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Body size trends in response to 
climate and urbanization in the 
widespread North American deer 
mouse, Peromyscus maniculatus
Robert Guralnick1,3 ✉, Maggie M. Hantak1,3, Daijiang Li1 & Bryan S. McLean1,2

Body size decline is hypothesized to be a key response to climate warming, including warming driven by 
urban heat islands. However, urbanization may also generate selective gradients for body size increases 
in smaller endotherms via habitat fragmentation. Here we utilize a densely sampled, multi-source 
dataset to examine how climate and urbanization affect body size of Peromyscus maniculatus (PEMA), 
an abundant rodent found across North America. We predicted PEMA would conform to Bergmann’s 
Rule, e.g. larger individuals in colder climates, spatially and temporally. Hypotheses regarding body 
size in relation to urbanization are less clear; however, with increased food resources due to greater 
anthropogenic activity, we expected an increase in PEMA size. Spatial mixed-models showed that 
PEMA conform to Bergmann’s Rule and that PEMA were shorter in more urbanized areas. With the 
inclusion of decade in mixed-models, we found PEMA mass, but not length, is decreasing over time 
irrespective of climate or population density. We also unexpectedly found that, over time, smaller-
bodied populations of PEMA are getting larger, while larger-bodied populations are getting smaller. Our 
work highlights the importance of using dense spatiotemporal datasets, and modeling frameworks that 
account for bias, to better disentangle broad-scale climatic and urbanization effects on body size.

Body size change has been hypothesized to be a third universal response to climate warming1. The rationale for 
this hypothesis is based on a space-for-time substitution of the well-studied but still-controversial relationship 
between body size and latitude or temperature in endotherms, e.g. Bergmann’s Rule or cline. While focusing on 
wing-length relationships across species of birds within a given genus, Bergmann2 suggested that heat-loss scales 
with body size, and this trend should apply over space or time. For hundreds of years, ecogeographers have been 
assembling further exemplar studies to test “Bergmann’s Rule”, but recent work has cast substantial doubt on the 
generality of intraspecific Bergmann’s relationships for endotherms3. Further, there has been limited empirical 
support for manifestation of Bergmann’s Rule over time rather than space, especially in mammals4, making the 
generality of body size change in response to modern climate warming difficult to assess.

Much less well studied is how human disturbance and land use change, specifically in the form of urbani-
zation, might be impacting organismal body size as a result of urban temperature changes and the alteration of 
habitats and food resources. The human-mediated environment can serve as a strong selective pressure given 
that built environments and associated infrastructure can fragment natural habitats leading to selective release5, 
introduce or intensify heat-island effects6, but also facilitate access to novel food sources7. Using predictions from 
island biogeographic theory, Schmidt and Jensen8 argued that adaptation to an increasingly fragmented landscape 
should result in increases in body size for smaller species and decreases for larger ones (i.e., the “Island Rule”) 
and suggested that body size responses of mammal faunas to urbanization in Denmark may conform to this rule. 
However, a more thorough examination by Yom Tov and Yom Tov9 did not confirm these results for a subset of 
species. Because the ecophenotypic outcomes of Bergmann’s Rule and the Island Rule are potentially contrasting 
for small vertebrates in fragmented landscapes, examining the effects of climate and urbanization proxies across 
the range of a taxon, while controlling for potential biases, is critical. However, we know of no empirical studies 
that developed such a framework for use on broad-scale mammalian body size dynamics over time and space.
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Addressing questions of the generality of recent body size change, and of the dual importance of urbanization 
and climate in driving that response, requires dense spatiotemporal sampling to provide replicate observations 
over multiple areas that have experienced differing amounts of climate change and human impact. The challenge 
is particularly vexing because long-term and systematic monitoring are often incomplete in places where humans 
are most impacting the environment, and incidental data (e.g., museum specimens) and other geographically 
targeted census/survey efforts often have inherent spatiotemporal bias that limit broadest use10. Nevertheless, 
assembly of these disparate data streams is an essential remit for effective monitoring of many different types of 
species traits in global change contexts11. Developing bioinformatic workflows for well-sampled species will help 
establish best-case scenario approaches to this problem and enable less biased monitoring efforts into the future.

Peromyscus maniculatus (abbreviated PEMA here), the North American deer mouse, is an ideal species to test 
these questions since it is widely distributed across North America (Figs. 1 and S1), and without question, is the 
best sampled rodent in North American museum collections and historical and current census efforts. PEMA 
have been collected agnostically as part of natural history trapping for hundreds of years12,13, resulting in thou-
sands of standard, external morphological measurements on specimen tags and in field notes, many of which have 
been mobilized to aggregators such as VertNet with collections digitization efforts14. In addition, complimentary 
data sources can also be brought to bear regarding PEMA body size, including historic, continent-wide censuses 
(e.g.15–23), and small mammal trapping data currently being collected by the National Ecological Observatory 
Network (NEON). Excellent representation across biodiversity data streams makes PEMA an ideal case study for 
examining spatiotemporal body size trends in the context of global change drivers, while also parsing the biases 
associated with opportunistic sampling and a diversity of data sources.

Previous studies have found limited support for Bergmann’s Rule intraspecifically in PEMA, as well as inter-
specifically among other Peromyscus. Indeed, the largest Peromyscus lineages tend to occur in warmer climates of 
the subtropics24–26. Moreover, ecomorphological variation within and among species - including that potentially 
associated with thermal biology - tends to be allocated to external (pelage length, tail, ear, hind foot) or skeletal 
features rather than body size per se25,27. In a previous analysis, Smith and McGinnis28 found no relationship 
between body size and either latitude or altitude in PEMA and likewise, Wassermann and Nash29 found no body 
size variation along altitudinal transects in Colorado. Hayward30 argued that stable microclimates used by PEMA 
across its range reduce selective pressure on body size as an axis of thermal adaptation. Conversely, a Bergmann’s 
cline was supported when directly using temperature as a covariate in the closely-related white-footed mouse, 
Peromyscus leucopus31.

Our understanding of ecogeographic trends in PEMA has been clouded by use of indirect proxies of temper-
ature (i.e., latitude, altitude), incommensurate body mass metrics (body mass, total length, or head-body length), 
and studies that often mixed interspecific and intraspecific datasets. This prevents us from identifying whether 
PEMA body size is a potential axis of phenotypic response to global change. Therefore, in this study, we utilize 
an approach to spatially and ecologically stratify PEMA records to examine trends in body size in relation to 
key climate variables and over time. We also focus not only on climatic variables, but on the landscape factor of 
human population density, which can serve as a broad proxy of urbanization as well as vegetation disturbance32. 
Furthermore, we consider two different body size proxies that may yield different signatures of thermal adapta-
tion: body length and body mass. While many evolutionary studies have advocated using mass (e.g.33), as it is 
a better reflection of overall body size, it can also vary substantially in relation to age, reproductive status (i.e., 

Figure 1.  Exemplar zonation using all body mass records from 1930 onwards with records colored by decade 
(1900–1930 were excluded due to sparse records). Each 200 × 200 km grid cell is a zone. We also color key 
ecoregions used, shown in the background map of the United States of America. Supplementary Fig. 1 shows 
the ecoregional designations. This map was created with R version 3.6.2 (https://www.r-project.org/).
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pregnancy for females, testis development for males), and sex (e.g., sexual dimorphism). Furthermore, PEMA 
has a generalist diet across much of its range, and seasonal shifts in availability of food resources can be expected 
to influence body mass of individuals locally34–36. Therefore, an additional key question we address is the rela-
tionship between head-body length and body mass in PEMA, and how choice of body size proxy can impact our 
understanding of how species respond to environmental changes.

This work is focused on two main and interrelated questions. The first, purely spatial question is whether 
climate and human population density, as a proxy for urbanization, impact body size. Our predictions are that 
PEMA generally follows Bergmann’s Rule when utilizing direct comparisons to temperature, but that fragmenta-
tion and availability of anthropogenic food resources for a small, generalist omnivore, such as PEMA, promotes 
increased body mass and head-body length in urbanized environments. However, it is also possible that heat 
island effects resulting from urbanization work in opposition to these other factors to reduce body size, leading to 
no significant changes. The second question focuses on temporal trends and whether PEMA body size has shifted 
in areas that have experienced increased warming and urbanization. In both of these analyses, we examine body 
mass and head-body length separately to quantify whether different body size proxies give differing results. Our 
methodological approach, and attention to bias while using integrated data resources provide not only surprising 
results about drivers of PEMA body size, but also reproducible methods. We also highlight potential new chal-
lenges and opportunities for integrating diverse data streams in monitoring of species traits.

Results
Compilation across data sources generated a significant dataset of PEMA trait data, and Fig. 2 provides a view 
of the data densities over time showing how inclusion of NACSM and NEON augments the data available from 
aggregated natural history collections. We examine key spatial and temporal trends and drivers of body size 
change based on this unique dataset below (see Table S1 for model descriptions).

Head-body length and body mass allometry.  We found a moderately strong fit in models that examine 
if log(HB Length) predicts log(body mass) (adj. R2 = 0.45; Fig. S2). Given this result, which shows lack of strong 
collinearity, subsequent analyses were performed separately for HB Length and for body mass.

Models of spatial variation.  The top models of body size variation across space were consistent across each 
set of analyses, including with and without juvenile PEMA (Tables 1, S2, S3; Figs. 2, S3–S5; and see Supplementary 
Results). First and foremost, we examined the “source” covariate to determine if there were systematic biases 
across the different data sources used here. We found limited biases for body mass estimates across datasets. 
However, we found that NEON HB Length is consistently smaller compared to museum collections datasets and 
NACSM, an artifact of that particular measurement being taken from live individuals which are difficult to handle 
and measured in the field. Thus, we decided to exclude NEON as a source for our main results, but do include 
results with NEON as a source in supplementals (see Table S3; Figs. S4 and S5).

When examining body mass as a body size metric, we found spatial variation correlated with mean annual 
temperature (MAT), mean annual precipitation (MAP), season, and sex (Tables 1A, S2a, S3a,c). PEMA body mass 
is negatively correlated with increasing MAT (β = −0.45, SE = 0.04, p < 0.001; Fig. 3A) and MAP (β = −0.53, 
SE = 0.04, p < 0.001; Fig. 3B), females are larger than males (β = −0.65, SE = 0.06, p < 0.001; Fig. 3C), and PEMA 
body mass is lower in the fall compared to other seasons (fall-spring β = 1.80, SE = 0.10, p < 0.001; fall-summer 
β = 0.77, SE = 0.09, p < 0.001; fall-winter β = 0.87, SE = 0.13, p < 0.001; Fig. 3D). Body mass was variable across 
source type (variance = 0.04, SD = 0.20; Figs. 4 and S6) and ecoregion (variance = 1.51, SD = 1.23; Fig. S7). When 
using HB Length as a body size metric, patterns of spatial variation are likewise driven by a combination of MAT, 
MAP, season, and sex, but also population density (Table 1B, S2b, S3b,d). Like body mass, HB Length is nega-
tively associated with MAT (β = −0.70, SE = 0.07, p < 0.001; Fig. 3E) and MAP (β = −0.83, SE = 0.07, p < 0.001; 
Fig. 3F). Females display longer HB Length than males (β = −1.12, SE = 0.10, p < 0.001; Fig. 3G). PEMA HB 
Length is shorter in the fall compared to other seasons (fall-spring β = 2.33, SE = 0.17, p < 0.001; fall-summer 
β = 1.80, SE = 0.16, p < 0.001; fall-winter β = 1.46, SE = 0.19, p < 0.001; Fig. 3H). Human population density 
was not an important factor influencing variation of PEMA body mass across the range, but PEMA HB Length 
decreased with increasing population density (β = −0.31, SE = 0.06, p < 0.001; Fig. 3I). HB Length also varied 
by source type (variance = 0.77, SD = 0.88; Figs. 4 and S6) and across ecoregions (variance = 1.93, SD = 1.39; 
Fig. S7).

Models including decadal covariates.  Models of PEMA body mass showed the same trends with 
and without juveniles (Tables 1C, S2c). Model results with juveniles are included in the supplementary mate-
rial (Table S2c,d, Supplementary Results). As in models that did not include decadal fixed and random effects, 
we found that PEMA body mass decreases with MAT (β = −0.46, SE = 0.07, p < 0.001) and MAP (β = −0.80, 
SE = 0.06, p < 0.001) and females display a larger body mass relative to males (β = −0.58, SE = 0.07, p < 0.001). 
Further, PEMA consistently have a smaller body mass in the fall season (fall-spring β = 2.09, SE = 0.14, p < 0.001; 
fall-summer β = 0.82, SE = 0.13, p < 0.001; fall-winter β = 1.31, SE = 0.17, p < 0.001). A key result is that even 
after accounting for these spatial, climate, and seasonal covariates, we found that PEMA body mass has, overall, 
decreased over time (β = −0.23, SE = 0.08, p = 0.008 for decade covariate). HB Length trends of PEMA were 
influenced by a combination of MAT, MAT, sex, and season, excluding juveniles (Table 1D), while decade was also 
included in the most supported model when including juveniles (Table S2d). In models including decadal covar-
iates, PEMA HB Length decreases with increasing MAT (β = −0.76, SE = 0.10, p < 0.001) and MAP (β = −1.24, 
SE = 0.10, p < 0.001). PEMA are shorter in the fall compared to other seasons (fall-spring β = 1.72, SE = 0.20, 
p < 0.001; fall-summer β = 1.35, SE = 0.19, p < 0.001; fall-winter β = 1.66, SE = 0.22, p < 0.001), and females are 
longer (β = −1.17, SE = 0.11, p < 0.001) than males.
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A key finding relates to the random effects. We found there was a strong negative correlation (r2 = −0.93) 
between the random slope (decade) and intercept (spatial zone) for PEMA body mass, indicating that over time, 
heavier PEMA populations have experienced reductions in mass, while thinner PEMA populations have gained 
mass (Figs. 5A, and S8a, S9a). Likewise, there was a strong negative correlation (r2 = −0.95) between the random 
slope (decade) and intercept (zone) for PEMA HB Length, indicating that, across all spatial zones, longer PEMA 
populations (e.g., those with largest HB Length) are getting shorter over time and shorter PEMA populations are 
getting longer through time (Figs. 5B and S8b, S9a). To provide another perspective on these trends, we plotted 
the random slopes for both measures of body size (Fig. S9 for body mass and HB Length). Finally, in order to 
more fully explore these data, we ran an exploratory analysis of trends in body mass change over time for each 
zone independently rather than in a single modeling framework, and as expected found overall trends towards 
decreasing size, excepting those zones with initially the smallest individuals, which instead increased in size.

Discussion
Much has been made about the potential for global change to impact key functional traits of organisms, in par-
ticular body size change in the face of changing climates1. Much less well understood is how urbanization - a 
proxy for various global change drivers such as habitat loss and spread of invasive species - may also impact 

Figure 2.  Number of (A) body mass or (B) HB Length records for PEMA by five year bins from 3 different 
sources. The vast majority of records come from digitized natural history collections but were supplemented by 
records from national survey efforts in the late 1940–1950s and in the present.
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species traits, partly because these changes likely impose a variety of direct and indirect selection pressures. 
While there have been local-scale studies identifying the phenomenon of temporal change in body size, such 
as work on the white-footed mouse, Peromyscus leucopus, in Chicago37, the challenge has been understanding 
impacts at broader spatial and temporal extents and identifying drivers of phenotypic shifts. Here we utilized 
new data resources to examine the relative importance of climate and urbanization as key drivers of body size in 
the most common rodent in North America, Peromyscus maniculatus. We do so by first only considering spatial 
patterns, utilizing ecogeographic theory to inform our predictions and providing a data-rich test of Bergmann’s 
rule within this species. We then examine temporal changes in PEMA body size over the last 70 years in order 
to determine if consistent patterns and drivers emerge across both space and time. We expected a consistent, 
Bergmann’s-like relationship between temperature and both metrics of body size both spatially and temporally. 
Expectations of body size change due to urbanization were less clear, with potential decreases in size due to 
urban heat island effects, but possible compensation due to fragmentation and increased resource availability. 
Our results surprisingly show that temperature-body size relationships are complex over space and time, and HB 
Length and body mass are affected by different drivers. We also show an unexpected pattern whereby populations 
of smaller-bodied PEMA have tended to get bigger and vice versa, but without conclusive evidence for body size 
homogenization over time.

Spatial drivers of body size for PEMA.  Across the range of PEMA, individuals in colder regions were 
larger in both body mass and HB Length, a finding that is consistent with Bergmann’s Rule2. The generality of 
Bergmann’s Rule has been called into question3,38,39 and conflicting results have also been found as to whether the 
rule applies better to small versus large mammals40,41. Our finding that PEMA conforms to the spatial version of 
Bergmann’s Rule contrasts with a historic study by Smith and McGinnis28, which found no association between 
body size and either latitude or altitude in PEMA across its range. However, that paper used population averages 
drawn from the literature and did not consider temperature as a potential driver. Wassermann and Nash29 also 
found no relationship between body mass and altitude; however, this study took place in 5 populations, all within 
the state of Colorado, with a total of 93 individual PEMA included. Our study was conducted across a significant 
portion of the range of PEMA (e.g. the conterminous United States), comprising tens of thousands of individual 
occurrence records. To our surprise, while a Bergmann’s pattern was evident in our data, PEMA body size showed 
a strong negative relationship with mean annual precipitation. This is counter to theoretical and empirical work 
showing that precipitation predicts intraspecific body size, given that increased precipitation can boost food avail-
ability42. We also found a pattern of smaller body size in sampled PEMA in the fall. Seasonal changes in body 
size, including body length, have been found within populations of other rodent species (e.g.43), but it is likely 
that our results indicate age structuring (likely driven by late-season recruitment of juveniles at higher latitudes). 
More work is needed to understand how adapted niche characteristics of species condition climate-body size 
relationships.

Our results show that PEMA are shorter but not lighter in more urbanized areas, highlighting the critical 
need for a standard body size metric in global change studies. This result does not support the Island Rule (the 
hypothesis that body size increases in urban areas) for smaller mammals, or due to the potential for more availa-
ble resources for an omnivore. This result is also not consistent with findings by Pergams and Lacy37, who found 
a trend towards longer PEMA over time in the closely related white-footed mouse, Peromyscus leucopus, in urban 
environments in Chicago. Our findings are also inconsistent with the broader assessment of rodent morpholog-
ical change in response to population density by Pergams and Lawler44, who found a slight trend towards larger 
body size in rodents. It may be that, even at the continental scale at which PEMA occurs, urban heat effects that 
might drive smaller body size are stronger than the effects of higher available resources and fragmentation in 
dense urban centers (but see below). As well, changing water and precipitation regimes in urbanized areas com-
pared to surroundings45 may also drive body size decreases, given our above climatic results. Finally, it is also pos-
sible that selection for smaller HB Length (but not body mass) may be separate from any climate driver. PEMA 
are considered pests given their propensity to nest in human habitations46, and shorter body lengths may simply 

Top Model N k AICc AICcWt ∆AICc Marginal R2 Conditional R2

(A) Spatial: Body Mass

MAT (−) + MAP (−) +
Season + Sex 19218 10 108019.6 0.844 3.38 0.047 0.125

(B) Spatial: HB Length

MAT (−) + MAP (−) +
Season + Sex + Population Density (−) 27192 11 188940.4 1 18.99 0.036 0.074

(C) Temporal: Body Mass

MAT (−) + MAP (−) +
Season + Sex + Decade (−) 12361 12 68968.6 0.712 2.10 0.064 0.204

(D) Temporal: HB Length

MAT (−) + MAP (−) +
Season + Sex 26823 11 143907.5 0.711 2.42 0.04 0.143

Table 1.  Highest-ranking spatial (A-B) and temporal (C-D) model predictors for body mass and HB Length 
relationships. Results are based on datasets without juveniles or NEON as a source. Direction (all negative) of 
continuous predictor estimates are provided. All predictors in each model were highly significant. The ∆AICc 
describes the difference in AICc scores between the first and second ranked models.
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be a response towards crypsis in novel and climatically more stable microhabitats. Critical to sorting among these 
hypotheses will be more replications across species with different niche characteristics, as well as standardization 
of body size metrics across future studies. For example, species with inverse Bergmann’s relationships and with 
more typical positive relationships between body mass and precipitation may show very different responses to 
urbanization. Or it may be that smaller sizes are a selective advantage in urban areas in order to avoid human 
detection that transcend taxonomic diversity.

Figure 3.  Top spatial model fixed effect plots demonstrating the effects of mean annual temperature (MAT), 
mean annual precipitation (MAP), sex, season, and population density on PEMA (without juveniles and NEON 
as a source) body mass (A–D) and HB Length (E–I). 95% confidence intervals are included in each plot.
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Patterns and drivers of body size change over time.  Adding decade as a fixed effect and fitting decadal 
slopes per zone revealed that body mass - but not HB length - is decreasing over time across all zones. Further 
analysis of the random effects in both models showed a strong negative relationship between the strength and 
direction of decadal body size change and the overall body size change across zones, for both measures of body 
size. That is, populations of PEMA at different ends of the body size continuum are responding in different ways 
to changing environments (populations with larger individuals decreasing, and vice versa for populations with 
smaller individuals) and this was true regardless of body size metric used. We did not anticipate either of the 
results for the fixed and random effects, and together they might indicate that body size is homogenizing across 
time, e.g. mean body sizes across zones becoming more similar in the present than the past. However, we do not 
find robust evidence that this is the case, and further examination of temporal trends, with full accounting of 
sampling issues is a next step for quantifying variation change.

While we focused on urbanization and climate change as potential drivers of body size change, we recognize 
that other footprints of human domination (land conversion besides urbanization, fire frequency, etc.) are miss-
ing in our analyses and critical for understanding the results presented here, especially in relation to the finding 
of contrasting responses of smaller and larger PEMA across time and the possibility of trait homogenization. Our 
work utilized a unique decadal model of human population density that made it possible to examine direct drivers 
of trends at a finer grain than is typical, and further efforts to assemble historical land use change layers will per-
mit even more rigorous tests of drivers. Indeed, DiBattista47 found genetic variation was differentially impacted 
by the specific type of human-caused disturbance (i.e., habitat fragmentation, hunting/harvesting, and pollu-
tion), as well as the timing and duration of the disturbance. While it may currently be out of reach to test historic 

Figure 4.  Boxplots of the random effect of source in spatial models for (A) body mass and (B) HB Length. The 
thick, horizontal line of each box represents the median body size estimate, boxes indicate the interquartile 
range, and whiskers extend to the largest and smallest body size estimates.
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range-wide disturbance intensities at a fine enough scale to tease apart those signals, this work at least provides a 
path towards next-generation analyses that may uncover key generalities across many vertebrate species.

Issues with combining data streams.  We purposefully assembled data from three different sources that 
have different measurement protocols in order to expose potential systematic biases in how measurements were 
made. Recognizing and accounting for such biases is imperative for rigorous analysis of shifts in a variety of spe-
cies traits, especially because disparate data streams must often be harmonized prior to analysis. Measurements 
on mammalian voucher specimens typically follow a prescribed set of methods48 that were codified by giants 
of 20th century natural history such as C. Hart Merriam and Joseph Grinnell, and passed down to generations 
of North American mammalogists. These specimen-associated measurements represent a large proportion of 
existing digital biodiversity data resources for small mammals. NEON (and to a lesser extent, NACSM) fol-
lowed more census-based methods (including catch-and-release trap surveys) and if anything, we would have 
assumed that measurements from live-captured individuals would display much lower precision than museum 
data (e.g.49). However, systematic biases in the absolute direction of measurement bias are also detectable: body 
mass showed no difference across data sources while HB Length was generally much shorter for NEON data 
than either museum or NACSM data. This discrepancy results from total length measurements made by NEON 
personnel on live, unanesthetized animals, which are hard to obtain with accuracy due to difficulties in handling 
and manipulating live individuals. Specifically, NEON measurements on live PEMA are likely to be less accurate 
and underestimated in almost all cases than for voucher specimens (Thibault, pers. comm.). Conversely, accu-
rate masses for both live and recently dead individuals (collected by weighing individuals within handling bags) 
should be more commensurate across data types. We note this issue because combining data streams requires care 
and understanding data collection protocols. If undetected, systematic underestimates of body lengths in NEON 
data, all collected towards the present, would have generated a stronger, but false, pattern of body size reductions.

Next steps.  Focusing efforts on Peromyscus maniculatus was strategic. Because it is widespread and abun-
dant in North American mammal communities, PEMA has a remarkable amount of body size data available 
over the past century of collecting and has been a model system for understanding life history variation over 
the past 7 decades. PEMA have multiple generations per year, short generation times, and are also known to 
be highly adaptable50; we thus expected that large-scale environmental change associated with human activities 
over 70 years could elicit plastic or adaptive trait responses comparable in magnitude to any climate-driven, 
ecogeographic signatures previously detected. How much of this change related to dispersal-related population 
replacements, or direct adaptive or plastic change was not addressed here, but museum specimens provide the 
basis for examining such questions using historical genomic techniques, which are now becoming common-
place51. As well, while PEMA are uniquely well sampled, hundreds of other species of North American mammals 

Figure 5.  Scatter plot of the random intercepts of zone-averaged PEMA (A) body mass and (B) HB Length 
against the random slope of decade (i.e., modeled decadal trait change) from the top-ranked temporal models.
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are also represented by 1000 s to 10000 s of specimen-level body length and body mass measurements compiled 
by painstaking work of field mammalogists. We reiterate that these datasets require considerable care and quality 
control when used in broad-scale analyses, but are nevertheless a unique resource to understand range-wide and 
lineage-wide responses across broad scales, in a time of unprecedented change. An obvious next step is to include 
many more species utilizing hierarchical modeling frameworks that can borrow strength across many lineages 
that vary in historic sampling effort, in order to examine body size trends and among-trait variation at the broad-
est phylogenetic scale and in relation to species-specific evolutionary and ecological differences. While we doubt a 
single set of trends will emerge when examining a group as diverse as mammals - especially given widely different 
life histories and niche characteristics, along with variable, and complex interactions between humans and other 
mammals - we still argue useful predictions about biodiversity response can be made and incorporated into mod-
eling frameworks. Beyond focusing on species response in accordance with ecogeographic rules, it will be critical 
to parse how anthropogenic habitat modification interacts with (or even counteracts) these more familiar axes of 
trait variation. For example, body size decreases (like we find here for HB length) may be a more general response 
of mammals to selection for crypsis or the availability of more stable microclimates in dense human-built envi-
ronments such as cities.

Materials and Methods
Occurrence and trait data aggregation.  Body size data for PEMA were obtained from three primary 
sources. First, we used digitized natural history specimen records aggregated in VertNet (vertnet.org52). We 
obtained standard total body length and mass measurements previously unlocked from the VertNet corpus 
using the approach of Guralnick et al.14. We then modified this approach, and developed new parser scripts 
to obtain additional, detailed body length measurements from specimen records, especially tail-length in this 
case, applicable for all non-volant mammals (see https://github.com/rafelafrance/traiter). Second, we collected 
the same body size data from the North America Census of Small Mammals (NACSM15–23). NACSM was part of 
the Rodent Ecology Project at Johns Hopkins University that coordinated small mammal censuses across North 
America15. While most surveyors associated with the study collected measurements from voucher specimens, 
our data extraction suggests that others were collected from live individuals, thus making this data source a mix-
ture of the two types of measurements. We consulted annual NACSM reports and manually digitized a portion 
of PEMA records that contained associated head-body length and/or mass measurements. Third, we gathered 
body size data from the live mammal census records generated by the National Ecological Observatory Network 
(NEON; https://www.neonscience.org/)53. NEON data were extracted using the “neonUtilities” R package54. We 
aggregated all PEMA records that contained body length and/or mass measurements from these sources and 
harmonized data fields across sources for analysis.

We assembled datasets for two body size traits: body mass and head-body length. For body mass, we used 
known adult body mass ranges along with juvenile reporting (in VertNet records) to filter out records below 9 
grams and reported juveniles, which represent unambiguous juvenile individuals55. We derived head-body length 
(HB Length) by subtracting tail lengths from overall total length13. Isolating HB Length is critical because tail 
length varies substantially in PEMA (and across Peromyscus), possibly as an anatomical feature used in locomo-
tion and balance. All measurements were carefully hand-checked to flag obvious outliers, and records with trait 
measures more than 3 standard deviations from the mean for any measurement (i.e. body mass, tail length, or 
total length) were also discarded.

Finally, to fill spatial sampling gaps, we manually georeferenced some additional VertNet specimen records for 
which body size measurements were available. Our georeferencing protocols followed Chapman and Wieczorek56 
and employed a combination of tools including Google Maps (https://www.google.com/maps) and the MaNIS 
georeferencing calculator57 (http://manisnet.org/gci2.html). Next, we manually georeferenced locations of 
NACSM census sites and paired the localities with body size data from that resource13. We also used verbatim 
geospatial data associated with NEON census sites for body size data from that resource.

Processing of specimen trait records for model construction.  A final set of preparation steps were 
needed to create a model-ready dataset. First, we filtered remaining records that could not be georeferenced, that 
lacked date of collection or otherwise had unusable dates. We also removed those records without day or month 
reporting, and we removed records with collection dates of “1 January”, since these often represent misreporting 
of records where only year is known. We removed records that lacked sex reporting as well as those with ambigu-
ous sex assignments such as “undetermined” or “female?”. The vast majority of those filtered records were VertNet 
records. We then derived two new fields: “season collected” and “decade”. We used month and day of collection 
to assign records to season categories (e.g. Spring, Summer, Fall, Winter defined by equinox and solstice dates) 
and we used decade of collection to bin records into decades. We only included records from 1895 onwards and 
binned into ten year increments. This created 13 decade bins, although the last was from only 2015–2019. For 
temporal analyses, we further filtered records as described below. Finally, to account for the possible effects of age 
class and spatially variable population demographic processes, we created alternate versions of our dataset with all 
juveniles labeled as such in the Darwin Core field “lifeStage” filtered from the analyses. This “no juvenile” dataset 
was used in analyses below. We also provide supplementary analyses with marked juveniles not excluded, since 
this increases sample size for analyses, and we do not expect biases in juvenile number over time or space based 
on collecting methods.

Pairing climate and population density information with records.  Following aggregation from all 
data sources, we obtained paired historical climate data for georeferenced body size records using ClimateNA 
v6.058. ClimateNA is a reference tool consisting of past and present climate grids for mainland North America 
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interpolated from long-term weather stations using the method of Mitchell and Jones59. We used geocoordinates 
of all body size occurrences as input into ClimateNA and augmented these with verbatim elevation values for 
records whenever available; the latter values are used for refining climate estimates within grid cells58. Default 
settings were used for all ClimateNA extractions. We extracted all climate variables for each body size record and 
later parsed mean annual temperature (MAT) and mean annual precipitation (MAP) of the year of collection for 
use in statistical analysis. Given the short gestation time (22–30 days) and average life-span (less than one year in 
the wild), using current year of collection for temperature and precipitation values is warranted.

We assigned human population density estimates to each record using human population density data for 
the USA from Fang and Jawitz60, who provided decadal human population density from 1790 to 2010. This high 
spatial resolution (1 km by 1 km) modeled human population density dataset serves as a proxy of urbanization 
and human disturbance. It is also unique in providing temporal depth, which is critical for our use here. Beyond 
the key temporal resolution provided by this dataset, we prefer population density over impervious land coverage 
as a measure of urbanization for two reasons. Urbanization is mainly driven by population and is a proxy for 
many other biotic and abiotic changes. As well, population density ranges from over multiple orders of magnitude 
while impervious land coverage has an upper limit of 1. Therefore, population density may quantify urbanization 
and disturbance more effectively. We note that because such data over time is only available in the USA, this step 
excludes records of PEMA from Canada and Mexico. Our analysis therefore is constrained to the conterminous 
USA. In order to assign a human population density record to each record, we used an R61 script that indexed the 
decade collected and spatial location of the specimen record to the correct human population density pixel in a 
stack of layers. We also assembled an estimate of human population density for each specimen record at 1 km, 
4 km, and 10 km via pixel aggregation. All values for human population density were logged before use in models 
given that values can range over orders of magnitude.

Relationship between head-body length and body mass.  We determined the relationship between 
head-body length and body mass using a simple univariate linear regression where log(HB Length) predicts 
log(body mass). We performed this analysis and examined variance explained before treating these two variables 
separately in analyses, since very strong fits would imply co-linearity. More detailed analyses using sex or season 
covariates are likely to be informative regarding the details of these allometric patterns, but were not done here, 
because the key prediction we are testing is that the relationship between the two key variables used in the rest of 
the analyses are relatively weak.

Defining spatial regions and replicates.  We binned body size records into ecoregional categories to 
account for broad climatic variation across the range of PEMA and associated ecological differences among pop-
ulations. We developed two binning approaches, used for separate spatial and temporal analyses described below. 
First, we used Level I ecoregions as defined by the United States Environmental Protection Agency (https://
www.epa.gov/eco-research/ecoregions) but divided several ecoregions more finely given the major climate and 
latitudinal range that some ecoregions encompass. Specifically, we split 3 of the Level 1 ecoregions (‘Great Plains’, 
‘Northwestern Forested Mountains’, and ‘North American Deserts’) at 42 degrees latitude and re-designated the 
resulting ecoregions (‘Northern and Southern Great Plains’, ‘Northern and Southern Cordilleras’, and ‘Northern 
and Southern Desserts’, respectively; Fig. S1). We then extracted ecoregional membership for PEMA occurrences 
using the over function in sp62 in R.

In order to aggregate PEMA body size records into spatiotemporal replicates at sub-ecoregional scales, 
we developed a second spatial binning approach employing 200 × 200 km grid cells. The goal of the binning 
approach was to identify those areas where sampling has been most dense over time, and to use these spatial areas 
in random effect models as replicates to understand different dynamics of change in temperature, and human 
population density. To optimize the number of spatial replicates, we developed an R script that sampled individ-
ual grid cells at random across the contiguous U.S. and retained cells if they met the following criteria: 1) At least 
75 total records; 2) At least 4 decades represented and; 3) At least 10 records per decade. To optimize the sample 
sizes within grid cells, we resampled cells at random for up to 200,000 iterations, replacing existing cells with new 
cells if they were overlapping and contained higher total numbers of body size records. Figure 1 shows an example 
zonation using all data records.

Because the number of records per decade was part of our optimization criteria, we filtered our original full 
dataset to create temporal datasets that only included records collected since 1945. While this filters records col-
lected in the early part of the 20th century, those records are much sparser than records during the second half, 
especially given the inclusion of NACSM data that begins in 1948 and provides strong spatial coverage. We show 
just how sparse data are in Fig. 2 that documents trends in number of records separately for each data source we 
used.

We provide a summary (Tables 1, S1, S2, Supplementary Results) of the 12 final datasets, covering 2 different 
key body size traits, with and without labelled juveniles, with and without NEON as a source, and across spatial 
and temporal filtering, that were used in this analysis. That supplementary material provides information on the 
total number of records included, and number of zones, for the spatial and temporal datasets.

Spatial and temporal analyses of body size drivers.  Spatial analyses.  Our first models examine only 
spatial predictors of PEMA body size and therefore assess Bergmann’s Rule as it is typically conceptualized. We 
focus separately here and below on body mass and HB Length as response variables. As a multitude of factors may 
influence changes in PEMA body size, we ran a suite of linear mixed-effects models, using the R package lme463, 
in order to identify what factors influence spatial variation in body mass and HB Length. We ran a series of 29 
candidate models, with the global model consisting of five fixed effects: Mean Annual Precipitation (MAP), Mean 
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Annual Temperature (MAT), sex, season collected (coded as Spring, Summer, Fall and Winter), and human pop-
ulation density. We also included two random intercepts, ecoregion and data source (VertNet, NACSM, NEON). 
The data source covariate is used to assure that there is not a systematic bias in how measurements were taken 
across the different data resources we assembled. We did this because measurements from live-trapped indi-
viduals can be less precise and harder to obtain than from euthanized voucher specimens (e.g.49). In all cases, 
we mean-centered and standardized continuous predictors, and transformed categorical predictors to factors. 
In addition, we checked model residuals and found no evidence of spatial autocorrelation. In reporting model 
results, we provide summary statistics needed for interpretation, including model p-values, but emphasize those 
less compared to model support values. Based on our results, all HB Length models of spatial variation were run a 
second time but removing NEON data. We also determined the marginal and conditions R2s for the best models 
as determined via model selection.

Analyses with decadal covariates.  To assess temporal body size trends, we ran a series of 44 candidate models 
with six fixed factors in the global model, including MAP, MAT, sex, decade, season, and population density. In 
these models, we also included a random slope of decade nested within zone. As before, these models were sep-
arately run for both body mass and HB Length. NEON data were excluded given bias in HB Length and to avoid 
unaccounted decade by source interactions given the different sampling approach. All sets of spatial and temporal 
models were run with and without juvenile PEMA. Models were fit using the R package lme4. Model fits were 
assessed and ranked with AICc using the R package MuMIn64. We examine model diagnostics as above and, in 
these analyses, particularly examined random effect results to determine correlations between slope and intercept 
of the random terms since this informs whether larger or smaller PEMA as stratified by zone show similar or dif-
ferent trends in body size change over time. For comparison with the random effects models, we also performed 
exploratory analyses where we fit body size by decade independently for each zone.

Data availability
All data and code is available on Dryad (https://doi.org/10.5061/dryad.8w9ghx3j7). Many of the datasets used 
here are cleaned and processed from existing repositories. The exception is digitized data from NACSM, which 
we will provide in two ways. The first is consolidated with key.csv files used in analyses and the second as separate 
files of just NACSM data for download and sharing, since these are newly digital data.
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