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Contrast-enhanced T1-weighted 
image radiomics of brain 
metastases may predict EGFR 
mutation status in primary lung 
cancer
Sung Jun Ahn   1,4, Hyeokjin Kwon2,4, Jin-Ju Yang2, Mina Park1, Yoon Jin Cha3, Sang Hyun Suh1 
& Jong-Min Lee2 ✉

Identification of EGFR mutations is critical to the treatment of primary lung cancer and brain metastases 
(BMs). Here, we explored whether radiomic features of contrast-enhanced T1-weighted images 
(T1WIs) of BMs predict EGFR mutation status in primary lung cancer cases. In total, 1209 features were 
extracted from the contrast-enhanced T1WIs of 61 patients with 210 measurable BMs. Feature selection 
and classification were optimized using several machine learning algorithms. Ten-fold cross-validation 
was applied to the T1WI BM dataset (189 BMs for training and 21 BMs for the test set). Area under 
receiver operating characteristic curves (AUC), accuracy, sensitivity, and specificity were calculated. 
Subgroup analyses were also performed according to metastasis size. For all measurable BMs, random 
forest (RF) classification with RF selection demonstrated the highest diagnostic performance for 
identifying EGFR mutation (AUC: 86.81). Support vector machine and AdaBoost were comparable to RF 
classification. Subgroup analyses revealed that small BMs had the highest AUC (89.09). The diagnostic 
performance for large BMs was lower than that for small BMs (the highest AUC: 78.22). Contrast-
enhanced T1-weighted image radiomics of brain metastases predicted the EGFR mutation status of 
lung cancer BMs with good diagnostic performance. However, further study is necessary to apply this 
algorithm more widely and to larger BMs.

Lung cancer is one of the leading causes of cancer-related death worldwide, resulting in more than 1.18 million 
deaths annually1–3. Lung cancer commonly metastasizes to the brain, with 10–36% of all lung cancers developing 
brain metastasis (BM) during the course of the disease4. The incidence of BMs has increased in recent years, likely 
because of the prolonged survival of these patients. BM patients today undergo more efficient treatments and are 
assessed with better imaging techniques than were available previously, enabling the improved detection of BM5,6. 
Despite advanced therapies and improvements in survival rates, BM remains an important cause of morbidity 
associated with progressive neurologic deficits7.

Identification of the molecular subtypes of tumors using gene expression may allow a better understand-
ing of their biology and patient-specific treatment: For instance, patients with gliomas with mutation of isoc-
itrate dehydrogenase 1 gene (IDH1) or IDH2 had better outcomes that those with wild-type IDH genes8. Also, 
O6-methylguanine DNA methyltransferase (MGMT) methylation status might be predictive of temozolomide 
(TMZ) response, a standard treatment for glioblastoma9. Breast cancer can be divided into three biologic sub-
types, based on biomarkers, such as the estrogen receptor (ER), progesterone receptor (PR), and human epi-
dermal growth receptor 2 (HER2); each subtype exhibits a distinct prognostic significance10. In the past several 
decades, identification of epidermal growth factor receptor (EGFR) mutations has become a critical part of treat-
ment planning in advanced lung cancer and particularly in non-small cell lung cancer (NSCLC) cases11. Many 
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recent studies have reported that patients with lung cancer and BMs harboring EGFR mutations exhibit improved 
survival over patients without the mutations due to higher response rates to whole-brain radiation therapy 
and specific chemotherapy medications. Such medications include EGFR-associated tyrosine kinase inhibitors 
(TKIs)12–14. EGFR-TKIs can be used as a first-line treatment for EGFR mutation-positive advanced NSCLC15,16.

Due to its relationship with differential treatment responses, the detection of EGFR mutation status with 
imaging biomarkers may improve clinical treatments and decision-making. A previous study found that BM 
imaging using a diffusion weighted approach in NSCLC cases allowed for good prediction of EGFR mutation 
status17. Recently, several studies have also used radiomics to extract primary brain tumor imaging features from 
contrast-enhanced T1-weighted images, a commonly used imaging modality18–20. However, the application of 
radiomic analyses of contrast-enhanced T1-weighted images to metastasis prediction has been rarely reported.

Radiomics is a growing field of diagnostic imaging that aims to non-invasively decode habitats by extracting 
large amounts of information on imaging features, by feature selection, and through data mining21–23. The heart of 
radiomics may be the extraction of high-dimensional features to capture attributes of habitats. Radiomic features 
can be divided into first-, second-, or higher-order statistical outputs. First-order outputs are generally based on 
histogram analyses and describe the distribution of values across individual voxels without concern for spatial 
relationships. Second-order outputs are generally based on texture analysis and describe statistical interrelation-
ships between voxels with similar or dissimilar contrast values21,24. For instance, gray level co-occurrence matrix 
and gray level run length matrix are typical texture features25,26. Higher-order methods impose filters on medical 
images to extract repetitive or non-repetitive patterns27–30. For example, Laplacian transformations by Gaussian 
bandpass filtering can extract regions with increasingly coarse texture patterns31. Minkowski filters can assess 
patterns across voxels with an intensity above a given threshold32. Feature selection is used to resolve the “curse of 
dimensionality,” which refers to the problem that highly correlated and redundant features may cause overfitting 
and false discovery33. The most popular and readily-available feature selection algorithms include permutation 
random forest34, ℓ0-norm minimization35, infinite feature selection36, feature selection via concave minimiza-
tion37, minimum redundancy maximum relevance38, relief39, and Laplacian40. Data mining is also a vital part 
of radiomics, which refers to the process of discovering patterns in large datasets. A range of machine learning 
algorithms have been introduced for data mining purposes, including random forest, support vector machine, 
adaptive boosting trees, and regularized logistic regression, which are widely used for learning and prediction22,41.

In the present study, we hypothesized that radiomics from contrast-enhanced T1-weighted images of BMs 
could be applied to predict EGFR mutation status in primary lung cancers. To test this, we extracted imaging 
features with first-, second, and higher-order methods and subsequently used different combinations of seven 
feature selection methods and four classification algorithms to identify the most robust analytic models.

Materials and Methods
Participants.  We retrospectively reviewed data for a total of 146 lung cancer patients with BMs who under-
went gadolinium-enhanced brain MRI at Gangnam Severance Hospital between June 2012 and July 2018. We 
excluded 85 patients for the following reasons: (1) previous neurosurgery or brain radiation therapy (n = 21), (2) 
presence of other malignant disease (n = 11), (3) poor image quality (n = 7), (4) absence of EGFR mutation status 
(n = 20), and (5) no measurable BM (n = 26). We regarded a BM as measurable when its diameter was greater 
than 3 mm, as it is difficult to differentiate BMs with a diameter of less than 3 mm from adjacent vessels. A total 
of 61 patients with 210 measurable BMs remained after exclusion. The institutional review board of Gangnam 
Severance Hospital approved this retrospective study and waived any requirement for informed consent because 
of its retrospective nature. All data were fully anonymized, and all experiments were carried out in accordance 
with approved guidelines.

Pathology and EGFR mutation analysis.  All patients had histopathological diagnoses of lung can-
cer by bronchoscopic, percutaneous needle-guided, or surgical biopsies. Genomic DNA was extracted from 
formalin-fixed, paraffin-embedded (FFPE) tissues using the DNeasy Isolation Kit (Qiagen, Valencia, CA, USA). 
We used the PNA ClampTM EGFR Mutation Detection Kit (PANAGENE, Daejeon, Korea) for detection of EGFR 
mutations by real-time PCR42.

Image processing and extraction of radiomics features.  T1-enhanced images were processed with 
the following steps: preprocessing, feature extraction, feature selection, and classification. For preprocessing, non-
uniformity was corrected using the N3 bias correction algorithm, re-orientation was applied for further analysis 
using FMRIB Software Library (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), and cropped images including tumor vol-
ume were generated by a neuroradiologist (S.J.A) (Fig. 1). All imaging data were normalized to zero-mean and 
unit-variance to reduce bias. Radiomics features were extracted using MATLAB R2014b (MathWorks), in accord-
ance with previous studies18. The 1209 resultant radiomics features comprised three feature groups: six first-order, 
25 second-order, and 1178 higher-order features. First-order features were based on intensity profile histograms 
(e.g., for mean, variance, skewness, kurtosis, energy, and entropy, Supplemental Table 1). Second-order features 
were based on texture analysis consisting of 25 features25,43,44 (Supplemental Table 2). For higher-order features, 
38 feature maps were created using the root filter set filter bank (Supplemental Table 3)45,46. Six first-order and 
25 second order features were also generated for each feature map (1178 features).

Feature selection and classification methods.  A ten-fold validation method was applied to the data set 
(training set = 189, test set = 21). Feature selection was performed with a training set. A two-sample t-test of 
positive and negative classes was used for each feature to select the most discriminative features, to prevent over-
fitting, and to reduce feature space dimensions. Seven different feature selection algorithms were used for further 
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feature selection: permutation random forest34, 0-norm minimization35, infinite feature selection36, a feature 
selection via concave minimization37, minimum redundancy maximum relevance38, relief39, and Laplacian40.

Classification was performed with four different powerful algorithms to improve diagnostic perfor-
mance for prediction of EGFR mutation: RF, support vector machine (SVM), adaptive boosting trees, and 
LASSO-regularized logistic regression47–50. These methods were chosen largely based on their common uses in 
previous studies and readily available implementation. Models were reestablished with features that were identi-
fied in the training set and then applied to the test set. Diagnostic performance was calculated using area under 
receiver operating characteristic curves (AUC), accuracy, sensitivity, and specificity. A subgroup analysis was 
performed depending on the size of the metastases (small vs. large). The diameter of small BMs was defined 
as less than 10 mm (n = 137) and that of large BMs was more than 10 mm (n = 73). For small BMs, ten-fold 
cross-validation was also used. However, for large BMs, the “leave one out method” was used to maintain a suffi-
ciently large training dataset51.

Statistical analysis.  To evaluate a statistical significance of the classification performances, the permutation 
test was performed with a similar framework performed in previous studies52,53. We randomly permuted the 
group labels 500 times. In each permutation, the 10-fold cross-validation process was performed based on the 
permutated samples to calculate the AUCs. We defined p-value as follows;

P –value = (1 + number of time achieving higher AUCs than true lables) / 501(the number of all tests includ-
ing the original one)

A threshold level of 0.05 was established for significance.

Results
Patient characteristics.  Patient characteristics are summarized in Table 1. No significant differences were 
found in clinical characteristics between EGFR-wild type and EGFR-mutation groups. The mean ages at BM 
diagnosis were 64.0 ± 9.8 and 62.3 ± 11.6 years (EGFR wild type and EGFR mutation, respectively, p = 0.55). 
65.6% of the EGFR wild-type patients (21/33) were male, and 51.7% of the EGFR mutation patients (15/29) were 
male (p = 0.35). Histologically diagnosed types of primary lung cancer included adenocarcinoma (27/32, 84.3% 
for EGFR wild type vs. 28/29, 96.6% for EGFR mutation) and small cell (5/32, 15.7% for EGFR wild type vs. 1/29, 
3.4% for EGFR mutation, p = 0.26). In patients with EGFR mutation, 14 patients (48.3%) had exon 19 mutations, 
11 patients (38%) had exon 21 mutations, 3 patients (10.3%) had exon 20 mutations, and one patient (3.4%) 
had a combined mutation of exon 19 and 20. Majority of BMs in our cohorts were diagnosed at initial screening 
(48/61, 79%) and there was no significant difference between two groups (24/32, 75% vs. 24/29, 82.7%, p = 0.67). 
The mean numbers of measurable BMs per patient were 3.5 ± 3.3 and 3.4 ± 3.0 mm (EGFR wild type and EGFR 
mutation, respectively, p = 0.90). The total number of measurable BMs was 210 (116 for EGFR wild type vs. 94 
for EGFR mutation). The mean diameters of measurable BMs were 10.4 ± 7.4 and 10.8 ± 9.6 mm (EGFR wild type 
and EGFR mutation, respectively, p = 0.72). The total number of small BMs was 137 (75 for EGFR wild type and 
62 for EGFR mutation). The mean diameters of measurable BMs were 5.8 ± 1.6 and 5.5 ± 1.7 mm (EGFR wild type 

Figure 1.  Flow diagram of the study design. (a) Segmentation was performed based on contrast-enhanced T1 
weighted images (CE-T1WI). (b) 1209 features were extracted using first-, second- and higher-order methods. 
(c) Several combinations of seven selection methods and four classification algorithms were used. (d) Area 
under the curve, accuracy, sensitivity, and specificity were calculated.

https://doi.org/10.1038/s41598-020-65470-7


4Scientific Reports |         (2020) 10:8905  | https://doi.org/10.1038/s41598-020-65470-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

and EGFR mutation, respectively, p = 0.31). The total number of large BMs was 73 (41 for EGFR wild type and 
32 for EGFR mutation). The mean diameters of measurable BMs were 19.6 ± 6.4 and 22.2 ± 10.5 mm (EGFR wild 
type vs. EGFR mutation, respectively, p = 0.24).

Diagnostic performance.  Using radiomic features, individual combinations of the seven selection features 
and four classification methods showed different EGFR diagnostic performances (AUC) for lung cancer BM 
(Fig. 2). The random forest classification using random forest selection demonstrated the highest AUC (86.81, 
p < 0.01). The sensitivity, specificity, and accuracy of this method were 84.41, 72.72, and 86.66, respectively. SVM 
and AdaBoost using the RF selection method also showed good diagnostic performances (AUC for SVM with 
RF: 85.76 and AUC for AdaBoost with RF: 85.71). However, LASSO-LR using Laplacian selection demonstrated 
a relatively poor diagnostic performance (AUC: 68.11, Table 2).

Subgroup analyses.  For small BMs, SVM classification using random forest selection demonstrated the 
highest AUC (89.09, Fig. 3a). The sensitivity, specificity, and accuracy of this method were 89.28, 100, and 89.06, 

Characteristics
EGFR wild 
type (N = 32)

EGFR 
mutation 
(N = 29) P-value

Age (years) 64.0 ± 9.8 62.3 ± 11.6 0.55

Sex 0.35

Male 21(65.6%) 15(51.7%)

Female 11(34.4%) 14(48.3%)

Histology 0.26

Adenocarcinoma 27(84.3%) 28(96.6%)

Small cell 5(15.7%) 1(3.4%)

Subtype of EGFR mutation

Exon 18 0

Exon 19 14 (48.3%)

Exon 20 11 (38%)

Exon 21 3 (10.3%)

Exon 19&Exon 20 1 (3.4%)

BM diagnosis at initial 
screening 0.67

Yes 24(75%) 24(82.7%)

No 8(25%) 5(17.3%)

Number of BMs per 
one patient 3.5 ± 3.3 3.4 ± 3.0 0.90

All measurable BMs

Number 116 94

Diameter (mm) 10.4 ± 7.4 10.8 ± 9.6 0.72

Small BMs(Diameter ≤ 10 mm)

Number 75 62

Diameter (mm) 5.8 ± 1.6 5.5 ± 1.7 0.31

Large BMs(Diameter > 10 mm)

Number 41 32

Diameter (mm) 19.6 ± 6.4 22.2 ± 10.5 0.24

Table 1.  Lung cancer patient with brain metastases. brain metastases (BM); epidermal growth factor receptor 
(EGFR).

Figure 2.  Heatmap of all brain metastases (BMs) depicting areas under the curve for seven feature selection 
(columns) and four classification (row) methods.
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respectively. AdaBoost with mRMR and RF with RF also had good diagnostic performances (AUC: 87.37 and 
87.12, respectively). However, LASSO-LR using RF selection exhibited relatively poor diagnostic performance 
(AUC: 64.16, Table 3).

Classification

Best feature 
selection 
method

Optimal 
feature 
number AUC Sensitivity Specificity Accuracy

RF RF 22 86.81 84.41 72.72 86.66

SVM RF 17 85.76 82.07 81.81 86.19

AdaBoost RF 18 85.71 83.093 72.72 85.23

LASSO-LR Laplacian 48 68.11 55.03 81.81 69.04

Table 2.  Diagnostic performance of contrast-enhanced T1-weighted image radiomic-based prediction of EGFR 
mutation status in lung cancer brain metastases cases. Epidermal growth factor receptor (EGFR); area under the 
curve (AUC); random forest (RF); support vector machine (SVM).

Figure 3.  Multiple surface plots for (a) small brain metastases (BMs) (green) and (b) large BMs (red), depicting 
areas under the curve (AUC) for the seven feature selection (columns) and four classification (row) methods 
tested.

Subgroup Classification

Best feature 
selection 
method

Optimal 
feature 
number AUC Sensitivity Specificity Accuracy

Small BMs

RF RF 24 87.12 86.60 100 86.92

SVM RF 34 89.08 89.28 100 89.06

AdaBoost mRMR 35 87.37 88.21 100 86.92

LASSO-LR RF 26 64.16 65.17 71.42 63.51

Large BMs

RF Laplacian 18 76.04 62.96 89.13 79.45

SVM RF 4 78.22 62.96 93.47 82.19

AdaBoost Relief 42 76.48 70.37 82.60 78.08

LASSO-LR L0 5 57.85 22.22 93.47 67.12

Table 3.  Subgroup analysis of diagnostic performance for EGFR status in lung cancer brain metastases cases. 
Brain metastases (BM), epidermal growth factor receptor (EGFR); area under the curve (AUC); random forest 
(RF); support vector machine (SVM).
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For large BMs, SVM classification with RF selection demonstrated the highest AUC of 78.22 (Fig. 3b). The 
sensitivity, specificity, and accuracy of this method were 62.96, 93.47, and 82.19, respectively. AdaBoost with 
Relief and RF with Laplacian had similar diagnostic performances (AUC: 76.48 and 76.04, respectively). However, 
LASSO-LR with L0 demonstrated relatively poor diagnostic performance (AUC: 57.85, Table 3).

Discussion
Tumor radiomics utilizes advanced computational methods to convert medical tumor images into a large number 
of quantitative features54. In the present study, we used seven feature selection methods and four classification 
methods to extract 1209 features from contrast-enhanced T1 images of 210 BMs. We analyzed the potential value 
of these features for predicting EGFR mutation status in primary lung cancer cases. We found that radiomics 
could be used to predict EGFR mutation status with high diagnostic validity. However, LASSO-LR demonstrated 
relatively poor diagnostic performance, compared with the other classification algorithms tested. Furthermore, 
diagnosing EGFR mutation status in large BMs (diameter > 10 mm) was not as effective as that in small BMs.

EGFR is a transmembrane protein with cytoplasmic kinase activity that transduces important growth factor 
signaling from the extracellular milieu into the cell11. Patients with lung cancer and BMs harboring EGFR muta-
tions exhibit better responses to treatment as well as different clinical features. For example, the number of BM 
lesions was significantly higher in patients with EGFR-mutated NSCLC than in those with wild-type NSCLC. 
Moreover, leptomeningeal metastases were more common in patients with EGFR-mutated NSCLC55. A recent 
study proposed an imaging biomarker for the non-invasive determination of EGFR mutation status. Jung et. 
al reported that the minimum apparent diffusion coefficient (ADC) and normalized ADC ratio of BMs could 
be independent predictors of EGFR mutation status17. However, diffusion weighted images, which are used to 
calculate ADC variables, are not a routine sequence in BM protocols and parameters may thus vary between 
institutions. Meanwhile, contrast-enhanced T1 imaging is a common sequence in BM protocols because it is often 
used to delineate tumor margins and to monitor tumor responses to therapy. The clinical relevance of our results 
lies in the development of a novel imaging biomarker for BM EGFR mutation status in lung cancer patients. Of 
particular interest, this biomarker may be extracted from a commonly used sequence.

The high performance of EGFR mutation status prediction by our model can be explained by multiple fac-
tors. First, we generated first-, second-, and higher-order features using a root filter set filter bank. Higher-order 
features have been reported to help with capturing characteristic features: For example, one study found effective 
segmentation of white matter hyperintensities using a texton filter bank56. Furthermore, high-order CT features 
extracted through LoG and wavelet filters were used successfully to quantify non-small cell lung cancer pheno-
types21. Second, we used a combination of several feature selection and data mining methods to achieve superior 
diagnostic performance.

Our results indicate that RF, AdaBoost, and SVM had good diagnostic performance, while LASSO did not. RF 
and AdaBoost are ensemble learning paradigms, which make predictions based on a number of different decision 
trees. However, their methodologies differ slightly. RF trains on multiple random subsets of features in a parallel 
way to arrive at a final conclusion34. Meanwhile, AdaBoost is trained on a number of decision trees sequentially, 
and each decision tree learns from mistakes made by the previous tree57. Generally, prediction variance decreases 
when the number of trees in the ensemble method increases. These models are insensitive to overfitting, which 
might explain their good performance58. SVM classifies by finding the hyperplane59. The hyperplane is calculated 
from the nearest training samples, called support vectors (SVs) and is optimized by maximizing the margin 
between the positive and negative SVs. As predicting EGFR status is a two-class problem (wild type or mutant), 
SV may be best suited for the purposes of the present study. LASSO is a variable selection algorithm used in 
regression models50. It adds a penalty equal to the absolute value of the magnitude coefficients. LASSO is a linear 
method and is preferred when true decision boundaries are linear. Thus, it appeared to struggle with handling 
nonlinear relationships in the data here. Given that LASSO had relatively poor performance in the present study, 
the relationship between the radiomics of contrast-enhanced T1WI of BMs and EGFR status is likely non-linear.

We identified RF as the most powerful selection tool of those tested here, regardless of classification method. 
RF selected related features based on importance scores, which are derived from how pure each feature is 
through numerous yes-or-no questions34. This process involves numerous decision trees, each of which is built 
via the random extraction of multiple features. Not every tree sees all of the features, guaranteeing that trees are 
de-correlated and therefore less prone to overfitting, a potential strength over other selection methods.

The performance of our model for large BMs was not as good as that for small BMs, which may be explained 
by several reasons. First, larger BMs tend to have necrotic centers that may affect machine learning classifica-
tions17,60–62. Critically, previous radiomics studies have used different ROI exclusion methods. For instance, 
Kickingereder et al. excluded ROIs with necrosis, while Kotrotsou et al. insisted that necrotic portions should be 
included in ROIs63,64. This issue should be further investigated in future work. Second, large BMs are associated 
with smaller datasets, potentially resulting in overfitting. However, cross-validation techniques and the random 
forest method diminishes the likelihood of such overfitting34,65.

Accumulating evidence suggests that there are clinico-pathological features that are closely related with EGFR 
mutations. Mutations have been shown to be associated with Asian ethnicity, adenocarcinoma histology, female 
sex, and non-smokers11,66. On the basis of results from a large study, these clinico-pathologic features of EGFR 
seem to be consistent in patients with lung cancer BMs67. In our results, the EGFR mutation group comprised 
more females and adenocarcinomas than the EGFR wild-type group, but the differences did not reach statistical 
significance. Thus, a combined model of clinico-pathologic features and radiomic model may enhance diagnostic 
performance for predicting EGFR mutation status in lung cancer BMs from larger populations which is expected 
to be validated in future study.

The present study has limitations that warrant consideration. Genetic testing was performed on lung samples 
rather than BMs themselves. Recent studies have revealed that EGFR mutation status in metastatic lesions does 
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not always coincide with that at primary sites55,68. Indeed, discordant rates of EGFR mutation status between 
primary lung cancer and BM in previous studies range from 0 to 66.7%69–75. According to meta-analysis, the 
EGFR discordance rate between primary tumor and central nervous system is 17.26% (95% CI = 7.64 to 29.74)76. 
There are several models that might explain the discordance of EGFR mutation between primary lung cancer and 
BM. Cancer cells with highly diverse genetic profiles might be disseminated to distant organs at an early stage, or 
EGFG mutation status might change though multistep metastatic progression, potentially due to influences from 
the microenvironment and treatment effects. Thus, further study of tissues obtained directly from brain lesions or 
animal model with EGFR mutation is necessary to reveal the molecular and biologic characteristics of BMs more 
precisely. However, we believe our result has a clinical impact because it may aid in clinical decision for first-line 
treatment of lung cancer. The incidence of BMs in the patients with NSCLC at initial diagnosis is approximately 
10%4. On the basis of this report, routine brain MRI screening scan is performed in many institution. Majority 
of BMs in our cohorts were also diagnosed at initial screening scan (48/61, 79%). In this perspective, our result 
may provide an alternative method to non-invasively assess EGFR information of primary lung cancer and offers 
a great supplement to biopsy, thereby making a proper first-line treatment of lung cancer. Also, our result is novel 
as it provides a different approach with previous other efforts using chest CT scan77,78.

In conclusion, we demonstrated here that T1-enhanced radiomics using RF classification may predict EGFR 
mutation status in lung cancer BMs with a high degree of accuracy. However, further study is necessary to apply 
T1-enhanced radiomics to large BMs.
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