers, followed by exposure to NO gas to convert the parent polymer materials into 

NO donors [227]. Matrix structures have been used for functionalization with NO-releasing 

molecular systems because of their great biocompatibility with living tissues [228, 229].

Dendrimers are globular structures that consist of a central core surrounded by a highly 

branched corona with reactive surface groups; they are a particularly attractive class of 

synthetic polymers because of their multivalent surface and well-defined polymeric structure 

[230]. Because of their exterior functional groups encompassing a steric environment and 

hydrophobicity, multiple derivative structures are possible with varying NO payloads [231].

7.2. Nanomaterials

Due to their small size, nanomaterials have enhanced interaction and tissue penetration. 

Mesoporous silica nanoparticles (MSN) are biocompatible systems that have been used as 

NO carriers with a number of NO-releasing compounds including diazeniumdiolates [232]. 

Gold [233–235], silver [236, 237], and iron oxide nanoparticles [238–240], as well as 

quantum dots [241, 242], are other NO nanotechnology platforms that may be used for both 

diagnostic and therapeutic applications [227]. The preparation of these complexes is based 

on their surface functionalization with diazeniumdiolate or S-nitrosothiol groups [235, 238, 

243]. Hollow polymeric nanoparticles made of synthetic polymers (e.g., polymethacrylate 

and polydopamine) have unique properties such as low density, optical scattering, and good 

flow capacity [244]. The large surface area of hollow polymeric nanoparticles facilitates NO 

donor functionalization on both the inner and outer surfaces, leading to larger NO payloads 

[245].

7.3. Liposomes

Liposomes are spherical vesicles composed of an inner aqueous core and a phospholipid 

bilayer outer shell, which can be either synthetic or natural, with an overall structure that 

mimics natural cell membranes. Both NO gas and NO donors (e.g., N-diazeniumdiolates, 

metal nitrosyls, and organic nitrites) have been encapsulated into liposomes to achieve 

controlled NO release [245–247]. The main techniques employed in forming liposomes are 

thin-film hydration, solvent injection, reverse-phase evaporation, membrane extrusion, and 

microfluidic technology [248, 249]. NO-releasing liposomes have great potential to be used 

for anticancer therapy [250, 251].
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7.4. Porous materials

Porous materials for NO storage/release cover a large variety of structures that can be 

organic, inorganic, and inorganic-organic hybrids with varying pore sizes, percentage of 

porosity, and the presence (or absence) of interconnectivity between them [227, 252]. These 

include zeolites, titanosilicates, clays, and MOFs (metal organic frameworks). 

Chemisorption or physisorption is used to store NO with a wide range of metal ions within 

the pores, and NO is then released when water replaces NO on the metal centers and diffuses 

out of the porous structure. This methodology provides a highly efficient packing of NO 

within the solid and provides for controlled delivery to target tissues [227, 253, 254].

Zeolites are highly crystalline aluminosilicate microporous insoluble materials with a rigid 

three-dimensional open framework that may be of natural or synthetic origin [227]. 

Exposure to NO gas can result in both reversible and irreversible NO adsorptions, giving rise 

to different release kinetics. Also, the affinity for NO of the transition metals used in the 

various zeolites greatly affects the extent to which NO is adsorbed and released. Studies with 

zeolites Linde type A and Faujasite with Cu2+, Co2+, Ni2+, Mn2+, Zn2+ showed that Co had 

the highest storing capacity [255]. Topical application of NO-releasing zeolites (0.02 mL 

33%, wt/wt) induced local vasodilatation and no significant inflammatory response [256]. 

Application of a topical ointment containing NO-loaded zinc-exchanged zeolites to wounds 

three times per week for 20 days in Zucker obese rats resulted in enhanced wound healing 

[257]. Furthermore, in vitro microbial studies showed activity against Escherichia coli, 
Acinetobacter baumannii, Staphylococcus epidermidis, methicillin-resistant S. aureus 
(MRSA), and Candida albicans fungus. An NO-releasing Zn2+-exchanged zeolite at a 50 

wt.% composition in a polytetrafluoroethylene polymer showed activity against both Gram-

negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-

resistant S. aureus and Clostridium difficile [258].

Titanosilicates are microporous zeolite-type silicates possessing framework of unsaturated 

transition-metal centers; examples include ETS-4 [Na9Si12Ti5O38(OH)·xH2O], a 

titanosilicate that displays excellent NO adsorption capacity and slow releasing kinetics 

[254]. The use of this mode of NO delivery as applicable to biological systems needs to be 

investigated further.

Clays are already being used in the therapeutic field either as active substances or as 

excipients to other drugs [259]. They are very amenable due to their high mechanical, 

thermal, and chemical stability; they have regular structures and appreciable surface areas 

and thus have good adsorption and penetrability properties. NO-releasing mineral clays such 

as sepiolite and montmorillonite (MMT), synthetic clays (smectite clays with cobalt ions), 

and organo-clays (natural clays modified with L-histidine) have been developed and their 

activity evaluated in HeLa cells [260–262].

MOFs are porous hybrid inorganic-organic crystalline materials, built on metal ion 

oxoclusters connected by organic ligands, in a quasi-infinite array [263]. These are relatively 

new materials with varying toxicities due to the metals used and the amount of NO released. 

However, as a class, these are interesting and much more work is needed in order to make 
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them viable/suitable for medical applications. A detailed review of these compounds is 

covered elsewhere [227, 263].

7.5. Hydrogels

As noted in section 5.3, gels are non-fluid polymer or colloidal networks that are expanded 

by a fluid. If the expanding fluid is water, the gel is then called a hydrogel. Hydrogels can 

absorb more than 90% of their dry weight in water, while chemical and physical 

crosslinkingof the polymeric chains make them insoluble in water [229]. NO-releasing 

hydrogels have been prepared that incorporate different NO-releasing moieties, such as S-

nitrosothiols, S-nitrosoglutathione, diazeniumdiolates, sodium nitrite, and others; and 

varying polymeric matrices, for example pHEMA coated with polyurethane, pluronic F127, 

PVA functionalized with –SNO groups, hydroxyethyl cellulose etc., have many therapeutic 

applications ranging from bactericidal, topical vasodilation, and wound healing [264–267] 

(for detailed review see [229]). There are also NO donors that release NO exclusively under 

irradiation, and several photoactive metal–nitrosyl complexes using a polymerized matrix of 

poly(2-hydroxyethyl methacrylate) (pHEMA) have been developed [266].

8. Conclusions

Significant progress has been made in the fields of NO and H2S donor chemistry. Continued 

innovation from synthetic chemists will be a major factor in driving the NO~H2S research 

forward in the coming years, with an eye toward building NO and H2S donors that are 

clinically relevant therapeutics. Continued development of various delivery platforms for 

targeted therapy is of significant importance, with an additional focus towards further 

improving and developing platforms that are biocompatible in many contexts and degrade to 

form non-toxic metabolites. In this regard, the use of polymeric platforms is attractive due to 

low productions costs and ease by which different synthetic moieties can be incorporated. 

For example, polymeric particles can be functionalized with a poly(ethylene glycol) corona, 

giving rise to “stealth” properties which significantly increase circulation time and improved 

accumulation in tumors by the enhanced permeability and retention (EPR) effect [219]. 

While there are a considerable number of engineered platforms for the delivery of 

exogenous NO and H2S, not much has been done on materials that may respond to these 

endogenous gasotransmitters. Thus NO and H2S capturing materials may provide an 

unexplored area for clinical investigation.

PDT was the first drug-device combination approved by the FDA almost 3 decades ago, but 

it is underutilized clinically. The highly localized nature of PDT is one of its current 

limitations, because the treatment is ineffective against metastatic lesions, which are the 

most frequent cause of death in cancer patients. Ongoing research is focused on finding 

optimal PDT conditions to induce systemic immunity that may address this significant 

shortcoming [191]. For all of these efforts to flourish, it is important for chemists, 

pharmacologists, biologists, and physicians to work together. An era of precision medicine 

to improve individual outcomes is not too far in the future.
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Abbreviations:

3-MST 3-Mercaptopyruvate sulfurtransferase

ADT-OH 5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione

ARDS Acute respiratory distress syndrome

BODIPY Boron-dipyrromethene

CaMKII Ca2+/CaM-dependent protein kinase II

CAT Cysteine aminotransferase

CBS Cystathionine β-synthase

COX Cyclooxygenase

cGMP Cyclic guanosine monophosphate

CSE Cystathionine γ-lyase

DTT 1,2-Dithiole-3-thiones

eNOS Endothelial nitric oxide synthase

GI Gastrointestinal

H2S Hydrogen sulfide

LPS Lipopolysaccharides

LR Lawesson’s Reagent

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B 

cells

nNOS Neuronal nitric oxide synthase

NA Noradrenaline

NO Nitric oxide

NOS Nitric oxide synthase

NR Nitroreductase

Nrf2 Nuclear factor-like 2

NSAIDs Nonsteroidal anti-inflammatory drugs
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PDE5A Phosphodiesterase 5A

PGI2 Prostacyclin

pHEMA Poly(2-hydroxyethyl methacrylate)

Pluronic F127 Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene 

oxide) triblock copolymer

ROS Reactive oxygen species

RSNO S-nitrosothiols

RSSH Persulfides

SATO S-aroylthiooxime

sGC Soluble guanylate cyclase

SNAP S-Nitroso-N-acetyl-penicillamine

SNP Sodium nitroprusside

STAT3 Signal transducer and activator of transcription 3

TBZ 4-Hydroxy benzothiazamide

TML Trimethyl lock

TXA2 Thromboxane A2

VEGF Vascular endothelial growth factor

VSMC Vascular smooth muscle cells
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Figure 1. 
Biosynthesis of nitric oxide. NO is produced by three nitric oxide synthase (NOS) isoforms: 

neuronal, endothelial, and inducible (nNOS, eNOS, and iNOS) that catalyze the oxidation of 

L-arginine to L-citrulline, the enzymatic pathway. NO is also produced through reduction of 

nitrite/nitrate under low oxygen conditions, the non-enzymatic pathway. [O] = oxidation, 

and [H] = reduction.
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Figure 2. 
Biosynthesis of hydrogen sulfide. H2S is generated from oxidation of the substrates L-

homocysteine, cystathionine, L-cysteine and 3-mercaptopyruvate through the enzymes 

cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) and the tandem enzymes 

cysteine aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3-MST). α-

Ketobutyrate, lanthionine, L-serine and pyruvate are the secondary products formed. 

Mammalian enzymes generally metabolize L-amino acids, however, H2S can also be 

synthesized from D-cysteine by the peroxisomal enzyme D-amino acid oxidase (DAO) to 3-

MP, which is a substrate for 3-MST. Alternatively, production of H2S occurs non-

enzymatically from various storage forms of sulfur such as thiosulfate, thiocysteine and 

sulfite.
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Figure 3. 
Cellular effects of NO and H2S and their interactions. NO reacts with the active site of 

soluble guanylate cyclase (sGC) and produces cyclic GMP leading to vasorelaxation. NO 

can affect cellular proteins by producing peroxynitrite, which in turn can interact with 

cysteine residues to form S-nitrosothiols (RSNO). The oxidative pathway leads to 

modification of proteins by S-nitrosylation of cysteine residues. H2S raises cGMP levels 

through inhibition of phosphodiesterase 5A (PDE5A) an enzyme that catabolizes it. H2S can 

also interact with the sulfhydryl group of cysteines and proteins to form persulfides (R-

SSH). NO can interact with H2S to form HSNO [32] and H2Sn [45]; H2S can interact with 

NO2
− [34] or with RSNO [268–270] to produce NO. H2S can interact with membrane ion 

channels and/or voltage-dependent calcium channels leading to vasorelaxation in vascular 

smooth muscle [26].

KATP = ATP-sensitive potassium, KCa = voltage-dependent calcium channels
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Figure 4. 
Chemical structures of selected hydrolysis-triggered H2S donors and descriptions of their 

use in various engineered delivery systems.
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Figure 5. 
Chemical structures of selected thiol-triggered H2S donors and descriptions of their use in 

various engineered delivery systems.
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Figure 6. 
Chemical structures of selected light- and enzyme-triggered H2S donors and descriptions of 

their use in various engineered delivery systems.
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Figure 7. 
A schematic summary of the different platforms that have been engineered to store and 

release NO and H2S. Adapted from Therapeutic Application of Nitric Oxide in Cancer and 
Inflammatory Disorders, by Rosana Vieira Pinto and Moises Luzia Pinto, in Nanoporous 
Materials: New Generation of Nitric Oxide Donors, Pages 277–304. Copyright (2019), with 
permission from Elsevier”.
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Figure 8. 
The chemical structures of some nitrovasodilators.
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Figure 9. 
The chemical structures of first- and second-generation NO-NSAIDs and NO-donor 

“aspirin-like” compounds. The traditional NSAIDs, aspirin (A) and naproxen (B), are shown 

in the shaded boxes; the spacer molecule links the traditional NSAID to –ONO2, which can 

release NO. A second generation of NO-releasing aspirin in which a furoxan derivative is 

the NO donor (C). In the “aspirin-like” compounds, the acetyl group on the aspirin has been 

replaced by acyl groups containing nitroxy NO-releasing moieties, (D) and (E).
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Figure 10. 
The chemical structures of some NO-coxibs.
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Figure 11. 
Activation of diazeniumdiolate prodrugs to release NO or HNO (A). Structures of V-

PYRRO/NO (B), JS-K (C), and AcOM-IPA/NO (D). The chemical structures of NONO-

aspirin (E); PABA/NO (F), and diazeniundiolate/OA hybrid (G).
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Figure 12. 
The chemical structures of IPA/NO-aspirin and DEA/NO-aspirin (A); RRx-001 (B).
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Figure 13. 
Structural components of NOSH-aspirin (NBS-1120 and NBS-1121), NOSH-naproxen 

(AVT-219), NOSH (NBS1100), and ZYZ-803.
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