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ABSTRACT Flagellar length control inChlamydomonas is a tractable model system for studying the general question of organ-
elle size regulation. We have previously proposed that the diffusive return of the kinesin motor that powers intraflagellar transport
can play a key role in length regulation. Here, we explore how the motor speed and diffusion coefficient for the return of kinesin-2
affect flagellar growth kinetics. We find that the system can exist in two distinct regimes, one dominated by motor speed and one
by diffusion coefficient. Depending on length, a flagellum can switch between these regimes. Our results indicate that mutations
can affect the length in distinct ways. We discuss our theory’s implication for flagellar growth influenced by beating and provide
possible explanations for the experimental observation that a beating flagellum is usually longer than its immotile mutant. These
results demonstrate how our simple model can suggest explanations for mutant phenotypes.
SIGNIFICANCE The eukaryotic flagellum is an ideal case study in organelle size control because of its simple linear
shape and well-understood building mechanism. In our previous work, we proved that flagellar length in the green algae
Chlamydomonas can be controlled by the diffusive gradient of the kinesin-2 motors that deliver building blocks to the tip. In
this study, we expand on the analytical formulation of the diffusion model to show how physical parameters affect final
length and regeneration time, enhancing the model’s potential to explain length mutants and motivate future research with
precise predictions.
INTRODUCTION

Biologists have long been trying to understand how cells
build themselves. The proteins that cells synthesize must
come together to form massive organized structures without
any guidance. A striking case of this is that some single-
celled organisms can regenerate missing pieces, implying
that the cell has some form of design specifications
embedded within it that allow the cell to reconstruct the cor-
rect form. The single-celled algae Chlamydomonas rein-
hardtii is an ideal organism for studying single-cell
organelle regeneration because it has two linear flagella
that grow back upon being cut or shed (1). The kinetics of
flagellar growth have been well documented, and much is
known about the inner components of the flagellum and
its growing process, but how the flagellum consistently rea-
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ches the same steady-state length is a mystery. Multiple
different theoretical models have been developed to explain
this robust regeneration, and recent work demonstrated the
feasibility of a model in which the length of the flagellum
is governed by a diffusive gradient across its length (2,3).

In this study, we further develop the diffusion model by
deriving the growth curve analytically as a function of
time and the relevant physical parameters. This shines light
onto which factors are limiting at different stages in the
growth. It also lets us predict steady-state length from
observed physical parameters and predict physical parame-
ters from observed steady-state length.

To understand the length-control model, one must first
understand how a Chlamydomonas cell builds its flagella.
The flagellum is made of nine doublet microtubules, and
to get longer, new tubulin (the building blocks of microtu-
bules) must be delivered to the flagellar tip. The mechanism
for transporting tubulin to the tip is called intraflagellar
transport (IFT) (4–8). In IFT, tubulin and other building ma-
terials such as axonemal dynein arms are bound to protein
complexes of �20 polypeptides called IFT particles. These
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Speed and Diffusion of Kinesin-2
IFT protein complexes form linear arrays called ‘‘trains’’
and are pulled to the distal tip by heterotrimeric kinesin-2
motors (9–12). Upon arrival at the tip, the tubulin and other
building blocks are added to the flagellum, increasing its
length. To counter this length increase, tubulin is continually
removed from the flagellar tip at a constant, length-indepen-
dent rate (13,14). Cytoplasmic dynein-2 motors carry the
IFT particles back to the base (15,16). IFT happens contin-
uously throughout the lifespan of a Chlamydomonas cell,
and when the rate of IFT-driven assembly equals the rate
of length-independent tubulin removal, steady-state length
is achieved.

IFT begins through a process called ‘‘injection’’ in which
IFT trains are released from docking sites at the flagellar
basal body and transition zone and are transported into the
flagellum itself (17). Injection is not fully understood, but
it appears that IFT material injects into the flagellum from
the basal body upon accumulation of motors in the basal
body. Quantitative live-cell imaging has shown that the
rate of injection is a decreasing function of the length of
the flagellum (18,19). This implies some sort of sensing
mechanism that allows the basal body to sense the flagellar
length. The sensing mechanism here is unknown and is
the core puzzle that length-control models try to solve
(18,20,21).

The flagellar length regulation problem is an ideal system
for mathematical biology because the flagellum has a simple
geometry, an easily simplified building and degrading
process, and a mysterious control mechanism that has
eluded scientists of all disciplines for generations. As a
result, there have been several models for length control
that have been studied in detail (20). Some models, such
as the time-of-flight model in which the IFT particles can
be somehow deactivated if they have been in the flagellum
for a long time, have been ruled out when the experiment
failed to confirm predictions from the model (21). Several
models can still explain all experimental results, including
the ciliary current model, in which ion channels lining the
flagellum at regular intervals regulate the electric potential
inside the flagellum and thus regulate length (20). In this
study, we will further develop the diffusion model, in which
the length-dependent rate of IFT is generated by the kinesin
motors diffusing back to the basal body from the tip, using
the time it takes to diffuse back as a proxy for length mea-
surement (2). One reason that we focus on this model is that
the diffusion model is the most parsimonious, in the sense
that it does not require any additional components other
than those already known to explain length regulation.
The other models require additional molecular components
to transduce a length-dependent signal to the IFT injection
system. Moreover, the diffusion model has the most support
from experimental results, most notably from a recent study
in which kinesin motors were observed to diffuse from the
tip to the base but are not actively transported back to the
base (22), whereas the other components of IFT trains are
transported back to the flagellar base by IFT dyneins
(15,16). When retrograde IFT stopped, all other parts of
the IFT train, but not kinesin, are accumulated at the
flagellar tip (23). By further developing the diffusion model,
we make predictions that will motivate experiments that
would not have been obviously useful in distinguishing
length-control models.

In the model explored by Hendel et al., the longer the fla-
gellum, the longer it takes for kinesins to diffuse back to the
base, and therefore, the longer it takes for enough kinesins
to accumulate in the base to power injection (2). This
explains, in principle, how longer flagella inject less build-
ing material per second. The model assumes that kinesins
are conserved and not drawn from the cell body in signifi-
cant number. This would eliminate the need for a currently
undiscovered signaling pathway and would allow the
already-known components of IFT to generate their own
length dependence. In this study, we will take the conclu-
sions from Hendel et al. and further develop the analytical
formalism of the diffusion model to show how altering
the diffusion coefficient and IFT velocity would affect ob-
servables like steady-state length and regeneration time
(2). Hendel et al. (2) mainly focused on diffusion coefficient
and briefly focused on motor velocity, but here, we examine
flagellar growth when considering these two parameters
together. This study provides a mean-field description of
our previous stochastic simulations in Hendel et al. 2018
(2). The model is mathematically rigorous and analytically
tractable, thus providing a clearer picture to look at different
regimes for different parameters than the stochastic simula-
tions. We identified three factors that limit flagellar growth
at different phases of its regeneration, which led to two
possible rate-limiting steps of flagellar growth at steady
state. We then used the upgraded model to attempt to
explain observed length changes in length-altering mutants
by calculating what changes in diffusion coefficient and IFT
velocity are necessary. We arrived at the conclusion that
changes in diffusion coefficient may be responsible for the
length changes in the mutants.
MODEL

We treat the flagellum as a linear track for kinesin motors
(Fig. 1). The position on the track is labeled by x, with
x ¼ 0 corresponding to the base and x ¼ L(t) corresponding
to the tip of the flagellum, where L(t) is the length of the fla-
gellum at time t. We distinguish four populations of kinesin
motors: 1) motors that actively carry cargos from the base to
the tip with a constant velocity v, 2) motors that accumulate
at the tip after the delivery, 3) motors that diffuse back to the
base from the tip with a diffusion coefficient D, and 4)
motors that accumulate at the base when diffusion is
completed.

The linear number density of active motors ra (x, t) of
type 1 is governed by the equation
Biophysical Journal 118, 2790–2800, June 2, 2020 2791



FIGURE 1 Illustration of the model. Molecular motors carry the building

blocks for flagellar assembly from the base to the tip and travel with a con-

stant speed v. When reaching the tip, the motors unload the cargo, and the

flagellum elongates by a unit of d. The motors dwell at the tip and switch to

a diffusive state with a transition rate kt. The motors diffuse back to the base

with a diffusion coefficient D and accumulate at the base, waiting for injec-

tion into the flagellum with a transition rate ki. The flagellum has a sponta-

neous disassembly rate of rd. The total number of molecular motors is

assumed to be constant. To see this figure in color, go online.
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vtraðx; tÞ ¼ � vxJaðx; tÞ; (1a)

with the convective current

Jaðx; tÞ ¼ v raðx; tÞ: (1b)

The number of type 2 motors Nt dwelling at the tip is
described by

dNt

dt
¼ JaðL; tÞ � ktNt; (2)

where kt is the transition rate for a motor dwelling at the tip
switching to a diffusive state.
The linear number density of diffusive motors rd (x, t) of
type 3 obeys the simple diffusion law:

vtrdðx; tÞ ¼ � vx Jdðx; tÞ; (3a)

with the diffusive current
Jd ¼ � Dvxrdðx; tÞ: (3b)

The number of type 4 motors Nb accumulating at the base
is described by

dNb

dt
¼ Jdð0; tÞ � kiNb; (4)

where ki is the injection rate of the motors from the reservoir
at the base to the flagellum track. Experimental evidence in-

dicates that the injection actually resembles a threshold
switch (18), but because this version of the model is a
mean-field description rather than a stochastic simulation,
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we decided to approximate the thresholding as a first-order
process in which injection is proportional to the number of
motors in the base. On average, this will result in the same
number of injections per second. This is especially true in
steady state, when the rate of injection is also at steady state.

The total number of motors N includes all four popula-
tions of motors and reads

N ¼ Nb þ Nt þ
ZL

0

ðra þ rdÞdx: (5)

We assume the total number of motors is conserved, and
this imposes the boundary conditions at the base

Jað0; tÞ ¼ kiNb (6a)

and at the tip
JdðL; tÞ ¼ ktNt: (6b)

The growth dynamics of the flagellum are governed by
the equation

dL

dt
¼ JaðL; tÞd� rd; (7)

where d denotes the length elongation caused by the arrival
of a single kinesin motor, and r denotes the depolymeriza-
d

tion speed that is independent of the length.
RESULTS

We can numerically solve the dynamic Eqs. 1, 4, and 7 to
have the exact growth curve L(t) for a flagellum of length
L as a function of time t. The parameters used in our numer-
ical solutions are listed in Table 1. Because of the small
elongation increment d, we can also make a quasistatic
assumption that at each length L, the spatial distribution
of molecular motors reaches steady state for that particular
length L (see Appendix A). The analytical results obtained
by this quasistatic assumption almost exactly overlap with
the exact numerical solution (Fig. 2, a, c, and e). Therefore,
for the rest of the article, we only show results obtained with
the quasistatic assumption.
The rate-limiting step changes as the flagellum
grows

Typical growth curves of the flagellum are demonstrated
in Fig. 2 for three diffusion coefficients. Each growth
curve rapidly increases at first and then slowly plateaus to
the steady-state length. The growth can be divided into
different stages based on the rate-limiting step. To see
this, we express the growth rate of the flagellum under the
quasistatic assumption as



TABLE 1 Parameters of the Model

Parameters Description Reference Value Varied Range References

v kinesin motor velocity 2 mm/s 0.1–10 mm/s (22)

D kinesin motor diffusion coefficient 20 mm2/s 0.1–80 mm2/s (22)

ki injection rate of motors at the base 1 s�1 1 s�1 arbitrary

kt transition rate to diffusive state for motors dwelling at the tip 0.5 s�1 0.5 s�1 (22)

rd spontaneous depolymerization speed of flagellum 0.004 mm/s 0.004 mm/s (24,43)

N total number of motors 40 40 (13)

d elongation length of the flagellum upon the arrival of a motor at the tip 0.00125 mm 0.00125 mm (13)

Speed and Diffusion of Kinesin-2
dL

dt
¼ Nd

L
v
þ L2

2D
þ 1

kt
þ 1

ki

� rd

¼ Nd

tactive þ tdiff þ tdwell
� rd; (8)
where tactive ¼ ðL =vÞ denotes the time for a motor to trans-

port the assembly unit of the flagellum from the base to the
tip, tdiff ¼ ðL2 =2DÞ denotes the root mean-square time for a
motor to diffuse back to the base from the tip, and tdwell ¼
ð1 =ktÞ þ ð1 =kiÞ denotes the total time a motor dwells at
the base and at the tip. At a short length scale, tdwell always
dominates over the other two timescales, and motors spend
most of their time dwelling at the tip and the base (Fig. 2, b,
d, and f, green lines). In this regime, the duration that the
motor spends traveling between the base and the tip is negli-
gible, so the flagellar growth rate is independent of the
length. When the flagellum grows longer, either the diffu-
sive time tdiff dominates if D is small (Fig. 2 b) or the trans-
portation time tactive dominates if D is large (Fig. 2 f). For an
intermediate D, the growth is divided into three stages in
which the dominant timescales are tdwell, tactive, and tdiff
(Fig. 2 d). Measurements of flagellar growth kinetics have
clearly shown that growth rates are constant for the flagella
FIGURE 2 Growth dynamics of the model. (a, c,

and e) Shown are the growth curves of the flagel-

lum for a small diffusion coefficient D ¼ 2 mm2/s

in (a), medium D ¼ 8 mm2/s in (c), and large

D ¼ 20 mm2/s in (e). The blue curve represents

the numerical solution, i.e., the exact solution.

The orange curve represents the analytical solution

obtained by the quasistatic assumption. The two

curves almost overlap to the extent that the blue

one is invisible. The horizontal lines represent the

length at which the rate-limiting step changes. (b,

d, and f) Shown is the time a single motor spends

on different steps during a transportation-diffusion

cycle for the same diffusion coefficient as in (a),

(c), and (e). The three curves include tactive for a

motor to travel from the base to tip (orange), tdiff
for a motor to travel from the tip to the base via

diffusion (blue), and tdwell for a motor to dwell at

the tip waiting before diffusing and at the base

waiting for injection (green). To see this figure in

color, go online.
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that are shorter than 4–5 mm (1). In a different algal species,
Spermatozopsis similis, flagella grow at a constant rate over
their whole length, suggesting that in that organism, tdwell is
always the dominating factor (20).
Diffusion versus active transport as the rate-
limiting step at steady state

The diffusion time tdiff scales with L2, whereas the motor
transportation time tactive scales with L. At steady state, de-
pending on the flagellar length Lss, either active transport
or motor diffusion becomes the rate-limiting step. For a suf-
ficiently long flagellum, tdiff always dominates over tactive.
However, the steady-state length Lss might not be long
enough to have tdiff greater than tactive. In Fig. 3 a, we
show the three timescales at steady state as a function of
diffusion coefficient D. For small D, tdiff dominates over
the other timescales. However, asD increases, tactive becomes
greater than tdiff, and the steady-state length of the flagellum
becomes limited by the active motor transport. If we fix the
diffusion coefficient but vary the motor velocity, the growth
will change from tactive dominance to tdiff dominance (Fig. 3
b). A phase diagram is shown in Fig. 3 c. Generally, a larger
diffusion coefficient D favors motor-limited growth, and a
faster motor speed v favors diffusion-limited growth.
A dramatic increase in steady-state length Lss

requires a dramatic increase in diffusion
coefficient D if motor velocity v is small

The steady-state length of the flagellum Lss can be obtained
by setting ðdL =dtÞ in Eq. 8 to 0. This leads to the analytical
result
FIGURE 3 Influence of the motor velocity v and diffusion coefficient D

on the rate-limiting step at steady state. (a) Shown are the three timescales

as a function of diffusion coefficient D. (b) Shown are the three timescales

as a function of motor velocity v. (c) The phase diagram for the rate-limiting

step at steady state is given. To see this figure in color, go online.
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Lss ¼ � D

v
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2D

ki
� 2D

kt
þ
�
D

v

�2

þ 2DNd

rd

s
: (9)

The steady-state length Lss increases with both diffusion
coefficient D and motor velocity v. For a small motor veloc-
ity, increasing the diffusion coefficient does not lead to
significant increase in Lss because it is mainly set by the
small motor velocity (Fig. 4 a, green line). For instance, if
the motor velocity v is 1 mm/s and Lss is 5 mm, it would
be impossible to increase the length to 10 mm because
even in the limit of an infinitely large diffusion coefficient
D / N, the maximal length Lss is 9.5 mm. The analytical
proof of this limit is derived in Appendix B.

However, if the motor velocity v is 2 mm/s, the diffusion
coefficient D must only increase from 1.8 to 11.1 mm2/s to
increase the length to 10 microns, the typical length of
wild-type C. reinhardtii cells. Similarly, for a small diffu-
sion coefficient, increasing the motor velocity does not
lead to a significant increase in Lss either (Fig. 4 b, green
line).
Growing time T of the flagellum increases with
motor velocity and diffusion

In this section, we study the time Ta flagellum needs to grow
to its steady state. We define the growing time T as the
amount of time to reach 95% of the steady-state length,
i.e., L(T) ¼ 0.95Lss. Fig. 5 plots numerical solutions of T
as a function of motor speed and diffusion coefficient.
One might expect that a fast-transporting motor or a
FIGURE 4 Influence of the motor velocity v and diffusion coefficient D

on the steady-state length Lss of the flagellum. (a) The steady-state length

Lss as a function of diffusion coefficient D for different motor velocities

is shown. (b) The steady-state length Lss as a function of motor velocity v

for different diffusion coefficients is shown. (c) The contour plot of Lss as

a function of both the diffusion coefficient D and motor velocity v is given.

To see this figure in color, go online.



FIGURE 5 Influence of the motor velocity v and diffusion coefficient D

on the growing time Tof the flagellum. (a) The growing time T as a function

of diffusion coefficient D for the different motor velocities is shown. (b)

The growing time T as a function of motor velocity v for the different diffu-

sion coefficients is shown. (c) The contour plot of T as a function of both the

diffusion coefficient D and motor velocity v is given. To see this figure in

color, go online.
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fast-diffusive motor will reduce the time to construct a fla-
gellum, but the results show that the growing time T in-
creases with the diffusion coefficient D and the motor
velocity v (Fig. 5, a and b). This is because the steady-state
length also increases with D and v. The reduction in time
due to increased v or D cannot compensate for the increased
time due to length elongation.
Parameter changes that maintain the steady-state
length but alter the growing time

One may notice that the contour lines for the steady-state
length Lss do not exactly overlap with the contour lines for
the growing time T (Fig. 6 a). The implication of this differ-
ence is that growth kinetics do not uniquely determine
the steady-state length, and one can alter the growing time
T while maintaining the steady-state length Lss constant or
vice versa. A recent experiment found that mutants in
ida5, which affect actin, show slower growth kinetics (i.e.,
longer T) but reach the same steady-state length as wild-
type (24). Based on our model, this could be a result of
the combination of reduced motor velocity and enhanced
diffusion coefficient (Fig. 6, b and c). Our model predicts
that the change in the growing time is larger for longer
flagella, which can be tested by future experiments.
DISCUSSION

In this study, we have presented a mean-field description of
our previous stochastic simulation to account for flagellar
growth. The key to achieving length regulation is that the
number of kinesin motors is finite. As the flagellum elon-
gates, it takes more time to transport the assembly unit
from the base to the tip and to retrieve the kinesin motors
from the tip to the base; therefore, the assembly rate of the
flagellum is reduced. Steady-state length is reached once
the assembly rate equals the disassembly rate. This reac-
tion-diffusion-based mechanism of length regulation is
also present in the growth of stereocilia, which are made
of a bundle of actin filaments (25), and a series of models
have indeed shown that the reaction-diffusion mechanism
is sufficient to account for length regulation in that organelle
(25–27). We have modeled a reaction-diffusion mechanism
for flagella that, because it also involves an interplay be-
tween motors and diffusion, ends up being quite similar in
its form to the previously described models for length regu-
lation in stereocilia. However, in stereocilia, the polymeriza-
tion rate of actin filaments is reduced by the resisting force
from the membrane. The steady-state length is reached when
the retrograde flow of actin filaments is balanced by actin
polymerization at the tip (25–27). We also note that in this
version of our model, we only consider the growth of a sin-
gle flagellum but neglect the coupling between the two
flagella for Chlamydomonas. In Fai et al. (3), the authors
studied the coupling mechanism to account for length equal-
ization when one of the flagella is severed. In our model,
length equalization can be achieved by having a shared
pool of tubulins and replenishment of kinesin motors (2).

A large part of the explanatory and predictive power of
the model is in generating hypotheses to explain length mu-
tants and motivating experiments to test these hypotheses.
We can now examine a length mutant, note its length change
from wild-type, and determine what changes in the velocity
and diffusion are necessary to achieve the length change.
Here, we discuss pf14, a mutant that is missing the radial
spoke head in the flagellum. In wild-type Chlamydomonas,
the two flagella beat in a cyclic pattern resembling a breast-
stroke: a semicircular power stroke to swim forward, fol-
lowed by a recovery stroke to return them to their initial
position. On the other hand, pf14 has paralyzed flagella
and cannot swim. What is puzzling about this mutant is
that its flagella are about half as long as those of the wild-
type. The pf14 mutants are 3–6 mm in length, whereas
wild-type flagella are usually 10–12 mm (28). This short-
flagella phenotype is common among the group of motility
mutants, especially the ones with completely paralyzed
flagella (29–34). To our knowledge, no study has explained
the connection between paralysis and length decrease—in
fact, researchers have viewed IFT and flagellar beating as
two independent processes. This is reasonable because
beating relies on axonemal dynein and other regulatory
and structural components to bend doublet microtubules,
components that are not involved in IFT. Even when de-
tached from the cell body, the flagellum equipped with the
motility apparatus is capable of producing a high-frequency
waveform as long as ATP is provided (35).
Biophysical Journal 118, 2790–2800, June 2, 2020 2795



FIGURE 6 Possible parameter changes that keep the steady-state

length Lss constant while altering the growing time T. (a) An overlay

of the contour plots for the growing time T (blue) and for the steady-state

length Lss (red) is given. From left to right, the contours for growing time

T are 50, 100, 150, and 200 min, and for the steady-state length Lss are 5,

10, 15, 20, and 25 mm. (b and c) Shown is the relative change of the mo-

tor velocity (left axis) and growing time (right axis) as a function of the

diffusion coefficient along the contour of Lss ¼ 10 mm in (b) and Lss ¼
15 mm in (c). The reference velocity is defined as v* ¼ v(D ¼ 20 mm2/s),

and the reference growing time is defined as T* ¼ T(D ¼ 20 mm2/s). To

see this figure in color, go online.
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Although it is possible that the length change comes
from a structural instability caused by the mutation, could
it instead be because the paralysis of the flagella alters
the IFT-diffusion system that could be responsible
for length control? All existing measurements of IFT
kinetics have been carried out in immotile flagella,
either in paralyzed mutants or in wild-type cells whose
flagella are adhered to a glass surface. Consequently,
there is no experimental information about how IFT
kinetics might or might not change in beating flagella
compared to immotile flagella. Here, we use our model
to explore the plausibility of the idea that flagellar
beating can influence IFT kinetics and thus might act as
a wrongfully neglected factor in the length-control sys-
tem. In the sections below, we propose mechanisms
through which flagellar beating can influence IFT ki-
netics. Through some back-of-the-envelope calculation,
we show the effective contribution of each mechanism
to the length change of motile flagella compared with
immotile ones. We focus on mechanical mechanisms
that are directly related to flagellar beating but neglect
chemical mechanisms that might exist in the mutants.
For instance, experiments have shown that the presence
of substrate can enhance the diffusion of substrate
(36,37). The diffusion constant of kinesin motors there-
fore can be influenced by the ATP concentration in the
wild-type and in the mutants. This biochemical regulation
is out of the realm of this study.
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An increase in diffusion coefficient is necessary
for the increase of steady-state length

Based on our model, there are four aspects of IFT kinetics
that can be influenced by flagellar beating. They include ki-
nesin motors dwelling at the base and at the tip, actively
transporting from the base to the tip and passively diffusing
from the tip to the base. Altering the dwelling time of the
kinesin motors at the tip or at the base has a minor effect
on the steady-state length of flagella. This is because the
rate-limiting step at steady state is either active transport
or passive diffusion, as we have demonstrated in Diffusion
versus active transport as the rate-limiting step at steady
state. With the parameters given in Table 1 but a low diffu-
sion constant D ¼ 2 mm2/s for an immotile flagellum, even
if the injection rate increases from 1 s�1 to infinity, the
steady-state length only increases from 5.2 to 5.5 mm, ac-
cording to Eq. 9. Therefore, we exclude the possibility of
an altered injection rate at the base or an altered dwelling
time at the tip as the explanation for the length difference
between motile and immotile flagella. We consider the other
two aspects of IFT kinetics for the significant increase in
length in a beating flagellum compared to an immotile
one: 1) the motor velocity remains unchanged, and the
increase is due to enhanced diffusion. 2) The diffusion
coefficient remains unchanged, and the increase is due to
increased motor velocity. In a paralyzed mutant, the exper-
imentally measured diffusion coefficient isD¼ 1.685 0.04
mm2/s, and the motor velocity is v ¼ 2.1 5 0.4 mm/s (22).
With the first assumption, to account for the length increase
in a beating flagellum from 5 to 10 mm, the diffusion
coefficient needs to increase from 1.75 to 10.55 mm2/s.
With the second assumption, it is impossible to account
for the length increase because even in the limit of infinitely
large motor velocity v/N, the length of the flagellum ap-
proaches a maximum of 5.65 mm. Therefore, an enhanced
diffusion coefficient is necessary and sufficient to account
for the observed length increase. In any case, there is no
plausible way that flagellar beating would alter the velocity
of the motor. However, we can imagine several ways that
beating could alter the diffusion coefficient of kinesin,
which we will consider in turn.
Centrifugation effect of kinesin motors

The first mechanism we considered was inspired by the
experimental observation that kinesin-2 is less dense than
the flagellar matrix and floats to the top when a matrix prep-
aration is centrifuged at high speed (H.Q., unpublished
data). Based on this observation, we consider a model in
which the roughly circular beating of the flagellum is
enough to cause a significant centripetal force on the kinesin
motors back toward the base, speeding up the diffusive re-
turn time. To model this scenario, we approximated the fla-
gellum and its beating as a cylindrical rod revolving around
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one of its ends like the hand of a clock. The contents of the
cylinder will experience a centrifugation effect, and the ki-
nesins will move toward the base if they are less dense than
the surrounding solution. Although this is not equivalent to
increasing the diffusion coefficient, it is an increase in the
speed of diffusive return. Approximating the beating as a
circular motion will exaggerate the centripetal force because
the recovery stroke of the beating does not have the same
circular appearance as the power stroke. To estimate the
magnitude of this effect, we solved the equation for centrip-
etal force to obtain the drift velocity:

vdrift ¼ ðm� m0Þu2r

x
; (10)

wherem is the mass of kinesin,m0 is the mass of the solution
displaced by the motor, x is the friction coefficient (equal

to kT/D, where k is Boltzmann’s constant, T is the tempera-
ture, andD is the diffusion coefficient), u is the rotation rate,
and r is the length of the rod. Plugging in the relevant values
D ¼ 2 mm2/s, kT ¼ 4.1 pN , nm, m ¼ 0 (an extreme case in
which kinesins are massless to give the maximal possible
effect), m0 ¼ 4 � 10�22 kg, u ¼ 300 rad/s, and r ¼ 10
mm, we get that the drift velocity vdrift is on the order of
10�7 mm/s, which means it would take 3 years for the kine-
sins to get from the tip to the base with this effect alone.
If we translate the time sped up by the centrifugation drift
into diffusive time, it amounts to an effective diffusion
constant of Deff that satisfies

r2

2Deff

¼ r

vdrift
; (11)

The effective diffusion constant increase Deff is only on
the order of 10�6 mm2/s, which is negligible compared
with measured value of D � 2 mm2/s. We can therefore
rule out the centrifugation effect as a means of generating
any substantial length increase upon beating.
The increased diffusion coefficient in a beating
flagellum might be explained by shear thinning

An alternative way that flagellar beating could influence the
diffusive return of kinesin is via the shear of the flagellar
matrix (Fig. 7 a). If we think of the flagellum as an elastic
rod, when it is bent, parts of the rod are stretched and parts
are compressed. The maximal shear displacement D can be
calculated as (38).

D ¼ a½jðs; tÞ�jð0; tÞ�; (12)

where a is the radius of the rod and j (s, t) is the tangent
angle along the arclength s at time t. The corresponding
shear rate is

c ¼ 1

a

dD

dt
: (13)
We select seven frames in a periodic beating cycle of a fla-
gellum and calculate the shear displacement and shear rate
by measuring the tangent angle at equally spaced points
along the arclength of the flagellum (Fig. 7, b–f). In a beating
period of T ¼ 0.014 s (39), the variation of the shear
displacement dD h max(D) � min(D)is typically around
0.4 mm. Here, the maximum and minimum are taken with
respect to the time t in a period. The shear displacement of
the flagellum can induce shear flow in the cytoplasm, and
this shear flow can enhance the diffusion of particles in the
cytoplasm. To estimate how this affects the diffusion coeffi-
cient, we adopted the Taylor dispersion theory, which yields
an estimate of the diffusion coefficient amplified by the shear
flow by a factor of 1 þ Pe2/192, where Pe ¼ dvshear/D0 is the
P�eclet number, with d �0.25 mm being the diameter of the
flagellar cross section, vshear ¼ ðdD =TÞ � 28 mm=s being
the shear flow rate, andD� 2 mm2/s being the diffusion con-
stant without shear flow (40). These numbers give a P�eclet
number Pe � 3.5, and the resulting amplification factor
1.06 is too small to account for the required increase in diffu-
sion constant. We thus conclude that the shear is not large
enough to increase the diffusion constant significantly by
means of an advective mechanism. Could the shear have
any other effect?

It is well known that solutions made of soft polymers
become less viscous under shear deformation. This effect
is known as shear thinning. In an equilibrium solution,
the diffusion coefficient D of a particle and its friction
coefficient x obey the Einstein relation xD ¼ kBT, where
kB is the Boltzmann constant and T is the absolute tempera-
ture. Because the friction coefficient x is proportional
to the viscosity h, we would expect that the product of
the viscosity h and the diffusion coefficient D is also a con-
stant. Therefore, a reduction in viscosity h caused by shear
thinning might account for the increase in diffusion coeffi-
cient D. Based on our measurements, the maximal shear
rate jcjmax h max(jcj) of the flagellum is around 600 s�1

(Fig. 7 f). The onset shear-thinning rate for biopolymer
solutions depends on many factors, such as protein concen-
tration, temperature, ionic strength, and even the geometry
of the container. The typical onset shear-thinning rate
for a polysaccharide solution is �10 s�1, and the reduction
in the viscosity can be orders of magnitude (41). Recent
work on bioink (alginate plus cellulose) shows that the
shear-thinning effect takes place at a very low shear rate
(42). Therefore, the shear magnitude is large enough to
potentially cause shear thinning in the matrix of flagella,
and this effect may contribute to enhanced diffusion by
reducing the viscosity. Our results thus suggest a novel
hypothesis to explain the link between flagellar motility
and length, namely, that paralyzed mutants have shorter
length because the diffusion constant for kinesin is
decreased because of a loss of shear thinning in the flagellar
matrix. Our modeling results suggest a need for future
experiments to measure viscosity inside the matrix.
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FIGURE 7 Beating of the flagellum leads to

enhanced diffusion of motors. (a) The flagellum

is depicted as a rod. The bending of the rod leads

to stretching on one side and compression on the

other side. The two blue curves represent the curves

on the rod’s surface that have the same length as the

central axis (black line). The red circle represents

all the end points on the rod’s surface that have

the same length as the central axis. The shear

induced by periodic beating of the flagellum can

enhance the diffusion of molecular motors via the

shear-thinning mechanism, thus increasing the

length of the flagella compared to the paralyzed

mutants. (b) Selected beating shapes of a flagellum

in a beating cycle are shown. The numbers indicate

the order of the sequence. (c and d) Shear displace-

ments D in (c) and its variation dD in a beating

period in (d) are shown. (e and f) Shear rates c in

(c) and its maximum in a beating period in (f) are

shown. To see this figure in color, go online.
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APPENDIX A: DERIVATION OF THE GROWTH
RATE UNDER QUASISTATIC ASSUMPTIONS

In physiological conditions, the length elongation of flagellum is much

slower than the motor transportation-diffusion cycle. This is reflected in

the small elongation unit d in Eq. 7. We can therefore make the quasistatic

assumption that at any fixed length L, the distributions of the four popula-

tions of motors reach steady state for that particular L. This implies that all

the time derivatives in Eqs. 1, 2, 3, and 4 become 0. The distribution of the

active motors (i) is homogenous over the flagellum track, and the constant

density reads

rsa ¼ r0a ¼ N=v
L
v
þ 1

kt
þ 1

ki
þ L2

2D

: (A1)

For the diffusive motor, the spatial distribution shows a gradient and

reads

rsd ¼ r0d
x

L
¼ NðL=DÞ

L
v
þ 1

kt
þ 1

ki
þ L2

2D

x

L
: (A2)

For the motors accumulated at the base, the number is

Nb ¼ N=ki
L
v
þ 1

kt
þ 1

ki
þ L2

2D

: (A3)

For the motors accumulated at the tip, the number is
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Nt ¼ N=kt
L
v
þ 1

kt
þ 1

ki
þ L2

2D

: (A4)

Substituting Eq. A1 into Eq. 7, we obtain Eq. 8, which is the key

equation of our discussion for the dynamics of flagellum growth.
APPENDIX B: DERIVATION OF THE STEADY-
STATE LENGTH IN THE LIMIT OF A LARGE
DIFFUSION COEFFICIENT

Denoting b ¼ � ð1 =ki � 1 =kt þ Nd =rdÞ, we can rewrite Eq. 9 as

Lss ¼ � D

v
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D

v

�2

þ 2bD

s
¼ �D

v
þ D

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bv2

D

r
:

(B1)

In the limit of D / N, we can invoke the Taylor series (1 þ x)k ¼ 1 þ
kx þ O(x2) for jxj << 1 to expand the term in the square root and get

Lss ¼ � D

v
þ D

v

�
1þ 1

2
� 2v

2b

D
þO

�
1

D2

��

¼ vbþ O

�
1

D

�
: (B2)

Therefore, Lss / vb in the limit of D / N.
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The expression of vb can also be derived in an intuitive way; at steady

state, the total length Nd delivered by kinesin motors divided by the time

for such delivery ðLss =vþ1 =kt þ1 =kiÞ must be equal to the depolymeriza-

tion rate rd.

Nd
Lss

v
þ 1

kt
þ 1

ki

¼ rd: (B3)

Solving Eq. B3 gives exactly Lss ¼ vb.
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