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A B S T R A C T

The spatial resolution achievable in photoacoustic imaging decreases with the imaging depth, resulting in
blurred images for deeper structures. Apart from technical limitations, the ultimate resolution limit results from
the second law of thermodynamics. The attenuation of the optically generated acoustic waves on their way from
the imaged structure to the sample surface by scattering and dissipation leads to an increase of entropy. The
resulting loss of spatial resolution for structures embedded in attenuating media can be compensated by nu-
merical methods that make use of additional available information. In this article, we demonstrate this using
experimental data from plane one-dimensional (1D) acoustic waves propagating in fat tissue. The acoustic waves
are optically induced by nanosecond laser pulses and measured with piezoelectric transducers. The experimental
results of 1D compensation are also relevant for photoacoustic imaging in 2D or 3D in an acoustically attenuating
medium by dividing the reconstruction problem into two steps: First, the ideal signal, which is the solution of the
un-attenuated wave equation, is determined by the proposed 1D attenuation compensation for each detector
signal. In a second step, any ultrasound reconstruction method for un-attenuated data can be used for image
reconstruction. For the reconstruction of a small step milled into a silicon wafer surface, which allows the
generation of two photoacoustic pulses with a small time offset, we take advantage of non-negativity and
sparsity and inverted the measured, frequency dependent acoustic attenuation of the fat tissue. We were able to
improve the spatial resolution for imaging through 20mm of porcine fat tissue compared to the diffraction limit
at the cut-off frequency by at least a factor of two.

1. Introduction

1.1. Resolution limit in photoacoustic imaging

Photoacoustic (or optoacoustic) imaging uses the thermo-elastic
expansion following a rapid temperature rise after illumination of light
absorbing structures within a semitransparent and turbid material, such
as a biological tissue. It allows acoustic resolution with simultaneous
optical absorption contrast and enables to detect hemoglobin, lipids,
water and other light-absorbing chromophores, with greater penetra-
tion depth than with purely optical imaging modalities that rely on
ballistic photons [1–3]. In photoacoustic tomography, the temporal
evolution of the acoustic pressure field is sampled using an array of
ultrasound detectors placed on the sample surface or by moving a single
detector across the sample surface. From the measured pressure signals,
images of the optical absorption within the tissue are reconstructed by
solving an inverse source problem [3–5].

In this work, the achievable spatial resolution for photoacoustic
imaging in porcine fat tissue is investigated. At depths larger than the
range of the ballistic photons, i.e. more than a few hundreds of microns
in tissue, light is scattered several times and the spatial resolution in
photoacoustic imaging is limited by acoustic attenuation, which is
caused by acoustic absorption, dispersion, and scattering. The spatial
resolution degrades with increasing depth because higher acoustic
frequencies, which have smaller wavelengths and allow a better re-
solution, are stronger attenuated than lower frequencies. As a rule of
thumb, the ratio of the imaging depth to the best spatial resolution is
roughly constant and has a value of 200 [3]. Although acoustic at-
tenuation defines the ultimate spatial resolution limit, other factors
such as detector bandwidth, element size and the area over which the
acoustic signals are recorded at the sample surface – the detection
aperture – can be limiting factors in practice [2]. These technical lim-
itations can be avoided in principle – or at least can be reduced.

There have been several attempts for mathematically compensating
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the acoustic attenuation to get images with a higher spatial resolution.
Already in 2005, La Riviere et al. proposed an integral equation that
relates the measured acoustic signal at a given transducer location in
the presence of attenuation to the ideal signal in the absence of at-
tenuation [6,7]. The frequency dependent attenuation was mathema-
tically described by the imaginary part of a complex wave-vector, and
shows a power-law behavior in frequency [8]. Ammari et al. later gave
a compact derivation of this integral equation directly by using wave
equations, which is equally valid for all dimensions [9]. Moreover,
compensation of acoustic attenuation and dispersion in two or three
dimensions can always be reduced to a one-dimensional problem in a
two-stage process: first, for each detector location the ideal signal in the
absence of attenuation is calculated from the measured signal. This is a
one-dimensional (1D) reconstruction problem. In a second step, any
reconstruction method for photoacoustic tomography without acoustic
attenuation, such as time-reversal or backprojection, can be used for
reconstructions in higher dimensions [4,6,7]. Therefore it is sufficient
to examine the acoustic attenuation of 1D acoustic waves and the re-
construction in 1D. Compensation of acoustic attenuation in higher
dimensions can always be reduced to 1D, which was also shown ex-
plicitly for signals from a layer (1D), cylinder (2D), and a sphere (3D)
[10].

Dean-Ben et al. compared the signal amplitude reduction and the
broadening due to acoustic attenuation to the influence of the trans-
ducer bandwidth and space-dependent speed of sound and established a
correction term for space-dependent attenuation [11]. Kowar and
Scherzer presented compensation for acoustic attenuation for different
wave equations [12]. Burgholzer et al. have compensated directly the
attenuation in photoacoustic tomography by using a time reversal finite
differences method [4,13,14]. This approach was later extended by
Treeby et al. to account for general power law absorption behavior
[15,16]. Inspired by attenuation compensation in seismology, Treeby
proposed a new method for attenuation compensation in photoacoustic
tomography using time-variant filtering [17].

Mathematically, the compensation of frequency-dependent acoustic
attenuation is an ill-posed inverse problem, where the cut-off frequency
is an adequate regularization parameter. The physical reason for the ill-
posedness is the second law of thermodynamics: acoustic attenuation is
an irreversible process and the entropy production, which is the energy
decay during wave propagation due to attenuation divided by the
temperature, is equal to the information loss for the reconstructed
image [14]. This information loss due to entropy production cannot be
compensated mathematically. As the information content of the re-
constructed image strongly correlates with the spatial resolution, this
results in a fundamental resolution limit due to thermodynamic prin-
ciples. Non-equilibrium thermodynamics describes the connection be-
tween entropy production and information loss, e.g. [18], and as we
have already elaborated for heat diffusion [19,20], we could determine
a cut-off frequency also for damped acoustic waves in water [21]. Here,
this approach is generalized for a frequency dependent acoustic at-
tenuation described by a power-law using a general exponent which
might be different from two in water.

In frequency space, the information content of wave components
with frequencies above that cut-off frequency is so low that they cannot
be statistically distinguished from the equilibrium distribution. This is
equivalent that the acoustic wave amplitude on the sample surface is
damped just below the noise level [21]. Consequently, the spatial re-
solution limit becomes diffraction limited and according to Nyquist it is
half of the wavelength at this cut-off frequency [21]. It is not just a
fortunate coincidence that the same cut-off frequency can be de-
termined from entropy production and from noise-fluctuations, but
results from the fluctuation-dissipation-relation described in statistical
physics [14,19,20]. The spatial resolution is diffraction limited and
corresponds to the wavelength at the cut-off frequency. To reach this
thermodynamic resolution limit for compensation of acoustic attenua-
tion experimentally, it is necessary to measure the broadband ultrasonic

attenuation parameters of tissues or liquids very accurately [22] and to
evaluate the existing mathematical models to get an adequate de-
scription of attenuation [23]. For the used porcine fat tissue in the
measured frequency range, a power law very well describes the de-
pendence of the attenuation on frequency. We emphasize, however,
that the proposed method for evaluating the principle resolution limit is
applicable to any acoustic attenuation model described by a complex
wave number.

1.2. Breaking the resolution limit

If additional information is used, the fundamental resolution limit
can be overcome. In optical imaging, the diffraction limit could be
overcome for the first time by Stimulated Emission Depletion (STED)
microscopy [24,25]. Later, other super-resolution methods like sto-
chastic optical reconstruction microscopy (STORM) [26], photo-acti-
vated localization microscopy (PALM) [27], or super-resolution optical
fluctuation imaging (SOFI) [28] emerged. Although resolution in op-
tical imaging has been significantly improved, there is still rapid pro-
gress in the development of high resolution imaging for many other
imaging modalities. Localization microscopy has been used to achieve
super-resolution in ultrasound imaging by employing scattering mi-
crobubbles instead of fluorescent molecules as point sources [29,30].
Ultrafast localization microscopy allows for super-resolution ultrasound
imaging of vasculature in whole organs [31]. For photoacoustic ima-
ging in a (quasi) diffusive regime a comprehensive overview about the
advances in super-resolution imaging was recently given by Junhui Shi
et al. [32].

How is it possible for these methods to gain additional information
about the structures to be imaged and to use this information for image
reconstruction? In these methods, information gaining is based on the
localization of point sources, which can be achieved to a much higher
precision than the diffraction limit. Point sources can be activated
fluorescent molecules [26–28], particles or droplets [33,34], or optical
absorbers illuminated by structured illumination such as laser speckles
[35–37]. Multiple such images are combined for the reconstruction of
one “super-resolution” image. This can be demonstrated on our itera-
tive joint sparsity (IJOSP) algorithm [36], which favors small sources
(“sparsity”) having the same location on each of the multiple images
(“joint”). All these methods need additional experimental effort to ob-
tain such point sources in multiple images, either by moving particles or
droplets, or by changing the structured illumination pattern.

In this work, it is demonstrated, that even for conventional photo-
acoustic data acquisition using one image with homogeneous illumi-
nation and without moving particles or droplets, this resolution limit
can be significantly exceeded by taking non-negativity and sparsity
information as an additional knowledge into account. Therefore, re-
solution enhancement can be achieved for all existing conventional
photoacoustic tomography or acoustic resolution microscopy set-ups
without additional time required for multiple measurements. This was
inspired by works from geophysics, where the attenuation of seismic
signals was compensated [38,39]. Sparsity as additional information
has been used in compressive sensing, see e.g. Donoho [40]. In 2016 we
have introduced sparsifying temporal transforms for compressed sen-
sing in photoacoustic tomography [41], and sparsity / non-negativity
constraints have been used for 2D and 3D photoacoustic image re-
construction, but not for the compensation of acoustic attenuation
[42–44]. The two-stage process described in section 1.1 allows the
parallel computation of attenuation compensation in 1D, where so-
phisticated iterative algorithms can efficiently implement these con-
straints. For one-dimensional (1D) photoacoustic pressure pulses, non-
negativity is evident, because the initial pressure generated by optical
heating is always non-negative and 1D pressure propagation preserves
non-negativity. Propagation in 3D gives negative pressure components,
but the conversion into spherical projections, which is the time integral
of the measured acoustic pressure, again results in positivity for all
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measured signals [45].
For regularization two different methods are compared: the trun-

cated singular value decomposition (T-SVD) method [46], which allows
negative values and does not enforce sparsity, and the “Douglas Rach-
ford splitting algorithm” (DR algorithm), which uses positivity and
sparsity [47,48]. We show, that the resolution from T-SVD corresponds
to the principle diffraction limit given by the information loss from
entropy production. The better resolution by using the DR algorithm is
enabled by taking positivity and sparsity into account. Experimentally,
this is demonstrated in 1D, but as mentioned in section 1.1, the same
resolution enhancement is expected in axial direction in 3D by using
spherical projections. In lateral direction, due to limited angle effects,
the resolution enhancement might be less, but can be further enhanced
by using weight factors [49].

Here, the resolution limit is defined as half of the wavelength of the
cut-off frequency, at which the acoustic signal at the surface is damped
just below the noise level. For linear reconstruction methods, this is
equivalent to the width of the reconstruction of a point-source signal,
which is the point-spread function. For non-linear methods, such as the
used DR algorithm, the blurring depends on the number of iterations
and the acoustic signal itself, and therefore resolution cannot be defined
as the width of the point-spread function any more, but how well dis-
tinct sources can be distinguished from each other in the reconstructed
image. Therefore, resolution has to be defined as a measure of locali-
zation.

2. Methods

2.1. Experimental setup

Ultrasonic waves were generated, attenuated, and detected experi-
mentally in a setup sketched in Fig. 1. To excite strong and broadband
ultrasonic signals, a laser ultrasound method is employed [50,51].
Short nanosecond laser pulses are directed on a silicon wafer. A cy-
lindrical region of the wafer, ranging from the surface to a depth of a
few microns and with a diameter determined by the laser beam,
abruptly heats up by optical absorption. The subsequent thermoelastic
expansion of the heated volume leads to the emission of ultrasonic
waves mainly directed perpendicular to the surface of the wafer. Por-
cine subcutaneous fat tissue in the propagation path of the sound waves
leads to acoustic attenuation due to absorption and scattering. After
exiting the tissue the sound waves propagate through water and are
detected by a piezoelectric transducer. The resulting electrical signals
are amplified (5073PR-40-E, Olympus NDT Inc., Waltham, MA) and
sampled by an oscilloscope (DSO 5043, 300MHz; Agilent Technologies
Inc., Santa Clara, CA).

Two mounting flanges hold the parts by a small axial force applied
by two screws to keep a well-defined distance to the piezoelectric
transducer of 6mm and 20mm. To get simultaneously two signals
slightly shifted in time through the fatty tissue, a small step is fabricated
by ion milling near the beam center of the silicon wafer. By using an
unfocused piezoelectric transducer (V358-SU, Panametrics, Waltham,
MA) the influence of possibly occurring local variation of the attenua-
tion is decreased. If the silicon wafer shows a small step near the beam
center the two slightly shifted signals in time through the fatty tissue
overlap. The transducer has a center frequency of 50.6 MHz, a diameter
of the sensing element of 6.35mm and a -6 dB bandwidth of 81.2 %.
Within the observed bandwidth, the acoustic attenuation occurring in
the short paths of water in the setup can be safely neglected compared
to the strong attenuation caused by the relative thick layers of fat
[11,21]. Therefore, different water path lengths do not change the
measured signals. The mechanical set-up is designed in a way to ensure
parallel alignment of the silicon wafer, the fat tissue and the piezo-
electric transducer. Inclination of these components would lead to un-
wanted signal losses due to refraction and reflection. Also, since the
waves show plane wave behavior, an inclination of the wavefront

relative to the sensing element of the transducer will lead to a mis-
leading low-pass-filtering of the signals. A detailed description of the
setup can be found in [22]. The ultrasound-generating optical pulses
have a diameter of 6mm and are emitted by a frequency-doubled
Nd:YAG laser (Continuum Surelite, 20 Hz repetition rate, 6 ns pulse
duration, 532 nm center wavelength). The used pulse energies ranged
from 12mJ to 65mJ.

2.2. Compensation of acoustic attenuation and resolution limits

As mentioned in section 1.1, the compensation of acoustic at-
tenuation in photoacoustic imaging can be reduced to 1D. The relation
between the ideal acoustic wave pressure p r t( , )ideal without attenua-
tion and the attenuated wave pressure p r t( , ) at the same 1D, 2D, or 3D
location r is identical for all dimensions, as shown by Ammari et al. in a
compact way [9], which reads in frequency domain:

= ∼∼p r ω ω
c K ω

p r c K ω( , )
( )

( , ( )),ideal
0

0 (1)

where ω is the angular frequency, and the tilde indicates the Fourier
transformation in time of the signals p r t( , )ideal and p r t( , ), respectively.
The complex wave number = +K ω ω c ω i α ω( ): / ( ) ( ) describes the fre-
quency dependent dispersion and attenuation with the phase velocity
c ω( ) and the attenuation coefficient α ω( ). For the ideal wave without
attenuation, the wavenumber =k ω ω c( ) : / 0 is real and c0 is the sound
velocity for the ideal wave, which shows no dispersion and frequency
dependency. Phase velocity and attenuation coefficient are connected
by a Kramers-Kronig relationship to guarantee causality [52].

For an acoustic signal, which propagates through an attenuating
sample of a defined thickness, the effect of acoustic attenuation in 3D
and its compensation was modeled in frequency domain by Dean-Ben
et al. [11]. Here, this derivation will be performed in 1D, as we get
plane waves according to our experimental setup described in section
2.1. As the acoustic attenuation in water compared to fat tissue for the
bandwidth covered by our detector can be neglected [11,12], the signal
measured in water without any fat tissue is taken as the ideal one. With
the Helmholtz equation ∇ + =∼K ω p r ω δ r( ( ) ) ( , ) ( )2 2 for a uniform at-
tenuating medium and a point source located at the origin =r 0 [11],
one gets by using the 1D Greens function

=∼p r ω iK ω r iK ω( , ) exp( ( )| |)/(2 ( )) the relation between the attenuated
and the ideal signal:

= ∼∼p r ω ω
c K ω

iγ ω r p r ω( , )
( )

exp( ( )| |) ( , ),ideal
0 (2)

where γ ω( ) is the difference of the complex wavenumber for the atte-
nuated wave and the real wave number for the ideal wave:

≔ −γ ω K ω k ω( ) ( ) ( ). (3)

Eq. (2) is derived from Greens functions, but as the Helmholtz equation
is a linear differential equation, it can be used for any solution. Com-
pared to the 3D equation from Dean-Ben et al. [11], the additional
factor ω c K ω/( ( ))0 in Eq. (2) turns out to be approximately one for re-
levant frequencies and attenuation coefficients.

The attenuated wave in contrast to the ideal wave shows a decay in
amplitude according to Eq. (2) of a factor of −α ω rexp( ( )| |). As the at-
tenuation coefficient α ω( ) increases with frequency, we can determine
a cut-off frequency ωcut , for which the amplitude of the attenuated wave
gets below the noise level:

− = =α ω r or α ω SNR
r

SNRexp( ( )| |) 1 ( ) ln( )
| |

,cut cut (4)

where the signal-to-noise-ratio SNR is the amplitude of the wave
without attenuation divided by the noise level and ln denotes the nat-
ural logarithm. For analyzing spatial resolution in photoacoustic ima-
ging, the width of the acoustic signal in the time domain is essential. A
small width enables high spatial resolution, which corresponds to a
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high frequency bandwidth. If the frequency bandwidth is limited by
thermodynamic fluctuations according to Eq. (4), the spatial resolution
limit according to Nyquist is half the wavelength at this frequency:

=δ π
ω

c ω( ).resolution
cut

cut (5)

In time domain, p r t( , ) is the inverse Fourier transform of ∼p r ω( , ):

∫= − =∼
−∞

∞
p r t

π
p r ω iωt dω p r t M r t( , ) 1

2
( , )exp( ) ( , )* ( , )ideal t

∫≔ −
−∞

∞
with M r t

π
ω

c K ω
iγ ω r iωt dω( , ) 1

2 ( )
exp( ( )| |)exp( ) ,

0 (6)

where *t denotes the convolution in time. It can be calculated analyti-
cally only in a few special cases, for example when α ω( ) is a power-law
with exponent two which models liquids [21]. For discretized signals in
time, this can be written in matrix notation:

=p M pr r ideal

⎜ ⎟= ⎛
⎝

⎞
⎠

M F Fwith diag ω
c K ω

iγ ω r
( )

exp( ( )| |) ,*
r

0 (7)

where pr and pideal are vectors and the matrix Mr describes the influence
of acoustic attenuation for a propagation distance of r in fat tissue. Later
on, this matrix comprises also the impulse response of the piezoelectric
transducer and the amplifier to enable an ideal δ - like signal for pideal.
Multiplication by F denotes the (discrete) Fourier transform, multi-
plication by its conjugate transpose F* is the inverse Fourier transform,
and ⋅diag ( ) forms a diagonal matrix. Eq. (7) shows immediately the

singular value decomposition (SVD). As discussed above the singular
values decrease exponentially as −α ω rexp( ( )| |). Therefore, Mr cannot
be inverted exactly, but the pseudo-inverse matrix can be approximated
using the truncated SVD (T-SVD) method (see e.g. [21]). The truncation
criterion for the T-SVD method comes from the discrepancy principle
and states that the inverse singular values are set to zero if they get
larger than the SNR [46]. This gives the same truncation frequency as
the cut-off frequency in Eq. (4), and therefore the resolution from T-
SVD is the same as derived in Eq. (5).

2.3. Taking non-negativity and sparsity as additional information into
account

Here, an iterative algorithm, the “Douglas Rachford splitting
method” (DR method) is used [53,54], to invert Eq. (7) where non-
negativity and sparsity as additional information is implemented by
minimizing the objective function

= − +M p p pF λ1
2

‖ ‖ ‖ ‖r r 2
2

1 (8)

over all ≥p 0 where ‖. ‖2 is the l2-norm, ‖. ‖1 is the l1-norm, and λ is a
regularization parameter. Using the l1-norm as regularizer favors sparse
solutions, which is also used in compressive sensing [40].

For each iteration of the DR algorithm the threshold operator Sλ ρ/
applies soft thresholding only to the positive entries and sets the ne-
gative entries to zero. This enables to get only non-negative solutions:

= + ++ −p M M I M p zρ ρ: ( ) ( )T Tk
r r r r

k1 1

Fig. 1. Setup for the generation and detection of acoustic plane waves. Abrupt local heating of a silicon wafer by nanosecond laser pulses leads to the emission of
strong broadband ultrasonic plane waves. Porcine subcutaneous fat tissue in the propagation path induces frequency dependent attenuation of the acoustic signals.
The fat tissue is fastened between two aperture disks applying a small axial force on the tissue. Distance bolts with 6mm or 20mm ensure two precise lengths of the
attenuation path. For these two lengths, attenuated acoustic plane waves were detected by an unfocused piezoelectric transducer, which was aligned by worm screws
to ensure a one-dimensional signal propagation and detection. Image from https://doi.org/10.3390/jimaging5010013 by Burgholzer et al. was edited and is used
under CC BY 4.0.
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= − + −+ + +z z p p z: S (2 ),k k k
λ ρ

k k1 1
/

1 (9)

with the iteration index k, T indicates the transpose matrix, I is the
unity matrix and ρ is a penalty term to make the matrix inversion more
robust. We kept ρ at a fixed value, but to speed up convergence it could
be adapted after each iteration step, e.g. as suggested by Boyd [55]. A
good estimate for the regularization parameter λ is found at the edge of
the L-curve that yields the best trade-off between residual norm and
solution norm. For the estimation, the toolbox from Hansen was used
[56].

In 3D, the wave propagation causes also negative pressure signals.
Therefore, the positivity assumption cannot be applied directly.
However, by using the spherical projection, which is the time integral
of the measured acoustic pressure [45], positivity can be obtained. The
matrix R is the time integral operator in discretized form, where in the
lower triangular part and in the diagonal are only ones and above the
diagonal are zeros. The spherical projection =p R p:spherical ideal is positive
and Eq. (7) reads now as = −p M R p( )r r spherical

1 , where −R 1 as the inverse
integral operator is the differential operator. To enhance the spatial
resolution for any 3D photoacoustic image reconstruction, the mea-
sured signal pr for each detection point can be “sharpened” by calcu-
lating pspherical using the DR method. The ideal signals −R pspherical

1 are
then used as the input for any 3D photoacoustic computed tomography
reconstruction [4].

3. Results

3.1. Measured pressure signals

Fig. 2 shows the measured acoustic pressure as a function of time
without fat tissue, with a 6mm thick piece of porcine fat tissue, and
with 20mm thick fat tissue. The arrival time of the acoustic wave is
defined as the time, when the signal gets zero between its maximum
and its minimum. This time changes slightly when putting the two fat
tissue samples into the measurement chamber. The sound velocity in
water was 1498m/s at a water temperature of 25.5 °C, and 1512m/s in
fat tissue at 1MHz. The arrival time was subtracted, which allows
plotting all of the signals with the same time scale. The amplitude was
also scaled: the water signal was reduced by a factor of 150, and the
6mm fat signal by a factor of five. The noise level in Fig. 2 for a single
measurement is 0.45 a. u., which is in the range of the signal amplitude
after 20mm propagating in fat, and the signal would appear very noisy.

Therefore, 32, 257, and 512 measurements were averaged to reduce the
noise level to approximately 0.08, 0.03, and 0.02 for the water-, the
6mm fat-, and the 20mm fat – measurement, respectively. Together
with the scaling this avoids to show the noise in Fig. 2.

By Fourier transformation in time the amplitude in frequency do-
main for the three signals in Fig. 2 was calculated. The acoustic at-
tenuation coefficient in dB was determined by

= − ∼ ∼α ω r p r ω p r ω( ) 20log(| ( , )|/| ( , )|),ideal (10)

where log is the logarithm to base 10 (Fig. 3). It turns out that a power
law

=α ω α ω( ) | | ,n
0 (11)

with an exponent =n 1.5 and = − −α dB MHz cm0.87 n
0

1 fits the at-
tenuation in a wide frequency range very well.

Above the truncation frequency given by Eq. (4), which is ap-
proximately 11MHz after 20mm in fat tissue, and 24MHz after 6mm,
the signal amplitude gets less than the noise level and the attenuation
cannot be determined any more. According to Eq. (7), the matrix Mr
describing the acoustic attenuation problem is the Fourier transform of
a diagonal matrix, where the singular values decay with −α ω rexp( ( )| |),
with α ω( ) from Eq. (11). The condition number of the matrix Mr is the
highest singular value divided by the lowest singular value, which is

+α ω rexp( ( )| |)max and therefore depends on the used maximum fre-
quency ωmax. This was chosen as 500MHz in our calculations, with the
2000×2000 matrix Mr and results in a condition number of 10298 for
6mm fat and for 20mm fat it was infinity up to our numerical preci-
sion.

For the 20mm fat signal the =SNR 60, after 512 times averaging
the =SNR 1358, which gives a maximal attenuation of

=SNR dB20log( ) 63 (see noise level above 11MHz indicated as red
circles in Fig. 3).

The ideal pressure signal in water without fat (blue solid line in
Fig. 2) is no single positive δ -like pulse, but gets negative and shows
additional “ringing”, because of the laser-ultrasound excitation within
the silicon wafer and the characteristic of the piezoelectric transducer
and the amplifier. However, to be able to use positivity and sparsity, we
need a δ -like ideal signal for pideal in Eq. (7). Therefore, the matrix Mr
was multiplied by a convolution matrix Mwater using the water signal as
convolution kernel, which gives the water signal pideal if a δ -like pulse
pδ (blue solid line in Fig. 4) is multiplied by Mwater ( =p M pideal water δ).
Because of the linearity of Eq. (7), this results in the same signal for pr

Fig. 2. Measured acoustic pressure as a
function of time without fat tissue
(“water”, blue solid line), with 6mm
thick porcine fat tissue (red dotted line)
and with 20mm porcine fat tissue
(yellow dashed line), where a total of 32,
256, and 512 measurements were aver-
aged, respectively. To make comparison
easier, the signals were time-shifted and
scaled.
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for a δ - like ideal signal as input signal ( = =p M p M M pr r ideal r water δ).
The inverted signals using the T-SVD method are shown in Fig. 4. The
width of the reconstructed pulse is the reciprocal value of the cut-off-
frequency of 24MHz for 6mm fat tissue and 11MHz for 20mm fat
tissue. The spatial resolution according to Eq. (5) is half the width of
this reconstructed pulse multiplied by the sound velocity at that fre-
quency: 21 ns or 32 μm for 6mm fat, and 46 ns or 70 μm for 20mm fat,
respectively. Only by deconvolution with the water pulse from the
signals shown in Fig. 2 one gets a FWHM of 75 ns or 113 μm for 6mm
fat, and 170 ns or 257 μm for 20mm fat, respectively. This clearly de-
monstrates that the T-SVD method already allows a significant com-
pensation of the acoustic attenuation (Fig. 4).

The T-SVD method is a linear reconstruction method. If the

measurement is repeated several times, it gives the same result if the
measurement data is averaged and then the reconstruction is calcu-
lated, or if every measurement is reconstructed and then the average of
the reconstructions is calculated. This is different for the non-linear
iterative DR method. Another important difference is that for the linear
method the spatial resolution of the reconstruction is given by the
width of the peak, as shown in Fig. 4. This is not necessarily the case for
the DR method, because the width of the peak changes with the number
of iterations, as shown in Fig. 5 for 20 and 200 iterations, which took
only 8 s for 200 iterations on a Microsoft surface computer. Between
200 and 1000 iterations the DR solution showed only a minor change –
thus we stopped at 200 iterations. Therefore, we use two overlapping
point-sources at a certain distance, which is experimentally realized by

Fig. 3. Measured attenuation as a function of frequency and fits of a power law (Eq. (11)). At frequencies above the truncation frequency determined by Eq. (4),
attenuation cannot be evaluated due to the noise (see text).

Fig. 4. Reconstruction results using T-SVD for regularization to compensate attenuation in fatty tissue of 6mm thickness (red dotted line) and 20mm thickness
(yellow dashed line). This corresponds to a spatial resolution limit of 32 μm for 6mm fat and 70 μm for 20mm fat, resulting from entropy production. The matrix Mr

was multiplied by the convolution matrix of the water signal to get a positive δ - like pulse for the pure water-signal without fatty tissue in the measurement chamber
(blue solid line).
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flange silicon absorber having a small step in the beam-center, as de-
scribed in section 2.1. Due to the unfocused piezoelectric transducer,
the slightly time shifted signals propagate through the fatty tissue and
overlap. Resolution is now the smallest distance, when these steps can
be resolved as two individual peaks. Another difficulty in defining the
resolution is, that for repeated identical measurements it can happen
that sometimes the peaks can be resolved and sometimes they are not
resolved, which is a SNR issue. Here, we have defined resolution as the
distance, when at least 50 % of the 1D signals can be resolved as in-
dividual peaks, performing 100 identical measurements in total. Fig. 6
shows the sum of the 100 reconstructions, for a 90 μm step and a 45 μm
step. The DR can clearly resolve both. In Fig. 7 it is shown that the
35 μm step can be resolved only in approximately half of the 100

measurements and the step-size is reconstructed smaller than it is in
reality.

Fig. 8 shows a comparison of the resolution as a function of imaging
depth for the “rule of thumb” factor 200 [3], which is called linear
approximation. Further it shows the result from Eq. (5), which has been
shown to be equal to the T-SVD method and what is the best one can do
to compensate acoustic attenuation without using additional assump-
tions. The markers give the resolutions for the DR method used for
inversion at a depth of 6mm and 20mm in fatty tissue.

4. Discussion, conclusions, and outlook

For fatty porcine tissue the frequency acoustic attenuation was

Fig. 5. Compensation of acoustic at-
tenuation of a 20mm thick fatty tissue:
T-SVD (blue dotted line. FWHM of
76 μm), and DR method (red dashed
dotted and yellow solid line) with 20
(FWHM of 13 μm) and 200 iterations
(FWHM of 5 μm), respectively. For the
linear SVD reconstruction the width of
the peak gives the spatial resolution, for
the DR method this is not necessarily the
case. The signals are normalized to have
a maximum of one.

Fig. 6. Compensation of acoustic attenuation of a 20mm thick fatty tissue, T-SVD (red dotted line), and DR method (yellow dashed dotted) with 200 iterations, 100
identical measurements are summed after reconstruction: Left: 90 μm step. The SVD resolution is 70 μm (see Fig. 4), therefore also in SVD the two peaks can be
resolved. Right: 45 μm step. SVD cannot resolve the two signals, but DR clearly shows two peaks.

Fig. 7. Compensation of acoustic attenuation of a 20mm thick fatty tissue, T-SVD (red dotted line), and DR method (yellow dashed dotted) with 200 iterations,
35 μm step. Left: 100 identical measurements are summed after reconstruction. Right: Reconstruction results for the individual measurements.
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measured and could be described by a power-law with an exponent
=n 1.5 and = − −α dB MHz cm0.87 n

0
1 (Fig. 3). Using this law (Eq. (11))

and the corresponding dispersive sound velocity [11], the matrix Mr in
Eq. (7) was calculated for a propagation distance of 6mm and 20mm in
fat. It describes the relation between the attenuated measured signal pr
and the ideal signal pideal (Fig. 2) in time domain. To allow for the
assumption of positivity and sparsity for pideal, the matrix Mr was ad-
ditionally multiplied by a convolution matrix using the water signal as
convolution kernel. Then the perfect inverted signal from Eq. (7) would
be a δ - like ideal signal as input signal (Fig. 4).

Two different inversion methods for Eq. (7) are compared: the T-
SVD method uses no additional assumptions and it could be shown that
the gained spatial resolution fits perfect to the theoretical resolution
given in Eq. (5) (blue solid line in Fig. 8). This spatial resolution is also
in accordance with the factor 200 given in literature [3], shown in
Fig. 8 as the “linear approximation”. The DR method using positivity
and sparsity allows for a resolution enhancement of a factor of two for
that sample (from 70 μm to 35 μm). For the 6mm fat tissue, the re-
solution was enhanced from 32 μm to 17 μm.

Resolution is defined as the step depth, at which a step can be re-
solved as two individual peaks. For non-linear reconstruction methods
this turns out to be larger than the width of the reconstructed peaks, but
still smaller than the resolution limit without taking sparsity and non-
negativity into account.

Experimentally this resolution enhancement is demonstrated here in
1D, but at least in axial direction the same enhancement is expected in
3D by using the spherical projection. In comparison to other super-re-
solution photoacoustic imaging methods which overcome the acoustic
diffraction limit by structured illumination patterns or localization of
small particles or droplets, the proposed method has a big advantage: it
is much faster as it uses only one measured image as input and can
therefore be used for any existing photoacoustic tomographic set-up.
Sophisticated 1D attenuation compensation is not only fast and allows
parallelization of the numerical iterative reconstruction algorithm, but
is also applicable for attenuation compensation in 2D and 3D imaging,
which can always be reduced to 1D [10].
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