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Skeletal muscle enhancer interactions identify
genes controlling whole-body metabolism
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Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic
factors that are characterized by insulin resistance in skeletal muscle, a prominent site of
glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of
which the majority are located in non-coding DNA regions. This suggests that most variants
mediate their effect by altering the activity of gene-regulatory elements, including enhancers.
Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated
after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFa. By over-
lapping enhancer positions with the location of disease-associated genetic variants, and
resolving long-range chromatin interactions between enhancers and gene promoters, we
identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of
these genes also associate with altered whole-body metabolic phenotypes in the murine BXD
genetic reference population. Thus, our combined genomic investigations identified genes
that are involved in skeletal muscle metabolism.
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he prevalence of obesity and T2D comorbidity is reaching

epidemic proportions worldwide, with currently 1.9 billion

adults estimated as being overweight or obese! and 380
million suffering from T2D?2. Skeletal muscle constitutes the lar-
gest metabolic organ and accounts for 30% of the basal metabolic
rate’, and as the most prominent site of insulin-mediated glucose
uptake in humans, insulin resistance (IR) in muscle is considered
a contributing defect during development of T2D* While the
molecular basis for the pathology of obesity and T2D is incom-
pletely understood, it is clear that both genetic and environmental
factors contribute, probably in a synergistic manner®. Genome-
wide association studies (GWAS) have identified a plethora of
genetic variants associated with T2D and obesity traits®-8.
However, only a minority (<5%) of GWAS identified variants are
located in coding sequences’, which makes functional char-
acterization complex. Several studies have identified that a sub-
stantial proportion of the disease-associated variants lie within
regulatory regions, including enhancer elements®~11.

Enhancers serve as binding sites for transcription factors and
co-regulators that assist in DNA looping and recruitment of the
transcriptional machinery to targeted promoters. With an esti-
mated 50,000 to 100,000 active enhancers in any given mam-
malian cell type!?, enhancers are thought to account for the
complexity of gene regulation. Enhancers are characterized by the
presence of histone modifications including monomethylation of
histone 3 lysine 4 (H3K4mel) and acetylation of histone 3 lysine
27 (H3K27ac)!3-15, Thus, by determining the genome-wide dis-
tribution of these histone marks, it is possible to generate
genome-wide maps of active enhancers (the enhancerome) in a
specific tissue. Mapping the enhancerome in various cell types
and during embryonic stem cell differentiation has demonstrated
that enhancer activation is highly cell-type specific and
dynamic!®17, and several studies have proposed that impaired
enhancer activation could be at the origin of disease!8-21. Besides
interacting with nearby promoters, enhancers also engage in
long-range interactions. Indeed, it is estimated that approximately
35-40% of all promoter-enhancer interactions are intervened by
at least one gene?2, which makes exact enhancer-target prediction
challenging. Long-range enhancers interactions can be identified
by chromosome conformation capture methods?3-4.

In the present study, we aimed to identify target genes of
GWAS SNPs in human skeletal muscle by using cultured myo-
tubes subjected to metabolic stress by either palmitate or TNFa
exposure. Elevation of plasma levels of free fatty acids and
proinflammatory cytokines associates with increasing adiposity?”
and represent an important link between obesity, skeletal muscle
IR, and T2D. By RNA profiling and genome-wide mapping of
enhancer elements in myotubes, we found that palmitate or
TNFa treatment led to massive changes in gene transcription, as
well as alterations in the activity of enhancers. Moreover, we
showed that enhancers regulated by palmitate or TNFa exposure,
overlapped SNPs from GWAS of BMI, waist-to-hip ratio (WHR),
IR or T2D. Moreover, by mapping global promoter-enhancer
interactions by chromatin conformation analysis, we directly
couple these enhancers to promoters, where we found a con-
current change in gene transcription by the respective treatments.
Thus, we established physical links between numerous GWAS
SNPs and muscle-expressed genes and provided insight into the
association between the identified genes and metabolic function
in vivo.

Results

Transcriptomic profiling of human skeletal muscle cells. To
study concurrent changes in gene transcription, enhancer activ-
ities and chromatin conformation, we used primary human

skeletal muscle cells differentiated into myotubes that were sub-
jected to metabolic stress by treatment with either palmitate or
TNFa (Supplementary Fig. 1A). As previously reported?6-2, both
treatments lowered insulin sensitivity, as confirmed by decreased
AKT Ser-473 phosphorylation in response to insulin stimulation
(Supplementary Fig. 1B-E).

First, we performed transcriptomic analysis by RNA-
sequencing (RNA-seq). Multidimensional Scaling (MDS) plots
showed a clear sample separation based on palmitate or TNFa
treatment (Fig. la). In total, we detected expression of 14,402
genes in skeletal muscle cells, of which 1542 were regulated by
palmitate treatment (621 downregulated and 921 upregulated;
Fig. 1b, Supplementary Data 1, and Supplementary Fig. 2A) and
4522 were changed by TNFa treatment (2247 downregulated and
2275 upregulated; Fig. 1c, Supplementary Data 1, and Supple-
mentary Fig. 2B). Gene ontology (GO) analysis of the
differentially expressed genes (Supplementary Data 2) demon-
strated strong upregulation of genes involved in lipid metabolism,
as well as regulation of inflammatory responses (Fig. 1d) by
palmitate exposure, whereas terms related to nucleosome
assembly were specifically downregulated (Fig. le). GO analysis
of TNFa upregulated genes returned several terms related to
immune signaling (Fig. 1f), whereas downregulated genes were
related to protein targeting to the endoplasmic reticulum (ER),
insulin-like growth factor signaling and muscle filament sliding
(Fig. 1g). Interestingly, both treatments seemed to significantly
upregulate genes involved in inflammation (Supplementary Data 2
and Fig. 1h), and to downregulate genes related to muscle
contraction (Supplementary Data 2 and Fig. 1i), both of which are
processes related to skeletal muscle dysfunction and insulin
resistance. Thus, our transcriptomic analyses of human muscle
myotubes reveal thousands of target genes of which many are
related to metabolic dysfunction.

The dynamic enhancerome of skeletal muscle cells. Through
chromatin immunoprecipitation followed by sequencing (ChIP-
seq), we mapped the distribution of the enhancer-associated
histone H3 modifications, H3K4mel and H3K27ac, in the muscle
myotubes treated with TNFa or palmitate. Genome-wide, we
identified 107,405 and 80,388 significant peaks of H3K4mel or
H3K27ac, respectively (Fig. 2a). These were mostly located in
non-coding DNA, such as introns and intergenic regions, as well
as in promoters (Supplementary Fig. 3). In order to identify
enhancers, we subtracted active promoter regions (defined by the
promoter-associated H3K4me3 mark). We found that most
(95.5%) of the non-promoter associated H3K27ac peaks over-
lapped a H3K4mel peak, whereas only 36.9% of the H3K4mel
peaks overlapped H3K27ac (Fig. 2a). These findings support the
notion that enhancers can be primed (marked by only H3K4mel)
or active (marked by both H3K4mel and H3K27ac)!¢17. MDS
plots of non-promoter associated H3K27ac and H3K4mel ChIP-
seq data demonstrated a clear treatment-based separation of
samples for H3K27ac (Fig. 2b), whereas this was less obvious for
H3K4mel (Fig. 2c), underlining the assumption that especially
H3K27ac undergoes dynamic regulation in response to external
stimuli and determines enhancer activity!®30-31. Therefore, to
identify enhancers that were differentially activated after palmi-
tate or TNFa treatment, we searched for peaks within the 62,866
identified active enhancers (covered by both H3K4mel and
H3K27ac) that showed significant changes in H3K27ac levels.
This analysis returned 2243 enhancers with altered activity after
palmitate treatment (FDR <0.01, 1190 with a decreased activity
and 1053 with an increased activity) (Fig. 2d and Supplementary
Data 3), and 17,037 enhancers that changed activity after TNFa
treatment (FDR < 0.01, 12,380 with a decreased activity and 4,657
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Fig. 1 Gene expression analysis after palmitate or TNFa treatment. a MDS plot of RNA-seq data from control (ctrl), palmitate (palm) or TNFa treated
human skeletal myotubes. Leading log fold-change (logFC) is the mean logFC between the 500 most divergent genes between each pair of samples. On
the axes, “dim” means dimension. b, ¢ Volcano plot representation of genes regulated by palmitate (b) or TNFa (c). Blue dots represent genes that are
significantly downregulated and red dots represent genes that are upregulated by the respective treatments (n = 4 biological replicates, FDR < 0.01).

d, e Top 10 GO terms upregulated (d) or downregulated (e) by palmitate. f, g Top 10 GO terms upregulated (f) or downregulated (g) by TNFa. The x-axis
shows the percent of genes in the category that are differentially expressed with an FDR < 0.01. The legend shows ‘Genes in term’, which is the number of
genes expressed in these samples. The P-value is calculated using the CAMERA method. All terms have an FDR of less than 0.0001. h Examples of

palmitate and TNFa upregulated genes related to acute inflammatory response. Relative CPM indicates RNA-seq counts per million relative to TNFa

treatment. Values are represented as the mean £ S.D. (n = 4 biological replicates, *FDR < 0.01). i Examples of palmitate and TNFa downregulated genes
related to muscle filament sliding. Relative CPM indicates RNA-seq counts per million relative to control. Values are represented as the mean+S.D. (n=4
biological replicates). Asterisks indicate genes that are significantly regulated in the RNA-seq analysis (*FDR < 0.01).

with an increased activity) (Fig. 2e and Supplementary Data 3).
Examples of enhancers with a strong increase in H3K27ac after
palmitate treatment included elements located 10 kb upstream of
the PDK4 promoter and 9 kb upstream of ANGPTL4 (Fig. 2f, g)—
two genes known to play a role in fatty acid metabolism.
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Moreover, some enhancers strongly regulated by TNFa were
located close to cytokine genes, exemplified by enhancers located
21 kb downstream of CCLII and 17kb upstream of CCXLS8
(Fig. 2h, i). The changes in H3K27ac were validated indepen-
dently by ChIP-qPCR (Supplementary Fig. 4A), which further
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Fig. 2 Identification of enhancers by ChlP-seq. a Overlay of H3K4me1, H3K27ac and promoter-associated H3K4me3 ChlP-seq data from human skeletal
myotubes. b, ¢ MDS plot of non-promoter associated H3K27ac (b) and H3K4me1 (¢) ChIP-seq data from control (ctrl), palmitate (palm) or TNFa treated
cells. Leading log fold-change (logFC) is the mean logFC between the 500 most divergent H3K27ac (b) or H3K4mel (¢) ChIP-seq peaks between each pair
of samples. d, e Volcano plot representation of differentially H3K27 acetylated regions among the 62,866 enhancers containing both H3K4me1 and
H3K27ac (n = 4 biological replicates, FDR < 0.01) from palmitate (d) or TNFu (e) treated cells. Blue dots represent enhancers that are downregulated and
red dots represent enhancers that are upregulated by the respective treatments (n = 4 biological replicates, FDR < 0.01). The ChIP-seq and enhancer
analyses are described in detail in the Methods section. f and h, UCSC genome browser (hg38) H3K27ac and RNA-seq tracks from control (ctrl), palmitate
(palm) or TNFa« treated cells around PDK4 and ANGPTL4 (g) or CCL11 and CXCL8 (i). g and i Quantification of H3K27ac counts pr. million (CPM) at the
selected enhancer regions in the individual replicate samples. Values are represented as the mean £ S.D. (n = 4 biological replicates). Asterisks indicate
enhancers that are significantly regulated in the ChIP-seq analysis (****FDR < 0.0001, **FDR < 0.01). j, k Quantification of mRNA counts pr. million (CPM)
of the indicated genes in the individual replicate samples. Values are represented as the mean £ S.D. (n = 4 biological replicates). Asterisks indicate genes
that are significantly regulated in the RNA-seq analysis (**FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0001).

confirmed the presence of H3K4mel at these sites (Supplemen- alternative promoters. Consistent with increased enhancer activ-
tary Fig. 4B, C). None of the validated enhancer regions showed ity, expression of PDK4, ANGPTL4, CCL11, and CCXL8 were
enrichment of the promoter-associated H3K4me3 mark (Sup- markedly upregulated after palmitate or TNFa treatment (Fig. 2j,
plementary Fig. 4D), ruling out that these genomic regions act as k), supporting a regulatory role of these enhancers on expression
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of their nearby promoters. To further validate the cis-regulatory
activity of the identified regions, we cloned the PDK4-10kb and
the CCXL8-17kb enhancers into a luciferase reporter vector.
When transfected into muscle cells, luciferase activity was
markedly increased in response to palmitate or TNFa treatment
(Supplementary Fig. 5), confirming a regulation of enhancer
activity by these treatments. Collectively, our results identify
thousands of dynamic enhancer activities in human skeletal
muscle cells after treatment with palmitate or TNFa.

Capture Hi-C identifies enhancer-promoter interactions.
Besides interacting with nearby promoters, enhancers can also
engage in long-range interactions, which makes enhancer-target
prediction challenging. To overcome this, we performed genome-
wide mapping of enhancer-promoter interactions in skeletal
muscle cells by the use of high-resolution Promoter Capture
Hi-C?224, First, we tested if treatment of myotubes with palmitate
or TNFa was associated with a dynamic reorganization of
promoter-enhancer interactions. Hi-C libraries were generated
from skeletal muscle myotubes followed by hybridization-based
capture of 21,841 human promoters, using a collection of 37,608

biotinylated RNA baits (approximately two baits per promoter)
previously designed and tested by others?2, By sequencing the
captured ligation fragments and testing for a difference in map-
ped Hi-C interactions by palmitate or TNFa treatment, we did
not detect any significant changes (Supplementary Fig. 6A-B),
suggesting that acute exposure to these treatments does not cause
major changes to chromatin structure. This agrees with another
study showing that TNFa-responsive enhancers are already in
contact with their target promoters before transient activation or
repression of enhancer activity by TNFa treatment in human
fibroblasts32.

Next, we pooled all Promoter Capture Hi-C conditions in order
to obtain a general chromatin conformation capture of myotubes.
This identified 36,809 significant promoter-enhancer interactions
(Fig. 3a and Supplementary Data 4). Interactions covered 47% of
tested promoters and 51% of identified enhancers regions (Fig. 3a)
and largely spanned the entire genome (Supplementary Fig. 7).
Genomic distances of identified promoter-enhancer interactions
ranged up to 6.2 Mb, with a median distance of 93.8 kb (Fig. 3b)
and each of the captured promoters were on average connected to
4 enhancer regions (Fig. 3c).
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Fig. 3 Promoter capture Hi-C identifies interactions between promoters and enhancers. a Overview of all the significant interactions between baited
promoters and H3K4mel/H3K27ac positive enhancers. b Histogram showing the distance between interacting promoter-fragments and enhancer-

fragments. The median distance is 93.8 kb. ¢ Histogram showing the number of enhancer interactions pr. promoter. The median number of interactions is
4. d Promoters captured by the Promoter Capture Hi-C were divided into three groups; promoters connected to enhancers that did not change H3K27ac in
response to palmitate or TNFa treatment (“None"), and promoters connected to enhancers that either gained H3K27ac (“Up") or lost H3K27ac (“Down").
e-j Empirical cumulative distribution function (EDCF) plots of gene expression changes (RNA-seq logFC values) in the “Up” versus the “None” group for
palmitate (e) or TNFa treatment (f), and the “Down” versus the “None” group for palmitate (g) or TNFa treatment (h). X-axis is the RNA-seq logFC, y-axis
is the fraction of genes with this logFC or less. Differences between empirical cumulative distribution functions were tested using a Kolmogorov-Smirnov

test (KS-test).
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To validate if our Promoter Capture Hi-C data identified
functional enhancer-promoter interactions, i.e., where a dynamic
change in enhancer activity also associate with a concurrent change
in promoter transcription, we divided the promoters captured in
our chromatin interaction data into three groups (Fig. 3d):
promoters connected to enhancers that did not change H3K27ac
in response to palmitate or TNFa treatment (“None”) and
promoters connected to enhancers that either gained H3K27ac
(“Up”) or lost H3K27ac (“Down”). Empirical cumulative distribu-
tion function (EDCF) plots of gene expression changes (RNA-seq
logFC values) in the different groups revealed that promoters
connected to enhancers with gained activity have higher logFC
values than the “None” group (Fig. 3e, f), whereas promoters
connected to enhancers with decreased activity have significantly
lower logFC values for both palmitate and TNFa treatments
(Fig. 3g, h), supporting a regulatory role of the connected
enhancers. Taken together, we have generated an enhancer-
promoter connectivity map of skeletal muscle myotubes and
demonstrated a general capture of promoter-enhancer pairs with
concurrent changes in activity by palmitate or TNFa treatment.

Chromatin interaction data predict enhancer target genes.
Given that the vast majority of disease-associated variants are
predicted to be located in regulatory regions®!l, our data
represent an opportunity to identify target genes of GWAS SNPs
in skeletal muscle cells by combining our enhancer mapping with
information on chromatin conformation and gene transcription.
For this, we used four sets of GWAS SNPs associated with T2DS,
IR33-38 BMI® or WHRY, as well as tagged SNPs in high linkage
disequilibrium (LD, r2>0.8) (Fig. 4a). After overlapping the
variants with enhancer regions regulated by either palmitate or
TNFa treatment, we identified 58 palmitate-regulated enhancers
and 522 TNFa-regulated enhancers each harboring one or more
GWAS SNPs (Fig. 4b). Next, we selected enhancers that were
both captured by our Promoter Capture Hi-C analysis and linked
to genes differentially expressed after palmitate or TNFa treat-
ment. When only considering enhancer-gene pairs where
enhancer activity and gene expression were regulated in the same
direction (i.e., either upregulated or downregulated), our analysis
retrieved 11 palmitate-regulated, and 124 TNFa-regulated
enhancers interacting with 11 and 99 predicted target gene pro-
moters, respectively (Fig. 4b and Supplementary Data 5). The
predicted target genes included several known players in meta-
bolism such as IRSI, IGFBP3, PPARG, SOCS2, and LEPR, pro-
viding a link between disease-associated SNPs and the ability of
skeletal muscle to adapt to metabolic and inflammatory stress. To
further narrow down the list of potential gene targets, we inves-
tigated the association between genotype of the enhancer-
overlapping GWAS SNPs and the basal expression of each of
their target genes in skeletal muscle biopsies of 139 individuals
(by expression quantitative trait locus (eQTL) analysis). This
approach identified 13 significant skeletal muscle eGenes (CEP68,
GAB2, LAMBI, MACFI1, EIF6, PABPC4, BTBDI, FILIPIL,
TCEA3, NRPI, ZHX3, TBX15, and TNFAIP8) for 61 GWAS-
SNPs, located within 20 distinct enhancer regions (Fig. 4c, d and
Supplementary Data 6). Thus, by overlapping our genomic
datasets, we have identified numerous putative target genes of
metabolic GWAS SNPs, which may play a functional role under
lipid toxicity or in response to proinflammatory stimuli. More-
over, for 13 genes, we demonstrate a significant association
between GWAS SNP genotype and basal gene expression levels in
human skeletal muscle.

Identified target genes are linked to energy metabolism. In
order to understand the role of the identified putative GWAS-

SNP target genes in whole body metabolism in vivo, we analyzed
the association between 48 metabolic traits in the BXD murine
genetic reference population fed a control diet (CD) or high fat
diet (HFD)3°-4! (Supplementary Data 7), and expression levels of
the 13 identified eGenes in skeletal muscle (Supplementary
Data 8), adipose tissue (Supplementary Data 9) and liver (Sup-
plementary Data 10). Strikingly, expression of 12 out of the 13
genes (Cep68, Gab2, Lambl, Macfl, Eif6, Btbdl, Filipll, Tcea3,
Nrpl, Zhx3, Tbx15, and Tnfaip8) showed associations with
metabolic measures, such as blood glucose levels during glucose
tolerance tests (GTTs), plasma lipid levels, body composition, and
exercise performance, in at least one of the tested tissues
(Table 1). For some target genes, metabolic measurements were
specifically associated with expression in skeletal muscle. For
example, expression of Tbx15 (Fig. 5a), which we found linked to
SNPs associated with WHR in humans, was positively associated
with lean body mass (Fig. 5b) and VO, max (Fig. 5¢), as well as
negatively associated with total body fat mass (Fig. 5d) and blood
glucose levels during an oral GTT (Fig. 5e) in the BXD mice.
Interestingly, the expression of Cep68, which we find linked to
SNPs associated with T2D, was correlated with blood glucose
levels during GTTs in HFD-fed mice in both muscle and liver
(Fig. 5f). More specifically, Cep68 expression was negatively
correlated with blood glucose levels during an intraperitoneal
GTT in skeletal muscle of both male (Fig. 5g) and female (Fig. 5h)
mice, and oral GTIT in liver tissue (Fig. 5i). Moreover, Cep68
association with body fat mass and lean mass percentages in
adipose tissue (Fig. 5j) suggests that CEP68 has a role in T2D
through dysregulated expression in multiple organs. Collectively,
these data demonstrate that the expression of identified putative
GWAS SNP targets correlates with metabolic measures in mice,
and suggest a role for these genes in the regulation of energy
metabolism in vivo.

Long-range interactions connect WHR SNPs to EIF6 expres-
sion. For some candidate genes identified as regulated by non-
coding GWAS SNPs, including EIF6, the gene was not located at
close vicinity of the differentially activated enhancer region, but
connected through long-range chromatin interactions. The SNPs
that we found linked to EIF6 are located within the UQCCI locus
and associate with WHR (Fig. 6a). We identified four enhancer
regions, UQCCI + 100 kb, UQCCI + 26 kb, UQCCI + 16 kb, and
UQCCI + 13 kb, that were all regulated by TNFa (Fig. 6b) and
captured by our Promoter Capture Hi-C data. The enhancer
regions overlapped several highly linked WHR-associated SNPs
(Fig. 6a). From our chromatin interaction data, we found all
enhancers to interact with the promoter of EIF6 (Fig. 6a).
Moreover, the UQCCI + 100 kb enhancer also interacted with
MMP24 and EDEM2, whereas UQCCI + 26 kb, UQCCI + 16 kb,
and UQCCI+13kb enhancer regions looped to the
GDF5/CEP250 shared promoter (Fig. 6a). Out of these genes,
MMP24, EIF6 and GDF5 remained candidates to be under the
regulation of the enhancers, since the expression of these genes
was concurrently decreased by TNFa treatment (Fig. 6c).
Importantly, the UQCCI promoter was not found linked to the
enhancer nor did UQCCI change expression by TNFa. While
GDF5 expression was below detection limit in skeletal muscle and
could not be analyzed for eQTLs, we found associations of several
LD-linked WHR associated SNPs, including rs878639, with the
expression of EIF6 (Supplementary Data 6 and Fig. 6d), but not
with MMP24 (Fig. 6e). In the case of rs878639, the major allele
associates with an increased WHR, which establishes a link
between lower EIF6 expression and an unhealthy body fat dis-
tribution. Consistently, we found that Eif6 expression in muscle
from BXD mice positively associates with running distance
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Fig. 4 Using chromatin interaction data to predict enhancer target genes. a Overview of the number of original and LD linked T2D, IR, BMI, or WHR
GWAS SNPs. b Overlapping of 2243 and 17,037 palmitate-regulated or TNFa-regulated enhancers with selected GWAS SNPs, and integrating Promoter
Capture Hi-C and gene expression data identifies 11 and 124 palmitate-regulated or TNFa-regulated enhancers encompassing GWAS SNPs and connected
to a predicted target gene. ¢, d Volcano plot representation of eQTL analysis, where 13 significant eGenes were identified (FDR < 0.2) in total for palmitate-
regulated (¢) or TNFa-regulated genes (d). See also Supplementary Data 6 and the Methods section for a detailed description of the analysis.

(Fig. 6f, Supplementary Data 8), VO, basal (Fig. 6g, Supple-
mentary Data 8) and VO, max levels after training (Fig. 6h,
Supplementary Data 8), suggesting better aerobic capacity in
animals with higher skeletal muscle Eif6 expression. To further
validate our findings, we used siRNAs (siEif6#1 and siEif6#2) to
knock down Eif6 expression in skeletal muscle cells (Fig. 6i and
Fig. S8A). We assessed mitochondrial respiration by measuring
oxygen consumption rate (OCR) at basal state or during FCCP-
induced uncoupling (Fig. 6j and Supplementary Fig. 8B) and
found that decreased Eif6 expression resulted in lower OCR
(Fig. 6k), especially during maximal FCCP-induced respiration
(Fig. 6l and Supplementary Fig. 8C). Moreover, after differ-
entiating C2C12 cells into myotubes, we found that Eif6 knock-
down (Supplementary Fig. 9A) led to reduced protein levels of the
mitochondrial oxidative phosphorylation complex II (Fig. 6m and
Supplementary Fig. 9B), whereas we did not detect any changes in
insulin-stimulated glucose uptake (Supplementary Fig. 9C), gly-
cogen synthesis (Supplementary Fig. 9D), or AKT phosphoryla-
tion (Supplementary Fig. 9E, F).

Thus, long-distance interactions networks suggest that EIF6 is
regulated by genetic variants associated with body fat distribution.
Accordingly, we identified correlations between lower skeletal
muscle Eif6 expression and reduced exercise performance, and
further provide evidence for a role of EIF6 in the regulation of
mitochondrial function in skeletal muscle.

Discussion
Here, we mapped the transcriptome and enhancerome of human
skeletal muscle cells subjected to lipid-induced toxicity or a

proinflammatory cytokine. We demonstrate a profound tran-
scriptional reprogramming with thousands of promoter and
enhancer regions showing altered activity. Integrating these data
with GWAS of T2D, IR, BMI and WHR measures as well as
genome-wide chromatin interaction studies, allowed us to detect
concurrent changes in the activity of enhancers encompassing
GWAS SNPs and transcription from a connected promoter,
thereby establishing links between numerous non-coding disease-
associated SNPs and gene targets. Using the murine BXD genetic
reference population we provide further insight into the role of
the identified target genes in the regulation of metabolic pheno-
types like body composition, glucose response and exercise per-
formance in vivo. In particular, we provide evidence that one of
our identified targets, Eif6, controls mitochondrial respiration in
skeletal muscle cells.

Our cell-system using chronic exposure with palmitate or TNFa
in human primary muscle cells allowed investigation into the
distinct mechanisms by which the metabolic function of the ske-
letal muscle cell is impaired. Palmitate induces insulin resistance at
the level of AKT phosphorylation*?, impairs mitochondrial
function®3, lowers expression of the master regulator of mito-
chondrial function peroxisome proliferator-activated receptor-
gamma coactivator (PGC)-1 a*4, and induces ER stress*. Inter-
estingly, incubation of skeletal muscle cells with palmitate induces
TNFa secretion by the muscle cell, suggesting that while saturated
fatty acids and TNFa appear to activate distinct intracellular
pathways, these pathways may share common nodes*¢. Saturated
free fatty acid and TNFa treatment both alter upstream insulin
signaling, but TNFa treatment does not alter insulin-stimulated

| (2020)11:2695 | https://doi.org/10.1038/s41467-020-16537-6 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 Correlations between gene expression and metabolic phenotypes in BXD mice.
Gene name Skeletal muscle Adipose Liver
Cep68 Blood glucose levels Body composition Blood glucose levels
Exercise performance
Gab2 None Blood glucose levels None
Blood insulin levels
Plasma lipid levels
Body composition
Exercise performance
Lamb1 Blood glucose levels Plasma lipid levels None
Plasma lipid levels Body composition
Exercise performance
Macfl None N.D. Blood glucose levels
Eifé Exercise performance Life span Plasma lipid levels
Pabpc4 None None None
Btbd1 Blood glucose levels None Exercise performance
Exercise performance
Filip1l None None Blood glucose levels
Plasma lipid levels
Tcea3 Blood glucose levels None Blood glucose levels
Body composition Body composition
Exercise performance Exercise performance
Nrpl None Blood glucose levels Body composition
Exercise performance
Zhx3 None Blood insulin levels None
Body composition
Exercise performance
Tbx15 Blood glucose levels None None
Plasma lipid levels
Body composition
Exercise performance
Tnfaip8 Blood glucose levels Body composition None
Overview of significant correlations for Cep68, Gab2, Lamb1, Macfl, Eif6, Pabpc4, Btbd], Filipll, Tcea3, Nrpl, Zhx3, Tbx15, and Tnfaip8 in skeletal muscle, adipose or liver from BXD mice (see Supplemental
Tables 7-10 for more information). Macfl expression in adipose tissue was not detected (N.D.).

glucose uptake in muscle cells whereas palmitate does*>4”. In vivo

however, TNFa infusion is associated with both lower activation
of the upstream insulin-signal pathway and impaired glucose
transport*3, Even though TNFa exposure is not associated with
lower fatty acid oxidation in muscle ex vivo*®, we identified EIF6
as a gene regulated by TNFa exposure and show EIF6 plays a role
in fatty-acid oxidation. The discrepancy between the effects of
palmitate and TNFa on primary skeletal muscle cell cul-
tures compared to in vivo may be due to specific tissue-culture
conditions, different extracellular milieus or the influence of sys-
temic factors.

While the activity of enhancers and promoters were markedly
changed after palmitate or TNFa exposure, promoter-enhancer
interactions did not appear to be affected. These findings are
consistent with a previous study showing that enhancers-
promoter interactions are unchanged in fibroblasts treated with
TNFa32, We cannot rule out, however, that palmitate or TNFa
exposure could remodel chromatin in myotubes, as low sequen-
cing depth or low power may have limited our capacity to detect
subtle changes. From previous studies it seems clear that dynamic
remodeling of promoter-enhancer interactions occurs during
cellular differentiation, particularity at cell type-specific
enhancers23°0-3, Interestingly, the discrepancy between activa-
tion of cell type-specific enhancers and enhancers induced by
treatments such as TNFa seems to correlate with H3K4mel
levels. Indeed, treatment-induced enhancers appear to exhibit
largely unchanged levels of H3K4mel, despite a quick induction
of H3K27ac, whereas cell type-specific enhancers display highly
variable H3K4mel levels3Z. This is consistent with our data,
where palmitate- and TNFa-induce large changes in H3K27ac

levels at enhancers but only minor changes in H3K4mel. Still,
certain chromatin interactions were recently described to be
variable in a circadian fashion®¥, suggesting that promoter-
enhancer interactions can indeed be dynamic even within a
defined cell type.

Our mapping of the chromatin interactome of human myo-
tubes identified 36,809 specific enhancer-promoter interactions.
Integrating these data with RNA transcription and enhancer
activity analyses allowed us to specifically capture enhancer-
promoter interactions where 1) the enhancer overlaps one or
more SNPs associated with T2D, IR, BMI or WHR and 2) the
enhancer activity and gene expression were regulated in the same
direction by either palmitate or TNFa exposure. Our analysis
retrieved more than 100 predicted GWAS target genes, which
included several known players in metabolism such as IRSI,
IGFBP3, PPARG, SOCS2, and LEPR. However, our eQTL analysis
did not detect an association between genotype and gene
expression for most of these genes. We therefore speculate that
GWAS SNPs may be functionally linked with gene expression
in situations of cellular stress encountered in metabolic disease
such as increased plasma levels of fatty acids or proinflammatory
cytokines.

For the genes identified as significant eGenes in our eQTL
analysis, we analyzed the association between their expression
levels in skeletal muscle, adipose, or liver tissue and measures of
48 metabolic traits in the BXD murine genetic reference popu-
lation. We found that 12 out of 13 genes (Cep68, Gab2, Lambl,
Macfl, Eifé, Btbdl, Filipll, Tcea3, Nrpl, Zhx3, Tbxl5, and
Tnfaip8) exhibited marked associations with metabolic pheno-
types in one or more of the tested tissues. For some targets,
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including Tbx15, the associations appeared specific for skeletal
muscle expression and were not detected in either adipose or liver
tissue, suggesting a muscle-specific role of Tbx15. This is con-
sistent with the earlier finding that TbxI5 regulates muscle
metabolism in mice and Tbx15 knockout animals are resistant to
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diet induced obesity and impaired glucose tolerance®. For other
targets, such as Cep68, we identified associations in all of the
tested tissues revealing the metabolic role of these genes in
multiple organs. Linking gene expression with metabolic pheno-
types represents a valuable tool to gain insight into gene function,
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Fig. 5 Correlating GWAS SNP-target genes with metabolic phenotypes in BXD mice strains. a Heatmap representation of rho-values from correlations
between 48 metabolic measurements in CD or HFD fed mice and Tbx15 expression in skeletal muscle, adipose or liver tissue. The p-values from the 48
correlations from each diet and tissue were adjusted using false discovery rate correction (FDR) (*FDR < 0.2, **FDR< 0.1, ***FDR < 0.05). b-e Skeletal
muscle expression of Thx15 is positively correlated with lean mass (% of body weight) (b), negatively correlated with fat mass (% of body weight) (¢)
positively correlated with VO2,,.., (d) and negatively correlated with glycemia during an oral GTT (OGTT) (e). Statistics was performed using Spearmans
rank correlation analysis. f Heatmap representation of rho-values from correlations between 48 metabolic measures in CD or HFD fed mice and Cep68
expression in skeletal muscle, adipose or liver tissue (*FDR < 0.2, **FDR < 0.1, ***FDR < 0.05). g-j Cep68 is negatively correlated with glycemia during an
intraperitoneal GTT (IGTT) in both male (g) and female (h) mice in skeletal muscle, as well as an oral GTT (OGTT) in liver (i) and fat mass (% of body
weight) in adipose tissue (j). Statistics was performed using Spearmans rank correlation analysis.
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Fig. 6 Long-range interactions connect WHR-associated rs878639 to EIF6 expression. a Regional visualization of WHR GWAS data’ at the region

around UQCCT with highlight of rs878639 and linked SNPs. Position of all enhancers (green), palmitate or TNFa regulated enhancers (red) are indicated
below. Identified Promoter Capture Hi-C interactions for the UQCCT+ 100 kb (pink) and the UQCCT + 26 kb, UQCCT+ 16 kb, and UQCCT + 13 kb enhancer
region (blue) are illustrated. b Quantification of H3K27ac counts pr. million at the UQCCT+ 100 kb and UQCCT + 26 kb, UQCCT + 16 kb, and UQCCT + 13 kb
enhancers from control, palmitate-treated or TNFa-treated cells. Values are represented as mean + S.D. (n = 4 biological replicates). €, Quantification of
MMP24, EIF6 and GDF5 RNA-seq counts pr. million from control, palmitate-treated or TNFa-treated cells. Values are represented as mean £S.D. (n=4
biological replicates). For b, ¢; Stars indicate enhancers or genes that are significantly regulated in the ChIP-seq or RNA-seq analyses (****FDR < 0.0001,
***FDR < 0.001, **FDR < 0.01, *FDR < 0.05). d, e eQTL analysis in skeletal muscle between rs878639 and EIF6 (d) or MMP24 (e) expression. Data are
presented as box plots where the horizontal line represent the median, vertical middle bars represent the first and third quartiles, and black dots denote
outliers beyond 1.5 times the interquartile range (Tukey plot). f-h Skeletal muscle expression of Eif6 is positively correlated with running distance (f),

VO2pasal (8) and VO2,..« (h) in BXD mice strains. Statistics were performed using Spearmans rank correlation analysis. i, Eif6 mMRNA levels in siScr or
siEif6#2 transfected C2C12 myoblasts. Expression data was normalized to housekeeping Gapdh expression levels. Values are represented as mean = S.D.
(n=7) J, Real-time measurements of oxygen consumption rates (OCR) by Seahorse Extracellular Flux Analyzer in siScr or siEif6#2 transfected C2C12
cells. OCR was measured under basal conditions and after injection of oligomycin, FCCP, and antimycin A combined with rotenone at indicated time points.
Values are represented as mean £ S.D. (n = 8). k-1 OCR area under the curve (AUC) values (k) or mean OCR for the time points during FCCP-induced
maximal respiration (I) for siScr or siEif6#2 transfected C2C12 myoblasts. Values are represented as mean +S.D. (n = 8) m, Quantification of Western
blots of the mitochondrial oxidative complexes V, IlI, Il and | in siScr or siEif6#2 transfected C2C12 cells. Values are represented as mean = S.D. (n=12),

statistical tests were performed by a two-tailed t-test (n.s., p>0.05).

although it does not infer on causality. Circulating leptin levels,
for instance, are positively associated with fat mass>°, but loss-of-
function mutations of LEP are associated with obesity>”. In our
study, we observed a similar phenomenon where the CEP68 T2D
risk variants are associated with increased CEP68 expression, but
Cep68 expression is negatively associated with blood glucose
levels during GTTs in mice. While further investigations are
warranted to establish causal relationships and the mechanism by
which CEP68 may regulate whole body metabolism, we speculate
that dysregulated expression of CEP68 is involved in the patho-
genesis of T2D.

For some genes that we identified as potential targets of
metabolic GWAS SNPs, the SNP-enhancer locus was not located
in close proximity to the predicted target gene, but engaged in
long-range DNA looping formations. For example, we identified
interactions between the promoter of the translation initiation
factor EIF6 and several enhancers located within the UQCCI
gene, each spanning SNPs associated with WHR in humans. We
found both enhancers and EIF6 expression were downregulated
by TNFa and we detected significant eQTLs for EIF6 expression
with SNPs of all loci. In the BXD mice, Eif6 muscle expression
was associated with increased running distance, as well as with
basal and maximal VO, uptake after training. These findings are
consistent with a study linking EIF6 to the regulation of energy
metabolism during endurance training in humans and showing
reduced exercise performance in Eif6 haploinsufficient mice®S.
Moreover, hypermethylation of the EIF6 promoter is linked to
childhood obesity®®. In support of this, we demonstrate that Eif6
knockdown in murine muscle cells causes lower mitochondrial
respiration and reduced levels of the mitochondrial oxidative
complex II. The identified link between EIF6 and modulation of
WHR are consistent with data demonstrating that genetic var-
iants within mitochondrial genes are associated with metabolic
measures including WHR®. Notably, we did not detect a physical
link between the UQCCI intronic enhancers and the UQCCI-
promoter, nor did UQCCI change expression by TNFa. A recent
study has shown that human UQCCI coding variants are asso-
ciated with WHRO!. Interestingly, eQTL analysis indicates that
these variants associate not only with the expression levels of
UQCCI, but also EIF6°!, suggesting that several genes within this
locus could contribute to the modulation of WHR in humans.
Thus, our data demonstrate that EIF6 expression is regulated by
TNFa and suggest a role for muscle-specific expression of
Eif6/EIF6 in the regulation of mitochondrial function and exercise
performance in mice, as well as in WHR ratio in humans.

In conclusion, our study identified skeletal muscle enhancer
elements that are dysregulated in the context of lipid-toxicity or
under exposure of the proinflammatory cytokine TNFa. We
identify hundreds of dysregulated enhancers which overlap with
genetic loci previously implicated in metabolic disease and, using
chromatin conformation assay, we predict the corresponding
gene targets. We identify genes with known roles in metabolism,
as well as targets that have not previously been linked to human
metabolic disease, and demonstrate their association with meta-
bolic phenotypes in mice. Given the influence of lifestyle and
genetic factors in the development of obesity and T2D, and the
prominent contribution of skeletal muscle in energy metabolism
in humans, our investigations constitute a resource for identifying
genes participating in the progression of metabolic disorders.

Methods

Cell culture. Human skeletal muscle cells (CC-2561 from Lonza) were cultured in
DMEM/F-12, GlutaMAX™ (Life Technologies) supplemented with 20% FBS
(Sigma-Aldrich) and 1% penicillin/streptomycin (Life Technologies) during pro-
liferation. Differentiation was initiated when cells were 80% confluent by addition
of differentiation media (DMEM/F-12, GlutaMAX"™ supplemented with 2% FBS
(Sigma-Aldrich) and 1% penicillin/streptomycin). Cells were differentiated for
5-7 days. For palmitate and TNFa treatment, the differentiated myotubes were
added 0.5 uM palmitate for 48 h (on day 5-7 of differentiation) or 10 ng/ml TNFa
for 24 h (on day 6-7 of differentiation).

Murine C2C12 myoblasts (CRL-1772 from ATCC) were cultured in DMEM
(Life Technologies) supplemented with 10% FBS (Sigma-Aldrich) and 1%
penicillin/streptomycin (Life Technologies). Differentiation was initiated when
cells were 80% confluent by addition of differentiation media (DMEM/F-12,
GlutaMAX™ supplemented with 2% horse serum (Sigma-Aldrich) and 1%
penicillin/streptomycin). Cells were differentiated for 5 days.

Insulin stimulation experiments for human skeletal muscle cells and C2C12
cells were performed by serum depriving differentiated myotubes for 4 h before
stimulating with either 10 or 100 nmol/L insulin for 5 min.

Western blotting. For Western blotting, protein lysates were prepared using a
phospho-protein lysis buffer (20 mM Tris (pH 7.4), 150 mM NaCl, 5mM EDTA,
150 mM NaF, 2 mM Na;VO,, 10 mM sodium pyrophosphate, 0.5 mM phe-
nylmethylsulfonyl fluoride). Inmunoblotting was performed according to standard
protocols using total-AKT (CST-9272S, 1:1000 dilution), Phospho-Ser473 AKT
(CST-9271S, 1:1000 dilution), or OXPHOS cocktail (Abcam 110413, 1:5000 dilu-
tion) as primary antibodies and goat anti-rabbit (Bio-Rad 170-6515, 1:10,000
dilution) or goat anti-mouse IgG (Bio-Rad 170-6516, 1:10,000 dilution) horse-
radish peroxidase conjugate secondary antibodies. Total protein on the membrane
was quantified using Bio-Rad stain-free gels. Images were developed with Immun-
Star WesternC Chemiluminescence kit (Bio-Rad) using a Molecular Imager Che-
miDoc XRS + (Bio-Rad) and analyzed using ImageLab software (Bio-Rad).

Luciferase assays. Genomic DNA was purified from human skeletal muscle cells
using DNeasy Blood & Tissue Kit (Qiagen). The PDK4-10 kb (hg38,
chr7:95,608,432-95,609,655) and CXCL8-17kb (hg38, chr4:73,725,619-73,726,851)
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enhancers were PCR amplified (primers are listed in in Supplementary Data 12)
from skeletal muscle DNA and ligated into the pGL4.23[luc2/minP] vector (Pro-
mega) using KpnlI and Nhel restriction enzymes for the PDK4-10kb and Nhel and
Xhol for CXCL8-17kb. All constructs were verified by Sanger sequencing. pGL4.23
[luc2/minP] plasmids, either empty or containing enhancer fragments, were co-
transfected with 1:100 pRL-SV40 vector (Promega) into skeletal muscle cells in 96-
well plates using TransIT-X2 (Mirius) according to manufactures protocol (n =5
independent transfections). After 24 h, cell media was changed and cells to be
treated with palmitate or TNFa were added 0.5 mM palmitate or 10 ng/ml TNFa,
respectively. After 48 h, luminescence was determined using the Dual-Glo Luci-
ferase Assay System (Promega) and a Hidex Sense microplate reader. Firefly
luciferase counts were normalized to Renilla luciferase counts.

siRNA mediated knockdown of Eif6. C2C12 myoblasts were reverse transfected
by seeding cells together with transfection mix containing siScr (SIC001-10NMOL,
Sigma-Aldrich) or siRNAs against Eif6 using siEif6#1 (SASI_Mm01_00034707: 5'-
cucuggacuuuggcucauu-3/, Sigma-Aldrich) or siEif6#2 (SASI_MmO01_00034708: 5'-
gucagagcgucguucgaga-3’, Sigma-Aldrich). Transfections were performed using
TransIT-X2 (Mirius) according to manufactures protocol and cells were assayed
48 h after transfection (myoblasts) or 5 days after differentiation (myotubes).

Measurement of oxygen consumption rate (OCR). Real-time measurements of
OCR were performed using a Seahorse XFe96 Extracellular Flux Analyzer (Agilent
Technologies). C2C12 myoblasts were reverse transfected by seeding 5000 cells per
well in Seahorse XFe96 Cell Culture Microplates (Agilent Technologies) together
with transfection mix containing siScr or siRNAs against Eif6 (siEif6#1, n=26
biological replicates or siEif6#2, n = 8 biological replicates). Cells were assayed 48 h
after transfection using the Seahorse XF Cell Mito Stress Test kit (Agilent Tech-
nologies). OCR was measured under basal conditions and after injection of final
concentrations of 1 uM oligomycin, 2.3 uM FCCP, or 2.55 uM antimycin A com-
bined with 1 uM rotenone. The measured OCR values were normalized to protein
levels by lysing the cells and performing BCA protein assay (Pierce BCA Protein
Assay Kit from Thermo Scientific).

Glucose uptake. Differentiated myotubes in 12-well plates were serum-starved for
4h, washed with PBS then stimulated in the presence or absence of 10 nM insulin
in 500 pl of KRP buffer (pH 7.3) for 20 min. 25 pl of 0.2 mM 2-deoxy-glucose,

10 uCi/ml [1,2-3 H (N)] 2-deoxy-glucose (Perkin Elmer) was added for the last

5 min of insulin stimulation and then cells were washed 3 times with cold PBS on
ice and cells were lysed in 200 pl of phospho-protein lysis buffer. Radioactivity was
determined by liquid scintillation counting after the addition of Ultima Gold LSC.
Values were subtracted from background samples for each condition (cells treated
with 2 ul of 10 mM Cytochalasin B during the insulin stimulation). Values were
normalized to protein levels performing BCA protein assay (Pierce BCA Protein
Assay Kit from Thermo Scientific).

Glycogen synthesis. Differentiated myotubes in 12-well plates were serum-starved
for 4 h, followed by a 1h incubation in KRP buffer (pH 7.3) containing 5 mM
glucose, 2 uCi/ml Glucose, D-[U-14C] (Perkin Elmer), in the absence or presence
of 100 nM insulin. Cells were washed 3 times in cold PBS, harvested in 200 ul of
1M NaOH and heated to 70 °C for 15 min. Ten microliter was taken for the
determination of protein (BCA) and to the remainder, 25 pl saturated Na,SO,, and
900 pl ice-cold ethanol was added, vortexed and frozen for 30 min at —80 °C,
followed by a centrifugation step (10 min, 16,000xg, 4 °C). Pellets were resuspended
in 100 ul H20, followed by addition of 1 ml ice-cold ethanol and re-centrifugation.
The final pellet was resuspended in 100 ul H20 and radioactivity was determined
by liquid scintillation counting after the addition of Ultima Gold LSC. Values were
normalized to protein levels performing BCA protein assay (Pierce BCA Protein
Assay Kit from Thermo Scientific).

RNA purification. Total RNA was purified from human skeletal myotubes (con-
trol, palmitate or TNFa treated) using AllPrep DNA/RNA/miRNA Universal Kit
(Qiagen). For quantification, total RNA was reverse-transcribed using iScript™
cDNA Synthesis Kit (Bio-Rad), according to the manufacturer’s instructions and
analyzed by real-time PCR using Brilliant IIT Ultra-fast SYBR Green QPCR Master
Mix (AH Diagnostic) and a C1000 Thermal cycler (Bio-Rad). mRNA primer
sequences are listed in Supplementary Data 12.

RNA-sequencing. One microgram of total RNA was depleted of rRNA and sub-
sequently used to generate libraries using the TruSeq standard total RNA with
Ribo-Zero Gold kit (Illumina). The PCR cycle number for each library amplifi-
cation was optimized by running 10% of the library DNA in a real-time PCR
reaction using Brilliant III Ultra-fast SYBR Green QPCR Master Mix (AH Diag-
nostic) on a C1000 Thermal cycler (Bio-Rad) (Supplementary Data 11). Libraries
were sequencing on a NextSeq500 system (Illumina) using the NextSeq 500/550
High Output v2 kit (75 cycles). An overview of all RNA-seq experiments are given
in Supplementary Data 11.

For bioinformatic analysis of RNA-seq data, reads were aligned to the hg38
GENCODE Comprehensive gene annotations®? version 27 using STAR v2.5.32%3.
Read summation onto genes was performed by featureCounts v1.5.3%4. Differential
expression testing was performed with edgeR v3.14.09° using a model of the form
~0 + group + block, where group was a factor containing information on both
passage and treatment, and block encoded the two replicates. Differential
expression was found by testing e.g., (P5_Palmitate + P6_Palmitate)/2 -
(P5_Control + P6_Control)/2 using the quasi-likelihood tests in edgeR. GO
enrichments were found using the camera function®, which takes both inter-gene
correlations and the distribution of log fold changes in the data-set into
consideration and is part of the edgeR package. Only gene ontologies containing
between 10 and 500 genes were investigated. Initial visualization of samples was
performed by multi-dimensional scaling (MDS) plots, which are similar to PCA
plots but use average log fold changes of the 500 most divergent interactions.

ChlP-sequencing. Skeletal muscle myotubes were treated with palmitate or TNFa
(n = 4 biological replicates using cells from two different passages), and cross-linked
in 1% formaldehyde in PBS for 10 min at room temperature followed by quenching
with glycine (final concentration of 0.125 M) to stop the cross-linking reaction. Cells
were washed with PBS and harvested in 1 ml SDS Buffer (50 mM Tris-HCI (pH 8),
100 mM NaCl, 5mM EDTA (pH 8.0), 0.2% NaN3, 0.5% SDS, 0.5 mM phe-
nylmethylsulfonyl fluoride) and centrifuged for 6 min at 250 x g. The pelleted nuclei
were lysed in 1.5 ml ice-cold IP Buffer (67 mM Tris-HCI (pH 8), 100 mM NaCl,
5mM EDTA (pH 8.0), 0.2% NaN3, 0.33% SDS, 1,67% Triton X-100, 0.5 mM
phenylmethylsulfonylfluoride) and sonicated (Diagenode, Biorupter) to an average
length of 200-500 bp (between 15 and 20 cycles, high intensity). Before starting the
ChIP experiment, chromatin was cleared by centrifugation for 30 min at 20,000 x g.
For each ChIP, 2-10 pg DNA was combined with 2.5 ug antibody and incubated
with rotation at 4 °C for 16 h. The following antibodies were used for ChIP:
H3K27ac (Ab4729), H3K4mel (Ab8895), H3K4me3 (CST-9751S), H3 (Ab1791).
Immunoprecipitation was performed by incubation with Protein G Sepharose beads
(GE healthcare) for 4 h followed by three washes with low-salt buffer (20 mM Tris-
HCI (pH 8.0), 2mM EDTA (pH 8.0), 1% Triton X-100, 0.1% SDS, 150 mM NaCl)
and two washes with high-salt buffer (20 mM Tris-HCI (pH 8.0), 2mM EDTA (pH
8.0), 1% Triton X-100, 0.1% SDS, 500 mM NaCl). Chromatin was de-cross-linked in
120 pl 1%SDS and 0.1 M NaHCO; for 6 h at 65 °C, and DNA was subsequently
purified using Qiagen MinElute PCR purification kit. For library preparation and
sequencing, 3-10 ng of immunoprecipitated DNA was used to generate adapter-
ligated DNA libraries using the NEBNext® Ultra DNA library kit for Illumina (New
England Biolabs, E7370L) and indexed multiplex primers for Illumina sequencing
(New England Biolabs, E7335). The PCR cycle number for each library amplifica-
tion was optimized by running 10% of the library DNA in a real-time PCR reaction
using Brilliant III Ultra-fast SYBR Green QPCR Master Mix (AH Diagnostic) and a
C1000 Thermal cycler (Bio-Rad) (Supplementary Data 11). DNA libraries were
sequenced on a HiSeq2000 by 50-bp single-end sequencing at the National High-
Throughput Sequencing Centre (University of Copenhagen, Denmark). An over-
view of all ChIP-seq experiments are given in Supplementary Data 11.

ChIP-qPCR validations were performed by ChIP followed by real-time PCR
using Brilliant IIIT Ultra-fast SYBR Green QPCR Master Mix (AH Diagnostic) and a
C1000 Thermal cycler (Bio-Rad). All reactions were analyzed in quadruplicates.
ChIP-qPCR primer sequences are listed in Supplementary Data 12.

For bioinformatic analysis of ChIP-seq data, sequenced reads were aligned using
the sub-read aligner v1.5.07 against a full index of the main chromosomes of the
hg38 reference genome, as genomic DNA and keeping only uniquely mapped reads.
Duplicate reads were removed using Picard tools (http://broadinstitute.github.io/
picard). Peaks were called using MACS2 v2.1.0.20150731% with input control.
H3K4mel peaks were called as broad peaks, while H3K27ac peaks were called as
narrow peaks. The quality of individual samples was assessed by testing whether
fragment lengths could be estimated and whether more than 200,000 peaks could be
called with a P-value cutoff of 0.05. These individual peak lists were only used to
identify samples where the IP-step had failed and were not used in the downstream
analysis. All samples passed these two tests. The consensus peak list used in the
analysis was generated following the ENCODE 2012 IDR pipeline. For each histone
modification a consensus peak set was generated as follows. All samples were pooled
and the pooled reads were shuffled and split in two (pseudo replicates). Initial peak
lists were called as above on each of these three samples (pool and two pseudo
replicates), with a P-value cutoff of 0.05 and sorted by P-value. Finally, a consensus
peak list was generated using the irreproducible discovery rate (IDR) software
v2.0.2%% with the pseudo replicate peak lists as input and the pooled peak list as
oracle peak list. The IDR is analogous to an FDR, and has been shown to be a better
measure of reproducibility in peak-calling experiments’’. A lenient IDR threshold
of 0.05 was used. For each sample, reads were summarized into consensus peaks
using featureCounts v1.20.6%%. Differentially bound peaks were detected in edgeR
v3.22.0 as described®?, using reads along the entire peak and the same model and
testing procedure as in the RNA-seq analysis. Peaks were considered overlapping if
they overlapped by any amount.

Enhancer mapping. H3K4me3 peaks from human skeletal muscle myotubes
derived from skeletal muscle myoblasts were downloaded from Roadmap Epige-
nomics’! (sample E121), lifted to hg38 using the UCSC liftOver tool’? and filtered
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to keep peaks with a FDR < 0.05. Active promoters were defined as RefSeq gene’3
promoters with a H3K4me3 peak within 3000 bp upstream or 1000 bp downstream
of its TSS. Enhancers were defined as regions that contained a consensus peak of
both H3K27ac and H3K4mel, as defined in the ChIP-seq, and was more than 3000
bp upstream or 1000 bp downstream of the TSS of an active promoter.

Promoter capture Hi-C. Two 15 cm plates of in vitro differentiated myotubes

(n = 3 biological replicates using three different passages of cells) were treated with
either palmitate or TNFa or left untreated as control. Promoter Capture Hi-C was
performed using similar protocols as described in?%24. Cells were cross-linked in
2% formaldehyde for 10 min followed by quenching with glycine (final con-
centration of 0.125 M). After washing with PBS, the cells were centrifuged for

10 min at 400 x g and frozen at —80 °C until further analysis. Cells were lysed in
50 ml ice-cold lysis buffer (10 mM Tris-HCI pH 8, 10 mM NaCl, 0.2% Igepal CA-
630 and protease inhibitor cocktail (Roche complete, EDTA-free)). After 30 min
incubation on ice, nuclei were pelleted by centrifugation at 650 x g for 5min. The
pellet was resuspended in 1.25x NEBuffer 2 and added SDS (final concentration of
0.3%) followed by rotation at 37 °C for 1h. Triton X-100 was added (final con-
centration of 1.7%) and the samples were incubated shaking at 37 °C for 1 h. After
digesting with HindIII (NEB R0104T, 1500 units per 5 million cells starting
material) at 37 °C overnight, restriction fragment overhangs were filled by Klenow
(NEB) using biotin-14-dATP (Life Technologies), dCTP, dGTP and dTTP (all at a
final concentration of 30 pM) and incubating for 60 min at 37 °C. Enzymes were
deactivated by adding SDS (final concentration of 1.47%) and incubated shaking
for 30 min at 65 °C. Ligation was performed using 50 units T4 DNA ligase (Invi-
trogen) per 5 million cells starting material in a total volume of 8.2 ml 1X ligation
buffer (NEB B0202S) containing 100 pg/ml BSA (NEB) and 0.9% Triton X-100,
and by incubating for four hours at 16 °C followed by 30 min at room temperature.
Cross-links were reversed by incubation with Proteinase K at 65 °C overnight. After
16 h, additional Proteinase K was added and the samples were further incubated for
2h at 65 °C. RNase A treatment was performed for 60 min at 37 °C, and DNA was
purified by two sequential phenol-chloroform extractions. DNA concentration was
measured using a Qubit Fluorometer and Qubit dsDNA HS Assay Kit (Life
technologies). In order to remove biotin from non-ligated DNA ends, 40 ug DNA
was incubated with T4 DNA polymerase in a buffer containing 1x NEBuffer 2,
0.1 mg/ml BSA, and 0.1 mM dATP for 4 h at 20 °C followed by phenol-chloroform
extraction. DNA was sheared by sonication (Diagenode, Biorupter) to an average
length of 400 bp (20 cycles, low intensity), followed by DNA end-repair by incu-
bation with T4 DNA polymerase (NEB M0203L), T4 DNA Polynucleotide kinase
(NEB M0201L), Klenow (NEB M0210L), and dNTP mix (0.25 mM) in 1X ligation
buffer (NEB B0202S). After 30 min incubation at room temperature, DNA was
purified using Qiagen MinElute PCR purification kit. For addition of dATP to the
Hi-C libraries, DNA was incubated with Klenow exo- and 0.23 mM dATP in 1X
NEBuffer 2 for 30 min at 37 °C. Enzymes were inactivated by incubation at 65 °C
for 20 min. DNA fragments were size-selected by a double-sided SPRI bead pur-
ification (SPRI beads solution volume to sample volume to 0.6:1 followed by 0.9:1).
Biotin-marked ligation products were isolated using MyOne Streptavidin C1
Dynabeads (LifeTechnologies). After washing the beads in tween buffer (5 mM
Tris, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween), binding of DNA was performed in
binding buffer (5 mM Tris, 0.5 mM EDTA, 1 M NaCl) for 30 min at room tem-
perature, followed by two washes in binding buffer, and one wash in ligation buffer
(NEB B0202S). The beads were resuspended in ligation buffer and adapters (from
SureSelect XT library prep kit ILM, Agilent Technologies) were ligated to the bead-
bound DNA by the addition of T4 DNA ligase (NEB) and incubation for 2h at
room temperature. The beads were subsequently washed twice in tween buffer,
once in binding buffer and twice in 1X NEBuffer 2 before resuspending the beads
in 40 ul 1X NEBuffer 2. The bead-bound library DNA was amplified with 12-14
PCR amplification cycles according to the SureSelect XT library prep kit ILM
(Agilent Technologies) protocol before promoter capture. Promoter capture was
performed by using 37,608 biotin-labeled RNA baits (each 120 nucleotides) cov-
ering 21,841 human promoters (approximately two baits per promoter, targeting
each end of a HindIII fragment?2). The RNA baits were synthesized by Agilent
Technologies and hybridization was performed using the Sure Select Target
Enrichment kit ILM (Agilent Technologies) and SureSelect XT library prep kit ILM
(Agilent Technologies) according to manufacturer’s instructions. DNA libraries
were paired-end sequenced on a NextSeq500 system (Illumina) using the NextSeq
500/550 High-Output v2.5 Kit (150 cycles).

For bioinformatic analysis of Promoter Capture Hi-C data, di-tags reads were
filtered and mapped against the main chromosomes of the hg38 reference genome
by the HiCUP pipeline v0.6.174 using bowtie2 v2.2.67> without limits on maximum
and minimum di-tag length. The HiCUP pipeline also removes PCR duplicate
reads and filters out re-ligations and other experimental artefacts. Downstream
analysis was performed with diffHic as follows: di-tags were filtered keeping only
DNA fragments shorter than 600 bp, and with a minimum inwards and outwards
facing gap distance of 1000 and 25,000, respectively, as recommended in the
manual. All conditions and passages of cells were then pooled to obtain a general
chromatin conformation capture of myotubes; all enhancers were widened to 10 kb
and interactions between a promoter and a histone mark were extracted and
filtered to remove weak interactions so that only interactions with an average mean
of 5 counts per million, calculated by the aveLogCPM function, and with a signal at

least two-fold above the expected were kept (as calculated by the filterTrended
function—see the diffHic manual for code examples). The connectCounts function
was used to count reads supporting interactions for each library, interactions with
enough reads to test for differential binding were selected using the filterByExpr
function of edgeR and differential binding was performed using the edgeR quasi-
likelihood function as in the RNA-seq and ChIP-seq experiments but without the
replicate blocking factor, resulting in a model of the form ~0+ group. These criteria
and cut-offs were as described in the diffHic package manual. The set of
interactions interrogated for differential interactions is the one used in downstream
analysis and reported in the Supplementary tables. To visualize Promoter Capture
Hi-C data as heatmaps, rotated plaid plots were generated by the rotPlaid function
supplied by the diffHic package on the merged dataset. Each chromosome was split
in 1000 bins, and colored by the amount of reads in the interaction. Any
interaction with more than 20 reads was colored a solid red.

Overlapping enhancer regions with GWAS SNPs. GWAS studies for T2D®,
BMI8, and WHR have identified 402, 941 and 463 distinct association signals,
respectively. For IR we collected distinctive GWAS signals covering from studies of
fasting insulin (FI) with and without adjustment for BMI343637, HOMA-IR?3, the
modified Stumvoll Insulin Sensitivity Index (ISI)%$, and 53 genomic variants asso-
ciated with both higher FI levels adjusted for BMI, lower HDL cholesterol levels and
higher triglyceride levels®, leading to a total of 82 distinct association signals with
IR. Each of these four sets was expanded with SNPs in high LD (R2 > 0.8) with the
original distinct association signals. Specifically, plink19 (http://www.cog-genomics.
org/plink/1.9/)77 was used to extract high LD SNPs within a 1 MB range of each
SNP based on a subset (6148 Danish individuals) of the HRC imputed dataset used
in the T2D GWASC. The variant positions were converted into genome build38
before overlapping them with palmitate and TNFa responsive enhancer regions.

Regional plots were generated using standalone LocusZoom v1.478, as well as
summary statistics available for T2D and WHR”.

eQTL analysis. The ADIGEN study participants’®30 were selected from the Danish
draft boards records. The study was approved by the Ethics Committee from the
Capital Region of Denmark and informed consent was obtained from all participants
in accordance with the Declaration of Helsinki I Juvenile obesity was defined as
weight 45% above the Metropolitan desirable weight (BMI > 31 kg/m?) at the draft
board visit. 1930 obese individuals and 3601 randomly selected individuals for the
population-representative control group were invited to participate in the study. In
total 557 individuals volunteered to participate. From a subset of these Danish white
men, 71 juvenile obese and 74 age-matched control individuals, skeletal muscle
biopsies were taken under lidocaine local anesthesia from their right thigh using a thin
Bergstrom needle and snap frozen in liquid nitrogen. The participants were healthy by
self-report and under 65 years of age at the time of ADIGEN examination.

Gene expression analysis was performed by extracting total RNA using
miRNeasy kit (Qiagen). The yield was optically measured and a randomly selected
subset of the RNA samples were examined using an Experion electrophoresis
station (BioRad) for integrity (RIN value), which was good in all cases. Gene
expression of ~47,000 transcripts was measured by the HumanExpression HT-12
Chip (Illumina, USA). cRNA was synthesized from total RNA using the Nano
Labeling Kit from Illumina (Epicentre), and the cRNA concentration was measured
by Qubit fluorescent dye (Invitrogen, Germany) before loading the arrays.
Hybridization was performed as recommended by Illumina and the Illumina
HiScan was used to obtain the raw probe intensity level data. For failed expression
arrays cCRNA was resynthesized and rerun. The raw probe intensity values were
exported from GenomeStudio without background correction and imported into R
where the lumi package®! was used for pre-processing. The array pre-processing
included; quantile normalization, log2 transformation and probe filtering to
remove probes with a detected P-value above 0.01.

The participants were genotyped using the Illumina CoreExome Chip v1.0
containing 538,448 genetic variants of which more than 240,000 are common.
Genotypes were called using the Genotyping module (version 1.9.4) of
GenomeStudio software (version 2011.1, Illumina) and Illumina
HumanCoreExome-12v1-0_B.egt cluster file. The genotype data were subjected to
standard quality control and then phased with EAGLE2%2 and imputed with the
1000 Genomes Project Phase III panel using Minimac383. We selected 29 or 420
SNPs located within 11 or 124 enhancer regions, which changed activity by
palmitate or TNFa treatment, respectively (see text for further description on how
SNPs were selected). Only SNPs that were missing in less than 10% of the
individuals, with an imputation quality (R2) higher than 0.4 and no significant
deviation from Hardy-Weinberg equilibrium were extracted.

Matrix eQTL34 was used to assess the association between 461 (TNFa) and 39
(palmitate) gene-SNP pairs (selected based on our Promoter Capture Hi-C data) in
a total of 140 individuals with both expression and SNP data available (R version
3.5.0). To account for complex non-genetic factors, we used probabilistic
estimation of expression residuals (PEER)®°. Specifically, eQTL analysis was
performed on inverse normal-transformed expression residuals adjusted for age,
BMI-group (obese or control) and 15 PEER factors which is the number of factors
recommended by the GTEX consortium®® for studies with less than 150
individuals. The models were also run without the adjustment for BML. Significant
e-genes were identified after hierarchical multiple testing correction of the p-values
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from TNFa and palmitate eQTL tests using the Bonferroni-BH procedure
recommended by Huang et al.87.

Correlation analysis in BXD mice strains. We selected and extracted the mean
values of 48 metabolic phenotypes (Supplementary Data 7) that were measured
across 42 and 37 BXD cohorts fed on CD and HFD, respectively>*-41:88, Moreover,
we extracted gene expression values of Cep68, Gab2, Lambl, Macfl, Eif6, Pabpc4,
Btbdl, Filipll, Tcea3, Nrpl, Zhx3, Tbx15, and Tnfaip8 from skeletal muscle tissue
(quadriceps) (GSE60151)89-91, adipose tissue (GN779; accessible on http://www.
genenetwork.org/) and liver tissue (GSE60149)40:4191 from the different BXD mice
strains. Spearmans rank correlation analysis was performed to determine sig-
nificant associations between phenotypes and gene expression. The p-values from
the 48 correlations from each diet and tissue were adjusted using false discovery
rate correction (FDR)%2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

For analysis of RNA-seq data, reads were aligned to the hg38 GENCODE Comprehensive
gene annotations [https://www.gencodegenes.org/]. H3K4me3 ChIP-seq peaks from
human skeletal muscle myotubes were downloaded from Roadmap Epigenomics (sample
E121) [https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/
narrowPeak/E121-H3K4me3.narrowPeak.gz]. Gene expression values from BXD cohorts
were downloaded from the GEO data base entry GSE60151 and GSE60149, or from
http://www.genenetwork.org/ [http://gnl.genenetwork.org/webqtl/main.py?
FormID=sharinginfo&GN_Accessionld=779]. All novel sequencing data have been
deposited in the NCBI Gene Expression Omnibus (GEO) and are accessible through
GEO SuperSeries accession number GSE126102. RNA-seq data from GSE126101 have
been used to generate Fig. la-i, Fig. 2j, k, Fig. 3e-h, Fig. 6¢, and Supplementary Fig. 2.
ChIP-seq data from GSE126099 have been used to generate Fig. 2a-i, Fig. 3e-h, Fig. 6b,
Supplementary Fig. 3, and Supplementary Fig. 4. Promoter Capture Hi-C data from
GSE126100 have been used to generate Fig. 3a-h, Fig. 6a, Supplementary Fig. 6, and
Supplementary Fig. 7. The source data underlying Figs. 1H, I, 2G-], 6B-E, 6I-M and
Supplementary Fig. 1B-E, 4A-B, 4D, 5, 8A-D, and 9A-F are provided as a Source
Data file.

Code availability

All custom computer codes used for sequencing data analysis and figure generation are
available at https://github.com/lars-work-sund/Skeletal-muscle-enhancer-interactions-
identify-genes-controlling-human-metabolism [https://github.com/lars-work-sund/
Skeletal-muscle-enhancer-interactions-identify-genes-controlling-human-metabolism].
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