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A current model of the coronavirus disease 2019 (COVID‐19) epi-
demic1 appears to have differing degrees of projected total deaths in

various areas of the United States despite the close timing of social

distancing measures. For example, California with a population of

approximately 40 000 000, began social distancing measures on

19 March 2020, yet is projected to plateau at 1616 COVID‐19
related deaths by 15 May 2020. New Jersey, by contrast, with a

population of approximately 9 000 000 began social distancing

measures on 18 March 2020 yet is projected to plateau at 3915

COVID‐19‐related deaths by 1 May 2020. Factors other than social

distancing may in part explain this discrepancy.

These and other COVID‐19 epidemic models appear to assume

a universal basic reproductive number (R0) for virus spread, as well

as a uniform degree of pathogenicity. A recent report2 suggests

the R0 of severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) may be as high as 5.7, increased from the original

estimated R0 of 2.28.3 These reports also appear to assume

uniform pathogenicity and transmission of the virus through time

and do not account for mutation of the virus either towards or

away from a more virulent strain.

As is typical of coronavirus, SARS‐CoV‐2 has rapidly acquired

mutations allowing for tracking its ancestry and spread.4,5 For

example, an S type of the virus accounted for only 3.7% of viral

isolates in Wuhan compared to 96.3% of the L type yet isolates

outside of Wuhan were 61.3% L type and 38.4% S type.4 Examining

clades of SARS‐CoV‐2 in 2310 geographically distributed viral DNA

sequences using Nexstrain5 (Figure 1) reveal that the B1 clade

predominates on the West Coast of the United States, and the A2a

clade, which apparently spread to New York through Europe and

Italy if this limited viral sequence phylogeny analysis is correct,

predominates on the East Coast.

It has not escaped notice that these clades may vary in viru-

lence. For example, analysis in Nexstrain in 2310 viral isolates of

distribution of a nonsynonymous mutation in the viral spike pro-

tein at codon 614 (Figure 2) reveals that aspartic acid (D) at this

residue is predominant on the West Coast and glycine (G) is pre-

dominant on the East Coast. SARS‐CoV‐2 genome phylogeny

analysis reveals that this D614G mutation appeared to arise from

an ancestral D residue (Figure 3). This mutation resides in a highly

glycosylated region of the viral spike protein. A theory of viral
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pathogenesis6, as well as cryogeneiccryogenic electron micro-

scopy7 and structure and function experiments8, suggest the

possibility that mutations in this region could alter this heavily

glycosylated viral spike and alter membrane fusion in tissues, re-

sulting in more pathogenicity and more human to human spread.

This residue is highly conserved in coronaviruses.8 There are many

examples of mutation in this spike protein region resulting in

changes in virulence,9,10 and, in particular, a single serine to gly-

cine change at residue 310 in a murine coronavirus spike protein

resulted in increased virulence11 through decreased stability of

the viral fusion machinery.

This analysis has clear limitations. Virus phylogeny studies, for

example, can have sampling bias as well as statistical bias in the

inference model used.12 However, it should be relatively

F IGURE 1 Dominant viral clades in United States clade B1 (orange) and clade A2a (blue) https://nextstrain.org/ncov/north-america?c=clade_

membership&r=location. Accessed 15 April 2020
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straightforward to test the virulence of various viral strains of SARS‐
CoV‐2 in vitro, in particular those that have variability at residue 614

of the viral spike protein.

This suggests that competition between viral strains of varying

virulence may be at play during the COVID‐19 pandemic. It is unclear

whether current serologic or viral polymerase chain reaction‐based
assays are able to detect this variability.8 If this hypothesis is correct,

it may be important to develop assays based on local viral clades, to

determine the distribution of the virus and its spectrum of effects. It

may also be important for modelers to consider these possible var-

iations in SARS‐CoV‐2 viral pathogenicity as models are developed

for a gradual relaxation of social restrictions. In particular, differ-

ences and timing of the activation of innate or adaptive immunity to

both viral strains as the pandemic progresses could be considered.

F IGURE 2 Distribution of codon 614 in the SARS‐CoV‐2 coronavirus aspartic acid (aqua), glycine (orange) https://nextstrain.org/ncov/north-
america?c=gt-S_614&r=location. Accessed 15 April 2020. SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
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