Table 2.
Diagnostic performance of contrast-enhanced T1-weighted image radiomic-based prediction of EGFR mutation status in lung cancer brain metastases cases.
| Classification | Best feature selection method | Optimal feature number | AUC | Sensitivity | Specificity | Accuracy |
|---|---|---|---|---|---|---|
| RF | RF | 22 | 86.81 | 84.41 | 72.72 | 86.66 |
| SVM | RF | 17 | 85.76 | 82.07 | 81.81 | 86.19 |
| AdaBoost | RF | 18 | 85.71 | 83.093 | 72.72 | 85.23 |
| LASSO-LR | Laplacian | 48 | 68.11 | 55.03 | 81.81 | 69.04 |
Epidermal growth factor receptor (EGFR); area under the curve (AUC); random forest (RF); support vector machine (SVM).