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Abstract
After experiencing the same episode, some people can recall certain details about it, whereas others cannot. We investigate
how common (intersubject) neural patterns during memory encoding influence whether an episode will be subsequently
remembered, and how divergence from a common organization is associated with encoding failure. Using functional
magnetic resonance imaging with intersubject multivariate analyses, we measured brain activity as people viewed episodes
within wildlife videos and then assessed their memory for these episodes. During encoding, greater neural similarity was
observed between the people who later remembered an episode (compared with those who did not) within the regions of
the declarative memory network (hippocampus, posterior medial cortex [PMC], and dorsal Default Mode Network [dDMN]).
The intersubject similarity of the PMC and dDMN was episode-specific. Hippocampal encoding patterns were also more
similar between subjects for memory success that was defined after one day, compared with immediately after retrieval.
The neural encoding patterns were sufficiently robust and generalizable to train machine learning classifiers to predict
future recall success in held-out subjects, and a subset of decodable regions formed a network of shared classifier
predictions of subsequent memory success. This work suggests that common neural patterns reflect successful, rather
than unsuccessful, encoding across individuals.

Key words: episodic memory, encoding, hippocampus, MVPA, recall

Introduction
Imagine that two people witness a firefighter rescuing a cat
from a tree. The following day, both remember the episode well.
Were their brains functioning in the same manner to allow
them to successfully encode this episode, and later retrieve
it? Why might one person remember the steps taken by the
firefighter to convince the cat to climb down, but not how many
firefighters assisted, while her friend only remembers the cat’s
color? How can these friends differ in their particular memories
for this episode yet both remember stopping for ice cream on
the way home? This scenario highlights an important question:
how do the brains of people who witness the same episode

diverge during encoding to produce differences in what they
later retrieve, while at other times converge to give similarities
in what can later be remembered?

Successful episodic memory formation is associated with the
modulation of activity levels in the medial temporal, prefrontal,
and parietal lobes (Spaniol et al. 2009). More recently, a role
in memory encoding has been identified for the multivariate
patterns of activity found within memory regions. For instance,
items that are subsequently remembered show more consistent
activity patterns across repetitions (Xue et al. 2010). Similarly,
successfully encoded words have greater neural similarity with
each other than do words that are not encoded (Davis et al. 2014).

https://academic.oup.com/
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Findings of relationships between pattern similarity during
encoding and subsequent memory performance have largely
been restricted to patterns recorded within an individual brain’s
unique spatial pattern organization (LaRocque et al. 2013; Xue
et al. 2013; with some exceptions noted below). Therefore, ques-
tions remain about the existence of a common “intersubject”
(e.g., across-participant rather than across-item) neural pattern
that indicates successful, or failed, encoding.

There is reason to believe that shared encoding signals might
be observed across people. The univariate blood oxygenation
level-dependent (BOLD) response of voxels in temporal regions,
including the parahippocampal gyrus, has a more similar time-
course between the pairs of subjects who subsequently remem-
ber a video, compared with subjects who do not (Hasson et al.
2008), suggesting that successful versus failed encoding have
systematic differences in key regions. These regions might con-
tain (time-invariant) multivariate signals across people that dif-
ferentiate successful from failed encoding. Such intersubject
signatures have provided insights into a variety of psychology
phenomena, including social structures (Parkinson et al. 2018),
psychological perspectives (Lahnakoski et al. 2014), and seman-
tic memory (Shinkareva et al. 2011).

What forms might intersubject neural signatures of success-
ful memory encoding take? On the one hand, neural repre-
sentations evoked during encoding might be idiosyncratic to
each individual, allowing within-subject, but not intersubject,
similarity (Todd et al. 2013). This could arise from natural vari-
ation in how people process a video during memory encoding.
For instance, actively relating stimuli to past personal experi-
ences during an initial exposure might give distinct encoding
signatures across people due to their differing past experiences.
Similarly, alternate perceptual and attentive strategies during
encoding might reduce commonalities in people’s neural pat-
terns. On the other hand, if successful encoding involves a region
holding robust representations of observed episodes, the under-
lying neural representations might be common across people
due to the shared episode. In this case, the generalizability of
one person’s neural representation to others’ might index how
well a particular episode is represented during encoding, which
in turn will predict subsequent memory. Although the human
memory system likely includes regions that fulfill each of the
above scenarios, we have yet to identify the consequences of
shared patterns of encoding activity for subsequent memory.

In an initial step toward understanding the role of shared
patterns in memory success, Chen et al. (2017) investigated the
representations of audio-visual information during encoding
and recall using a novel “intersubject pattern correlation” frame-
work. Neural representations during encoding and subsequent
recall were highly similar within subjects in the posterior medial
cortex (PMC), medial prefrontal cortex, and parahippocampal
cortex (PHC). Moreover, subjects’ activity patterns during recall
were more similar to the recall patterns of other subjects, even
to a greater degree than with their own encoding patterns.
This pivotal study identified intersubject similarity during per-
ception but did not consider how this relates to subsequent
memory success (because the similarity reflected both encoded
and not-encoded information). The question thus remains of
whether (and how) intersubject similarity reflects encoding suc-
cess. Furthermore, is intersubject similarity present for infor-
mation that is not successfully encoded? These are important
questions because, when memory outcomes are not considered,
pattern-similarity can be driven by similar perceptual (but not
necessarily memory) representations (Chen et al. 2017). This

leaves open the question of which shared patterns are important
for whether an episode is successfully encoded or not. It is
also unclear if this similarity is based on shared patterns that
are idiosyncratic to an observed episode or are common to all
episodes.

We address these questions by directly comparing neural
representations during movie-viewing for episodes that were
subsequently remembered by some subjects, but not by others,
in regions of the brain’s memory systems and high-level cortical
regions. Subjects viewed naturalistic videos during a functional
magnetic resonance imaging (fMRI) scan and were then asked
to recall information pertaining to specific episodes within the
videos. Neural patterns for individual episodes (as well as those
collapsed across episodes) were compared between subjects
who later remembered, or did not remember, the details of
each individual episode. This allowed us to identify memory
signatures for encoding success, and for encoding failure, across
individuals, as well as to examine whether these shared patterns
contain information that is episode-specific or related to global
encoding.

Materials and Methods
Participants

Participants were recruited until 20 contributed usable data.
Twenty-three right-handed, native English speakers without a
learning or attention disorder were recruited from the Univer-
sity of Pittsburgh community (12 females, mean [M] age = 24.2,
standard deviation [SD] = 6.7). Three participants were excluded
from further analyses (one for excessive head movement dur-
ing the scan, one for a timing synchronization error with the
scanner, and one for an identified anatomical brain abnor-
mality). The remaining 20 participants’ data were included in
all the following analyses and results. The institutional review
board at the University of Pittsburgh approved all measures
prior to data collection. Participants were compensated for their
participation.

Stimuli and Materials

The stimuli consisted of 24 nature documentary video clips of
six unfamiliar animals (two fish, two birds, and two mammals;
four clips per animal) without sound. Animals were intention-
ally chosen based on their unfamiliarity in order to minimize the
effects of prior knowledge on memory retrieval (using familiarity
ratings through Amazon Mechanical Turk, in which independent
subjects rated familiarity on a scale of 1–5 [1 not familiar; 5 very
familiar]; animals in the current study: M = 1.9; control familiar
animals not included in the current study: M = 4.1). Each clip had
a 45-s duration.

Experimental Design

During the first session, subjects completed a brief demographic
questionnaire and safety procedures. Subjects then underwent
an anatomical scan, followed by four functional runs of viewing
the animal videos and three functional runs of tasks unrelated
to the videos (not analyzed here).

Prior to the functional runs, subjects were given brief
instructions to pay attention so they could answer a question
after each silent clip. Subjects were not told that their memory
would later be tested. Each of the four functional runs of video
clips consisted of one video clip for each of the six animals,
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interspersed with 4 s of a perceptual question (e.g., “Is this
animal smaller than a car?”), followed by 4 s of fixation (“+”),
before the next video clip began. All videos were presented
using MATLAB (R2017a) and the Psychophysics Toolbox Version 3
(Brainard 1997; Kleiner et al. 2007), which synchronized stimulus
onset with fMRI data acquisition. Upon completion of the scan,
subjects were asked to respond to questions about half of the
animals they had seen during the scan, with increasing degrees
of specificity: the first set of questions (lowest level of specificity)
asked subjects to freely recall as much information about each
of the animals’ videos as they could. Subjects were prompted
to type their answers in response to a general question (“Can
you tell me what you saw in the video?”) corresponding to one
of the animals they had seen during the scan. The second set of
questions probed subjects’ responses to more specific types of
memory: episodic (“If you had to describe a day in the life of this
animal, what would you say?”), semantic (“What do you now
know about this animal after watching this video?”), or spatial
(“Can you tell me about the places where this animal was?”). The
third (most specific) set included four episodic questions (e.g.,
“What did the animal do while it yawned?”), eight semantic
questions (e.g., “Describe this animal’s ears”), and four spatial
questions (e.g., “In which direction did the animal climb in the
ree?”). This final set of questions always referred to episodes
that were associated with specific time points from each of the
video clips (total of 24 episodes), allowing timestamps to be
created for each set of episodic questions, which is required for
the fMRI analyses we conduct here. Three independent coders
identified the specific video time points corresponding to each
episodic question. The three coders discussed any discrepancies
until a conclusion was reached on the video time window
corresponding to each question. The episodes corresponding
to each question ranged from 2 to 34 s (M = 8.79 s, SD = 8.88 s).

Subjects returned approximately 24 h after the first session
for a subsequent behavioral session in which they answered
the three types of questions for the other half of the animals
(i.e., those that had not been tested in the first session), and
completed cognitive surveys.

Individual Difference Measures

Subjects completed the Verbal-Visualizer Questionnaire, a sur-
vey that provides a measure of an individual’s reliance on verbal-
izing and visualizing dimensions (Richardson 1977); the Survey
of Autobiographical Memory (SAM), a self-report measure of a
person’s naturalistic mnemonic tendencies for episodic, seman-
tic, and spatial autobiographical memory (Palombo et al. 2013);
the Pittsburgh Sleep Quality Index, a survey which assesses an
individual’s quality of sleep in the past month (Buysse et al.
1989); and an animal familiarity survey, on which subjects rated
their pre-experiment familiarity (on a 1–7 Likert scale) with each
of the six animals. We verified that the SAM scores were not
redundant with subjects’ retrieval performance for the videos
(correlation between the number of episodes retrieved and the
episodic SAM scores: r = −.28, P = 0.229). Because these measures
were not redundant, we included both as fixed effects terms
within the regression models relating to memory in order to
control for such individual differences.

Behavioral Analysis

To quantify memory performance in response to the specific
set of episodic memory questions (e.g., “What did the animal

do while it yawned?”), an answer key was created by three
independent coders, who listed all possible correct answers to
each question while watching the videos. This answer key was
then used to score subjects’ responses as either entirely correct,
partially correct, incorrect, or did not recall. Discrepancies were
discussed by the coders until a final score was agreed upon,
which was then used to index memory performance for each
episode. For all following analyses, episodes were considered
“retrieved” if the response to the corresponding question was
scored as either entirely correct or partially correct. Episodes
with responses scored as either incorrect or did not recall were
considered “not-retrieved.”

fMRI Acquisition

Subjects were scanned at the University of Pittsburgh’s Neuro-
science Imaging Center using a Siemens 3-T head only Alle-
gra magnet and standard single channel radio-frequency coil
equipped with mirror device to allow for fMRI stimulus presen-
tation. The scanning session first consisted of a T1-weighted
anatomical scan (TR = 1540 ms, TE = 3.04 ms, voxel size = 1.00 ×
1.00 × 1.00 mm) acquired in the straight Sagittal plane, followed
by T2-weighted functional scans which collected BOLD signals
using a one-shot EPI pulse (TR = 2000 ms, TE = 25 ms, field
of view = 200 mm, voxel size = 3.125 × 3.125 × 3.125 mm, 36
slices, flip angle = 70◦, 168 volumes per functional run) acquired
parallel to the anterior commissure-posterior commissure line.
Whole brain coverage during the functional scans was achieved
in most subjects; however, if whole brain coverage was not
feasible, regions of the brainstem and cerebellum were clipped
as they did not comprise any of the regions of interest (ROIs).

fMRI Preprocessing

Preprocessing was performed using the Analysis of Functional
Neuroimages software (Cox 1996) and consisted of the following:
motion correction registration, high-pass filtering, and scaling
voxel activation values to have a mean of 100 (maximum limit
of 200). To allow us to compare intersubject data, structural and
functional images were warped to standardized space (Talairach
1988). Data were not smoothed. Following the preprocessing
and standardizing steps, functional data were imported into
MATLAB using the Princeton multivoxel pattern analysis toolbox
(Detre et al. 2006) and custom MATLAB scripts.

Regions of Interest

We focused our analyses on three categorizations of brain
regions (posterior, medial-temporal, and visual/attention)
because of their proposed involvement in episodic memory,
and perceiving dynamic stimuli. The posterior regions included
dorsal (dDMN) and ventral Default Mode Networks (vDMN), as
well as PMC and posterior cingulate cortex (PCC), while the
medial-temporal regions included hippocampus and PHC. The
visual/attention categorization consisted of anterior cingulate
cortex (ACC), as well as a primary visual region, and the fusiform
gyrus (FG), based on its response to biological motion and
animacy (Shultz and McCarthy 2014). This region also contains
multivariate patterns that reflect the properties of observed
animals (Coutanche and Koch 2018) and higher level visual
processing (Coutanche et al. 2016).

To isolate these ROIs, anatomical masks were defined for
FG, hippocampus, PHC, ACC (consisting of rostral and caudal



Neural Patterns of Successful and Failed Memory Encoding across People Koch et al. 3875

Figure 1. Regions of interest displayed on standard TT_N27 template brain. A (primary visual network: red; FG: turquoise; hippocampus: orange; PHC: blue; ACC: pink;

PCC: purple). B (dDMN: navy; vDMN: salmon; PMC: green).

subregions), and PCC within each subject’s native anatomical
space using FreeSurfer’s automated segmentation procedure
(http://surfer.nmr.mgh.harvard.edu; Fischl et al. 2002; Fischl
et al. 2004). Each subject’s anatomical ROI masks were then stan-
dardized to Talairach space. Using these standardized masks,
we created group-level masks for each of the aforementioned
anatomical ROIs consisting of only voxels that were present
in a minimum of 15 subjects. Additionally, ROIs for a primary
visual network, dDMN, vDMN, and PMC were taken from an
atlas defined using resting-state connectivity analyses (http://
findlab.stanford.edu/functional_ROIs.html; Shirer et al. 2012)
and warped to Talairach space. The PMC was identified as the
posterior medial cluster within the dDMN ROI, as utilized by
Chen et al. (2017). ROIs displayed on a standardized brain can be
seen in Figure 1.

intersubject Memory Encoding Signature

Pattern similarity was measured across subjects (Chen et al.
2017). The BOLD response timecourse belonging to time points
associated with every (subsequently tested) episode was shifted
by three TRs to account for the hemodynamic delay. For each
episode, we calculated an average activity pattern for these asso-
ciated TRs (i.e., average of the z-scored BOLD activity pattern vec-
tors collapsed across time), hereafter referred to as the episode’s
activity pattern. This procedure was conducted for each ROI,
resulting in episode activity patterns for each subject, within
each ROI (see Fig. 2). Each of the following pattern similarity
analyses uses these episode activity patterns.

The first analysis involved comparing representations during
the initial viewing of the animal video clips between subjects.
We compared one subject’s episode activity pattern with the
average activity pattern for the same episode from the remain-
ing 19 subjects using a Pearson correlation through a leave-
one-subject-out cross-validation. The resulting Pearson corre-
lation r-value was then Fisher-Z transformed. This procedure
was conducted 24 times (once for each episode) across 20 iter-
ations, where each leave-one-subject-out iteration compared a
subject’s episode activity pattern with the remaining group’s
average episode activity pattern using Pearson correlation.

After establishing a procedure to compare representations
between subjects, we then asked how such representations
might differ based on whether the particular episode had been
retrieved or not. We followed the same procedure as above,
but instead of correlating a subject’s episode pattern with the
entire group, we restricted the correlated group to only those
other subjects who also successfully retrieved the episode
(episodes scored as either entirely correct or partially correct).

We thus correlated each individual subject’s episode activity
pattern with a newly created “successful retrieval” group for
each episode. Because every subject retrieved some episodes
and not others, we could again conduct these correlations 24
times (once for each episode) across 20 iterations, where the
subjects included in the successful retrieval group varied based
on who had retrieved a particular episode.

Subjects’ memories were tested immediately after scanning
for half the animals and 24 h later for the other half. Because of
this, we compared these encoding/retrieval delays by restricting
the group average pattern to the same delay (i.e., either ∼ 15 min
or 24 h after encoding).

Finally, we compared global encoding patterns associated
with successful retrieval by averaging activity patterns across
all the episodes that a subject retrieved (i.e., collapsing across
episodes) and across all episodes that were not retrieved. We
followed the same procedures as described above but conducted
correlations between the individual’s average retrieved episode
pattern and the group’s average retrieved episode pattern (and
between an individual’s average not-retrieved episode pattern
and the group’s average not-retrieved episode pattern).

Statistical Analysis

We report the following results based on linear mixed effects
models (Baayen et al. 2008) that predict the Fisher-Z r-value
between activity patterns within each ROI. We employed vari-
ables for subject, animal, and episode as random effects within
each model (unless otherwise noted). We also included fixed
effects terms for episodic behavioral accuracy and SAM episodic
score (which had been mean-centered prior to inclusion in the
model). Results pertaining to statistical significance for specific
fixed effects factors were evaluated by comparing models with
and without the factor of interest, and inferred based on the
comparisons of AIC values (�AIC). When reporting mean and
SDs, we first calculated average values at the subject-level,
before calculating the group averages.

Machine Learning Decoding

We tested discriminability between the patterns of activity using
a machine learning classifier within each ROI. We trained and
tested a Gaussian Naïve Bayes (GNB) classifier on the average
encoding patterns for subsequently retrieved and not-retrieved
episodes for each subject, using a leave-one-subject-out cross-
validation approach. This was repeated 20 times, so that each
subject acted as the test subject once. Average classification
accuracy for the 20 cross-validation iterations resulted in

http://surfer.nmr.mgh.harvard.edu
http://findlab.stanford.edu/functional_ROIs.html;
http://findlab.stanford.edu/functional_ROIs.html;
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Figure 2. Overview of methodological approach for measuring the similarity of neural representations for individual episodes, and when collapsed across episodes.
Columns outlined in black represent episodes that were subsequently retrieved; columns outlined in gray represent episodes that were not subsequently retrieved.

Rows represent individual voxels within the ROI. Colors within the patterns represent z-scored BOLD response. A: Procedure for collapsing individual episodes within
a subject to create average patterns based on subsequent memory (retrieved and not-retrieved). B: Procedure for correlating patterns for average individual episodes
between each subject and other subjects showing successful retrieval. C: Procedure for correlating average patterns for collapsed episodes between individual subjects
and the group.

a single classification accuracy. Statistical significance was
calculated through permutation testing, in which a null
distribution of 10 000 values was generated by randomizing the
“retrieved” or “not-retrieved” labels for each subject. We also
examined “decoding concordance” between ROIs by conducting
a chi-square test of proportions of common classifier prediction
across regions (e.g., Coutanche and Thompson-Schill 2015).
This approach allowed us to determine whether the ROIs
show concordance in the information they carry as a network
(Anzellotti and Coutanche 2018) more than would be expected
if the ROIs functioned independently. Statistical significance for
the chi-square analysis was further supported by permutation
testing in which a null distribution of 10 000 chi-square statistic
values was generated by randomizing the classifier’s predicted
labels (“retrieved” or “not-retrieved”), and then calculating the
observed and expected frequencies.

Results
This study compared the neural patterns that underlie success-
ful or failed incidental encoding of episodes. Subjects’ brain
activity was recorded as they observed videos. Subsequent ques-
tions tested subjects’ memory for episodes within videos. We
examined neural signatures that were shared between subjects
when the same episode was successfully encoded (reflected
in success at answering the questions) versus unsuccessfully
encoded.

Behavioral Memory Performance

Subjects differed in the number of questions they answered
correctly (M = 7.95, SD = 3.22, range = 4–16).

intersubject Memory Encoding Signature

We first investigated neural activity recorded as subjects viewed
the episodes, without considering subsequent memory success.
This first analysis of intersubject patterns during encoding
was consistent with previous studies by finding similar neural

Table 1 Representational similarity (Fisher-Z r-values) within regions
showing statistically significant differences between retrieved and
not-retrieved episodes

Region Retrieved Not-retrieved

Hippocampus 0.02 (0.03) 0.00 (0.02)
PMC 0.04 (0.04) 0.00 (0.03)
dDMN 0.03 (0.03) 0.01 (0.01)

Note. Values reflect mean. Values within parentheses reflect SD.

representations across subjects viewing the same dynamic
stimuli (Chen et al. 2017). The primary visual network (B = 0.19,
P < 0.001), FG (B = 0.05, P = 0.015), ACC (B = 0.03, P = 0.024), and PCC
(B = 0.06, P = 0.010), as well as the dDMN (B = 0.02, P = 0.017) and
vDMN (B = 0.05, P = 0.011), each showed significant similarity in
their neural representations for each individual episode. The
PMC showed a trend toward statistical significance (B = 0.02,
P = 0.062). No other ROIs had neural representations with
significant similarity (all Ps > 0.420).

In order to determine whether representations varied
between episodes based on subsequent memory, we included
a fixed effect within the regression models for each ROI to
indicate whether the subject had successfully retrieved the
episode or not. This factor for retrieval success was a significant
predictor within the hippocampus (� AIC = −3.04, χ2(1) = 5.04,
P = 0.025), PMC (� AIC = −6.77, χ2(1) = 8.77, P = 0.003), and dDMN
(� AIC = −3.00, χ2(1) = 5.01, P = 0.025), see Figure 3. No other
ROIs showed statistically significant differences (all Ps > 0.194).
Within each statistically significant ROI, the retrieved episodes
had greater similarity (Fisher-Z r-value) than not-retrieved
episodes, see Table 1 for more details.

We next asked whether the above results might reflect a
classic (univariate) subsequent memory effect (Brewer et al.
1998; Kim 2011; Wagner et al. 1998), rather than patterns of
representations, using several different approaches. First, we
used the same regression framework above to test whether
each of the three ROIs (with multivariate effects) also had
different univariate responses based on subsequent retrieval
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Figure 3. Representational similarity, quantified as Fisher-Z r-values, of individual retrieved and not-retrieved episodes within each ROI. ∗indicates statistical
significance (P < 0.05). Error bars reflect the standard error of the mean.

success. The factor for retrieval success was a significant
predictor of univariate activity within the dDMN (� AIC = −2.33,
χ2(1) = 4.33, P = 0.037), but not within the hippocampus nor PMC
(both Ps > 0.096). Within the dDMN, retrieved episodes had less
activity than not-retrieved episodes (dDMN: Mretrieved = −0.03,
SDretrieved = 0.09, Mnot-retrieved = 0.01, SDnot-retrieved = 0.05). This
suggests that a subsequent memory effect cannot explain
the multivariate effects observed within the hippocampus
and PMC, though might for the dDMN (a negative subsequent
memory effect; though we note these are not mutually
exclusive).

Second, we asked whether the patterns that predicted
subsequent retrieval were episode-specific (i.e., represented
content of the episodes), or if they reflected a global memory
signal (such as that associated with the subsequent memory
effect). We examined this by asking whether intersubject
patterns of the same successfully recalled episode were more
similar to each other than to intersubject patterns of other
successfully recalled episodes. A global memory signal without
content information would not distinguish between episodes
that are all successfully retrieved (as all would contain the
same global memory signal). For each subject, the pattern
of each retrieved episode was correlated with the average
pattern from other subjects who also successfully retrieved
the same episode. This was compared with the correlation
between each retrieved episode and a different retrieved
episode’s average pattern from the other subjects. We note
that this was restricted to successfully retrieved episodes, so
that any differences must reflect episode-specific information,
beyond a general signal of retrieval success. These Fisher-Z r-
values were analyzed using a similar regression framework as
described above. Our key predictor was the difference between
the same-episode comparisons (e.g., subject’s episode 2 and
group’s episode 2) and the different-episode comparisons (e.g.,
subject’s episode 2 and group’s episode 5). Patterns of activity
within the PMC and dDMN showed evidence of episode-specific

content (PMC: � AIC = −11.90, χ2(1) = 13.89, P < 0.001; dDMN:
� AIC = −14.20, χ2(1) = 16.20, P < 0.001). In both regions, there was
greater representational similarity between the same-episode
comparisons than the different-episode comparisons (PMC:
Msame = 0.04, SDsame = 0.04, Mdifferent = 0.01, SDdifferent = 0.02;
dDMN: Msame = 0.03, SDsame = 0.03, Mdifferent = 0.01, SDdifferent =
0.02). Patterns of activity from the hippocampus did not reach
statistical significance for this comparison (P = 0.170), although
the numerical difference between the same- and different-
episode comparisons was in the same direction as in the
PMC and dDMN (Hippocampus: Msame = 0.01, SDsame = 0.03,
Mdifferent = 0.00, SDdifferent = 0.01). These findings suggest the
PMC and dDMN contain episode-specific information in their
patterns of subsequently retrieved episodes (and not simply a
global memory signal), though patterns in the hippocampus
were less episode-specific. It is worth noting that the earlier
dDMN finding of a (negative) subsequent memory effect
and these episode-specific patterns are not contradictory,
because an overall univariate response and representational
patterns can (and frequently do) coexist in a region’s activity
(Coutanche 2013).

We next asked if the shared similarity, in addition to pre-
dicting retrieval success, would reflect the amount of details
that was spontaneously recalled in the free recall task. Inde-
pendent coders identified and totaled each meaningful unit of
information in every subject’s set of free-recall responses. Linear
regression models used these values to predict the strength of
each subject’s representational similarity with other subjects
(for successfully retrieved episodes). Within the three regions
showing multivariate differences between retrieved and not-
retrieved episodes (as measured through the specific cued recall
questions), we did not find a relationship with the number of
details spontaneously given during free recall (all Ps > 0.287),
suggesting that intersubject similarity was particularly sensitive
to accuracy to questions about specific episodes, rather than an
open-ended free recall cue.
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Table 2 Representational similarity (Fisher-Z r-values) within hip-
pocampus

Day Delays included in
group comparison

Retrieved Not-retrieved

1 Both delays 0.00 (0.04) 0.00 (0.03)
2 Both delays 0.03 (0.05) −0.01 (0.03)
1 Same delay 0.00 (0.05) 0.00 (0.04)
2 Same delay 0.05 (0.05) 0.00 (0.04)

Note. Values reflect mean. Values within parentheses reflect SD. Day 1 refers to
episodes retrieved on the same day as initial movie viewing (∼15 min later) and
Day 2 refers to episodes retrieved on the day following movie viewing (24 h later).
Delays included in group comparison refer to the makeup of the group to which
the individual subjects’ episode patterns were compared. In the first analysis, we
collapsed across all subjects to create the group average pattern (both delays),
whereas in the second analysis, we restricted the group average pattern to only
include subjects who had the same delay as the individual subject to which they
were being compared (same delay).

In order to determine whether the encoding/retrieval delay
moderates the relationship between the observed intersubject
encoding signature and future retrieval success, we compared
a model with a fixed effect term for the interaction between
retrieval success and day of retrieval (same or following day),
to the same model without this interaction, within the three
regions that reflected subsequent retrieval success (hippocam-
pus, PMC, and dDMN). The hippocampus showed a significant
interaction between day and retrieval success (� AIC = −4.58,
χ2(1) = 6.57, P = 0.010). The mean correlation values showed that
hippocampal pattern similarity for the retrieved episodes was
greater for the longer retrieval delay (i.e., between Days 1 and
2) than for the shorter retrieval delay, see Table 2 for details.
Neither the PMC nor dDMN ROIs showed statistically significant
differences between days (Ps > 0.497).

We then probed this effect further in the hippocampus by
restricting our group average pattern to only include subjects
from the same delay group (i.e., either ∼ 15 min or 24 h), to
more directly hone in on effects of time delay between encoding
and retrieval. Again, the hippocampus showed a significant
interaction between day and retrieval success (� AIC = −9.66,
χ2(1) = 11.66, P < 0.001), see Table 2 for means across both days.
As before, the mean correlation values showed greater hip-
pocampal pattern similarity for the retrieved episodes from Day
2, compared with Day 1.

We have shown that neural representations are more similar
for episodes that are subsequently retrieved compared with
those that are not retrieved; however, it is possible that such
differences could be driven by the amount of variance within
the temporal signal of retrieved versus not-retrieved episodes.
Greater variance in signal for either the retrieved or not-
retrieved episodes could influence the maximum possible
similarity values for one of these categories. To test this
possibility, we calculated the SD of the time course of all
episodes that were subsequently retrieved, and separately, for
all episodes subsequently not-retrieved within each subject.
No statistically significant differences were observed in the
variances of the average BOLD signal between retrieved and
not-retrieved episodes, in any of the ROIs (all Ps > 0.109), thus
systematic differences in temporal variance could not account
for our results.

So far, we have shown that the encoding neural representa-
tions underlying individual episodes systematically vary based
on whether they are subsequently remembered. One remaining
question is whether this generalizes across all episodes (i.e.,

Table 3 Representational similarity (Fisher-Z r-values) within regions
showing statistically significant differences between average
retrieved and not-retrieved episodes

Region Retrieved Not-retrieved

Hippocampus 0.04 (0.08) −0.03 (0.08)
PCC 0.18 (0.26) 0.00 (0.12)
dDMN 0.08 (0.10) 0.03 (0.05)

Note. Values reflect mean. Values within parentheses reflect SD.

whether this can be extracted after collapsing across episode-
specific patterns). To address this, we calculated representa-
tional similarity using each individual’s average pattern and
the group’s average pattern collapsed across episodes (rather
than patterns for each individual episode). Because we averaged
across episodes, subject was the only random effect in these
models. The similarity between individuals and the group
was significantly different between all episodes that were
subsequently retrieved versus all those not retrieved within the
hippocampus (�AIC = −4.22, χ2(1) = 6.22, P = 0.013), PCC (� AIC
= −5.85, χ2(1) = 7.85, P = 0.005), and dDMN (� AIC = −2.62,
χ2(1) = 4.62, P = 0.032) as well as trending toward statistical signif-
icance in PHC (�AIC = −1.79, χ2(1) = 3.79, P = 0.052), see Figure 4.
No other ROIs showed statistically significant differences (all
Ps > 0.126). Within the statistically significant ROIs, the average
retrieved representations had greater similarity (mean Fisher-
Z r-values) than the average not-retrieved representations
(see Table 3 for more details). Interestingly, the PHC showed a
trending effect in the reverse direction, where the average not-
retrieved representations had greater similarity than retrieved
representations.

In comparing results from the patterns of individual episodes
(Fig. 3) and the patterns that were collapsed across episodes
(Fig. 4), we found average representational similarity values that
were numerically higher when collapsing across the episodes.
We believe this is likely to be because (by design) the col-
lapsed patterns include more time-points from the videos. Col-
lapsing across idiosyncrasies that influence patterns for indi-
vidual episodes (which have a small number of time-points)
averages-out idiosyncrasies, leaving a more reliable signal (See
Supplementary Material for more details).

To again ask whether the above results might include a
classic (univariate) subsequent memory effect, we used the
same regression framework as above to test whether the three
ROIs that showed multivariate effects for averaged episodes
also had average univariate activity that differed based on
subsequent retrieval success. The factor for retrieval success
was a significant predictor of activity within the dDMN (� AIC
= −2.06, χ2(1) = 4.06, P = 0.044), but not within the hippocampus
nor PCC (both Ps > 0.344). Within the dDMN, the average
retrieved episodes had less activity than the average not-
retrieved episodes (dDMN: Mretrieved = −0.03, SDretrieved = 0.09,
Mnot-retrieved = 0.01, SDnot-retrieved = 0.05). This suggests that (in a
similar manner to individual episodes) intersubject similarity
for averaged episodes in the hippocampus and PCC cannot be
attributed to the subsequent memory effect, while the dDMN
shows this effect.

Machine Learning Decoding

We trained GNB classifiers in a between-subject classification
to decode the average retrieved and not-retrieved patterns from

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa003#supplementary-data
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Figure 4. Representational similarity, quantified as Fisher-Z r-values, of average retrieved and not-retrieved episodes within each ROI, collapsed across episodes.
∗indicates statistical significance (P < 0.05). Error bars reflect the standard error of the mean.

each subject (used in the representational similarity analyses
above). Classifiers trained on the average patterns from each
of seven regions were able to decode subsequently retrieved
from not-retrieved encoding patterns (statistical significance
calculated from permutation testing): FG (M = 0.68, P = 0.033),
ACC (M = 0.75, P = 0.002), PCC (M = 0.80, P = 0.001), PMC (M = 0.70,
P = 0.013), dDMN (M = 0.72, P = 0.007), and vDMN (M = 0.75,
P = 0.003). No other ROIs showed statistically significant
differences (all Ps > 0.095).

Finally, to complement these classification results, we asked
if there was contingency in the classifiers’ predictions of pat-
terns (as either subsequently retrieved or not-retrieved) between
the ROIs with decoding success. Significant contingency would
reflect a shared basis for discriminating encoding patterns. We
used a chi-square analysis to statistically evaluate the concor-
dance of ROI classification performance by comparing the actual
(i.e., observed) concordance to that expected by independence.
Here, concordance means that a pair of ROI classifiers predicts
the same label (i.e., in agreement for predicting subsequent
memory outcome as either retrieved or not-retrieved), regard-
less of the prediction’s accuracy (since ROIs were only included
if they were able to successfully classify better than chance).
We perform this analysis using four of the isolated ROIs that
could successfully classify between the average retrieved and
not-retrieved patterns (FG, ACC, PCC, and PMC). We excluded the
dorsal and ventral DMN from this analysis as they encompass
multiple anatomical regions and overlap with the other ROIs to
be analyzed.

Examining the four ROIs together, classifier predictions were
more concordant than would be expected if the ROIs’ classifica-
tion varied independently (χ2(5) = 14.69, P = 0.012). Results were
further supported through permutation testing which formed
a null distribution of Chi-Square statistics resulting from the
observed and expected frequencies for each of 10 000 iterations
of random permuting (P = 0.019). Because the four ROIs together
displayed evidence for a possible network of concordance, we

next examined concordance between pairs of regions, again
using a Chi-Square analysis. Two of the six pairwise compar-
isons resulted in greater concordance than would be expected if
independent: ACC & PMC and PCC & PMC, as displayed in Table 4.
As before, these results were further supported through permu-
tation testing involving 10 000 iterations. Figure 5 depicts these
regions in a network of concordance for predicting subsequent
memory outcome.

Discussion
We have asked how the similarity of neural representations
across people during memory encoding reflects encoding
success (as indicated by subsequent retrieval), and encoding
failure. First, we identified a neural pattern that is common
across subjects regardless of subsequent memory within
posterior (PCC and DMN) regions, visual regions, and the ACC,
supporting findings from previous research (Chen et al. 2017;
Hasson et al. 2004) that neural representations in attention-
modulated regions of the brain (Davis et al. 2000) are similar
across subjects viewing individual episodes. We extend our
understanding by relating a common spatial organization
during initial perception to behavioral outcomes of memory.
Importantly, shared information is present in neural signals
during encoding that can be related to successes and failures in
retrieval. Notably, more than a general global memory signal
(without episodic content), intersubject patterns within the
dDMN and PMC reflect the content of retrieved episodes.
This suggests that the neural processing underlying these
shared patterns includes unique episode-specific information.
It was not previously known that intersubject neural markers
specific to encoding success (versus failure) contained this
level of information, thus shedding light on this common
neural processing. An alternative organization was for the
underlying encoding processing to be more idiosyncratic to
each person, such as through relating an episode to one’s
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Table 4 Frequency table of classifier performance

Classifier predictions Agreement Disagreement χ2(1) P P (permutation)

ACC & PCC 30 (26) 10 (14) 1.76 0.185 0.155
ACC & PMC 30 (24) 10 (16) 3.75 0.053 0.039
ACC & FG 27 (23.5) 13 (16.5) 1.26 0.261 0.206
PCC & PMC 32 (24.8) 8 (15.2) 5.50 0.019 0.021
PCC & FG 29 (24.2) 11 (15.8) 2.41 0.121 0.139
PMC & FG 23 (22.8) 17 (17.2) 0.00 0.949 0.978

Note. Pair-wise observed frequencies of classifier agreement. Expected frequencies for independence are displayed in parentheses. Bold indicates statistically
significant classifier concordance from permutation testing.

Figure 5. Depiction of the discrimination network of subsequently retrieved and not-retrieved outcomes based on encoding activity. The network consists of ACC, PCC,

and PMC. Panel A depicts the observed frequencies of classifier concordance. Width of connecting bars between regions depicts the magnitude of Chi-Square statistic
for classifier predictions. Panel B depicts the expected frequencies of classifier concordance if the regions were independent. Values within black boxes indicate the
frequency of classifier agreement; values within white boxes indicate the frequency of disagreement.

own experiences or unique set of knowledge. This sort of
individualized processing is unlikely to be accompanied
by similarity across a group of people. Without comparing
patterns across people (as we do here), it would not have been
possible to determine if neural patterns were consistent or
individualized. For instance, multivariate analyses conducted
within subjects can give significant results at the group level
despite differing neural principles at the individual level (Todd
et al. 2013). In contrast, intersubject similarity reflects a shared
neural basis—in this case for the successful encoding of
episodes.

Chen and colleagues showed that regions within the DMN
have event-specific activity patterns that are common across
subjects during recollection (Chen et al. 2017). Our evidence sug-
gests that these regions also have common encoding patterns
that predict future retrieval success. Thus, more than reactivat-
ing earlier perceptually driven activity, the intersubject activity
patterns evoked during recollection in Chen et al. (2017) likely
are also impacted by the encoding processes taking place during
an initial experience. Retrieval will then be affected by both the
earlier encoding patterns, and the shared patterns evoked dur-
ing retrieval itself. This is in line with theories that point to the
importance of cognitive and neural processing during the encod-
ing phase for the ability to later retrieve a memory (Hebscher
et al. 2019; McDaniel et al. 1986; Uncapher and Wagner 2009). On
the other hand, other regions with reactivated shared patterns
during retrieval, such as high-level visual areas (Chen et al. 2017),
did not show a relationship between intersubject similarity and
encoding, suggesting that their influence on encoding might be
more individualized.

For the first time, we examined intersubject neural patterns
of encoding by comparing subjects for whom the same episode

is subsequently retrieved successfully versus unsuccessfully.
Within the hippocampus, greater intersubject similarity pre-
dicted future memory retrieval based on patterns for individual
episodes, and collapsed across episodes. Hippocampal patterns
for the same successfully retrieved episodes were not more
similar to each other (across subjects), than with patterns for
different episodes. This suggests that common hippocampal
representations are not merely driven by stimulus-specific fea-
tures during encoding but rather reflect a fundamental shared
pattern of neural activity for encoding (Richter et al. 2016)—
a global encoding signal for subsequent memory success. The
involvement of the hippocampus in episodic memory encoding
is not surprising (Tulving and Markowitsch 1998), but we report a
novel finding in identifying a common pattern of neural activity
between people that relates to future memory success or fail-
ure. Additionally, greater similarity of intersubject hippocampal
patterns for following-day (rather than same-day) retrieval is in
line with research implicating the hippocampus as serving a
role in the durability of memory (Sneve et al. 2015). This finding
extends prior work by showing that the importance of the length
of the delay extends to intersubject representational similarity
for dynamic episodes (Ranganath and Hsieh 2016).

In contrast to the greater similarity for retrieved episodes
within hippocampal patterns, we observed a trending result
in the opposite direction (greater similarity for not-retrieved
episodes) for intersubject patterns of PHC. The PHC includes
regions that engage in scene and place processing (Epstein
2005), so a possible driver is greater attention to the location
and context of not-retrieved episodes, rather than the temporal
component that is necessary for episodic memory (Howard and
Kahana 2002). This shared attention to the scene might lead to
greater similarity across people.
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The multivariate approach we used allowed us to investigate
the discriminability of neural patterns for episodes that were
remembered and those that were not. Classifiers trained on
activity from both the dorsal and ventral DMNs could success-
fully predict subsequent memory outcomes in held-out individ-
uals. Additionally, we identified a network of regions related to
memory outcomes. Our concordance analysis of machine learn-
ing predictions suggested a network of three key regions: ACC,
PCC, and PMC, where the PMC is a hub in which the represen-
tations of subsequent memory outcome are similar to those of
ACC and PCC (resulting in more congruent classifier predictions
than would be expected if the regions were independent). Note
also that concordance between these regions is not merely a
result of having similar classification performance, as shown
by the absence of the FG in the network, despite its similar
overall performance. Our work adds to a growing literature of
group-level similarity and decoding, notably the use of leave-
one-subject-out cross-validation (Wang et al. 2020), as a viable
alternative to traditional methods of within-subject decoding,
which can inform us about commonalities in neural activity
across subjects.

While this study is an initial foray into tracking differences in
subsequent memory success via shared patterns during encod-
ing, there is room for us to expand our knowledge based on
the methodology and approaches used in this study. Here, we
categorized subsequent memory performance as either a suc-
cess or a failure. This binary classification, while useful for
identifying whether a particular episode was remembered or
not, does not provide a comprehensive description of a person’s
memory. Within only those people who had retrieved an episode,
there may still be differences in memory performance that are
not quantified here. In an analysis of the number of details
spontaneously free recalled, we did not find a relationship with
intersubject similarity, though future studies could be designed
to optimally examine this. Such investigations might wish to ask
whether similarity in neural representations falls along a type
of continuum that tracks other behavioral indicators of mem-
ory. Additionally, our analysis provides evidence that common
neural similarity is not simply driven by a global large-scale
indicator of a person’s memory, but moreover can reflect specific
episodes. Furthermore, the current study instructed subjects to
watch the videos and respond to basic perceptual questions,
but future studies might investigate how neural representations
differ depending on intentionality. For instance, the intention
to remember items can sometimes result in worse memory
performance than when not intending to remember (Storm
et al. 2007), but it is yet unknown how intentions might impact
common neural representations across people. Relatedly, it can
be asked whether the neural signatures we have identified can
be connected to whether or not a subject attempts to remember
a specific episode, in addition to whether or not they were
ultimately successful.

What are the possible reasons for greater intersubject simi-
larity for successfully encoded episodes? One possibility is that
subjects who later successfully retrieved an episode used similar
(effective) encoding strategies, reflected in similar encoding
neural activity. Episode-specific information was detected in the
common patterns of some regions, so any such encoding strat-
egy likely involves processing the content of the episode, rather
than being a more general global signal. This content might
reflect narrative or situational elements of episodes, which
have been linked to the shared DMN activity patterns (Chen
et al. 2017). Future studies might wish to probe or manipulate

subjects’ encoding strategies (e.g., trying to focus solely on the
animal, building a narrative story to connect the actions into
a coherent plot, etc.) to examine the role these might play
on intersubject similarity. Alternatively, a drop in intersubject
similarity for episodes that are not later retrieved might
reflect a failure to deeply engage with the episode when it is
presented, due to an attentional shift or interfering process.
These possibilities could be directly tested in future research.

To summarize, we have identified shared neural signatures
of memory encoding that differ based on future retrieval per-
formance. This relatively novel approach of investigating neural
representations for not only encoding success, but also failures
of encoding, shows that common neural signatures go beyond
basic perceptual information and instead reflect memory-
encoding processes that are linked to memory formation.
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Supplementary material is available at Cerebral Cortex online.
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