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ABSTRACT Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases.
Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applica-
tions. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling.
Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environ-
ment) of mesenchymal cells crawling on a two-dimensional substrate. The F€urth equation, the usual characterization of mean-
squared displacement (MSD) curves for migrating cells, describes amotion in which, for increasing time intervals, cell movement
transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an
additional fast diffusive regime. Our simulations’ MSD curves reproduce the three experimentally observed temporal regimes,
with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion.
The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length
scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative compar-
isons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our sim-
ulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous
cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons
between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-
time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex sit-
uations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.
SIGNIFICANCE We develop a three-dimensional computer simulation model that reproduces many of the typical
behaviors of cells crawling in vitro on a flat, homogeneous substrate: spontaneous polarization without external cues,
persistent migration and intermittent loss, and reformation of leading edges. The method is fast enough to use in scientific
and engineering simulations of tissues. Cell crawling has diffusive and ballistic characteristics, depending on the chosen
measurement time interval and experiment duration, and thus requires care in analysis to yield robust, accurate metrics
that allow the comparison of cell-migration kinetics among simulations and experiments. We present a method to simulate
cell migration in three dimensions that yields quantitatively reproducible cell-migration kinetics. The code specifying the
simulation is an open source and publicly available.
INTRODUCTION

Designing cell arrangements and extracellular environments
to construct engineered tissues for medical and technolog-
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ical applications (1) requires multiscale virtual-tissue simu-
lations able to predict final tissue architectures from initial
conditions. Cells migrate extensively during the maturation
of engineered tissues; migration is also ubiquitous in embry-
onic development (2), wound healing (3,4), inflammatory
response (5), and many pathologies (6). Thus, multiscale
virtual-tissue simulations of morphogenesis, pathology,
and the dynamics of normal and wounded tissues all require
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simulation of the motion of large numbers of cells. Both
in vitro and in vivo, cell motion often correlates closely
with cell polarization, with strong positive feedback be-
tween biochemical and structural polarization within the
cell, and directional movement of the entire cell or cell sub-
regions. Many biochemical feedback mechanisms partici-
pate simultaneously in cell polarization (7–11), making
complete analysis challenging.

For models and their simulations to be useful in tissue en-
gineering, the simulations must provide verifiable quantita-
tive predictions. Model parameter identification and model
hypothesis validation both require metrics to compare sim-
ulations to experiments. We recently proposed using a modi-
fied F€urth equation for the mean-squared displacement
(MSD) to characterize cell motion (12). The modified F€urth
equation describes three temporal regimes: fast diffusion for
short time intervals, slow diffusion for long time intervals,
and intermediate time-interval-ballistic motion. The re-
gimes are characterized by three well-defined parameters
(the ‘‘diffusion constant’’ D, the ‘‘dimensionless excess
diffusion coefficient’’ S, and the ‘‘long timescale’’ P). After
rescaling in terms of natural units for length and time, exper-
imental MSD curves collapse onto a single-parameter fam-
ily of curves. The same collapse occurs for the related
mean velocity autocorrelation functions, providing a robust
metric for cell migration that we can readily apply to simu-
lation data. In this manner, this analysis provides a helpful
translation between simulation and experimental length
and time units. As we have discussed elsewhere, as with
classic Brownian motion, the cell’s short-timescale diffusive
movement means that the cell’s instantaneous velocity is ill-
defined (12), necessitating a careful choice of time intervals
when estimating cell velocity in both experiment and simu-
2802 Biophysical Journal 118, 2801–2815, June 2, 2020
lation. Fig. 1 schematically summarizes how the modified
F€urth equation allows quantification of the short time/range
regime in addition to the intermediate and long time/range
regimes, which the classic F€urth equation addresses.

Here, we build a model for crawling cells in three dimen-
sions, whose simulation spontaneously generates all three
temporal regimes and is fast enough to be used in multicel-
lular simulations. We first discuss the biological cell behav-
iors that our model reproduces and appropriate metrics to
assess the model’s predictivity. We then describe the simu-
lation’s CompuCell3D implementation and present our re-
sults. CompuCell3D is a freely available, open-source,
cross-platform environment for specifying and executing
multicellular simulations (https://compucell3d.org/). The
CompuCell3D code used for our simulations, as well as
detailed instructions to run it, are available in Supporting
Materials and Methods.
Mesenchymal cell migration and the purpose and
limits of our model

In in vitro assays of isolated cell crawling, initially symmet-
ric, nonmotile cells polarize to start movement (11,13–19),
enriching their presumptive trailing edges with Rac and
forming a lamellipodium at their presumptive leading edges.
Complex biochemical reactions inside the cells act to form
actin-rich protrusions at the leading edge of the cell, focal
adhesions between the cell and substrate, and contractile fi-
bers at the trailing edge of the cell, causing the cell to
migrate (20–23). Chemical gradients can induce cell polar-
ization in particular directions in in vitro assays (24), sug-
gesting that polarization may follow mechanisms like
those proposed by Turing (25) and Gierer and Meinhardt
FIGURE 1 Schematic of the three temporal re-

gimes of mean-squared cell displacement as a func-

tion of time interval. The classic and modified F€urth

equations generate the same intermediate and long

time/range behaviors. However, only the modified

F€urth equation describes the short time/range diffu-

sive behavior resulting from the timescale for the or-

ganization and reorganization of the cell’s leading

edge. To see this figure in color, go online.

https://compucell3d.org/


CompuCell3D Cell Migration
(26,27), in which weak external signals induce directional
symmetry breaking via self-amplifying feedback and long-
range inhibition within the cell. We define the polarization
direction in migrating cells as the net direction of polymer-
izing actin and myosin flow from the cell front toward the
cell body and rear (in reference to the cell’s center of
mass, the polarization axis points opposite to the cell’s di-
rection of movement, whereas in the laboratory reference
frame, the polarization axis points in the same direction as
the cell’s direction of movement).

Numerous phenomenological models simulate the
polarization and movement of single cells, linking micro-
scopic biochemical models to cell-scale behaviors
(13–15,23,28–37). The broad consensus of these models is
that the anisotropy of cell migration, which leads to persis-
tent macroscale random motion, results from spontaneous
spatial symmetry breaking because of the stochastic internal
microscale dynamics of the cell’s actin cytoskeleton. How-
ever, the details of these mechanisms are still unclear. Other
models address how the elastic and/or viscoelastic cytoskel-
etal and extracellular networks interact to produce the mul-
tiple migration modes observed when cells crawl on a flat
substrate or move through a three-dimensional (3D) matrix
(38–45), with the last reference presenting an overview of
the mechanisms and models. Here, we do not focus on intra-
cellular mechanisms. Instead we present a simplified
phenomenological model of cell migration that includes
coupling between front protrusion and rear retraction, which
are necessary to any model of cell crawling, but neglects
most microscopic detail. Our goal is not to explore the
microscopic dynamics that give rise to cell crawling but to
produce a tractable cell model that recapitulates the kinetics
and response to external stimuli of real cells at both short
timescales and long timescales. This work focuses on a sin-
gle cell crawling on a flat, homogeneous surface. We will
explore crawling on heterogeneous surfaces, the movement
of cells in response to chemical fields, and migration
through 3D extracellular matrices in future works.

Cell polarization is a key ingredient in cell migration.
Many phenomenological models with a wide variety of
base assumptions successfully replicate key experimental
observations on the polarization and movement of single
cells (28,29,31,46), suggesting that multiple microscopic
mechanisms can produce the pattern polarization onset,
persistence, and reorganization that are key qualitative char-
acteristics of cell migration. On the experimental side,
Maiuri and collaborators showed that retrograde actin flow
speed is proportional to the speed of migrating cells (23).
Also, Gundersen and Worman showed that nuclear position
is asymmetric in migrating eukaryotic cells, with the nu-
cleus displaced toward the rear along the rear-to-front axis
(47). Similar polarization models have been proposed for
dendritic cells (32), keratocyte migration (13,33,34), epithe-
lial cells (14), and generic mesenchymal cells (15,35).
These models all link microscopic biochemical models to
cell-scale behaviors. Related models explain intracellular
traveling waves and lamellipodium fluctuations (36) and
how the regulation of myosin activity in protrusions inhibits
the simultaneous formation of multiple lamellipodia (34).
All the models we have mentioned focus on explaining
the intracellular mechanisms responsible for cell crawling
and are computationally demanding, whereas we aim to pro-
duce a simpler, less computationally demanding phenome-
nological model that still reproduces the key macroscopic
statistical properties of experimental cell migration.

Cell motility submodels to use in tissue-engineering ap-
plications must be simple, but not too simple. We consider
a few major constraints on these applications. In these appli-
cations, models must describe cell shapes, shape dynamics,
and the interactions between cells in the context of
collective migration of large numbers of cells, often within
structured 3D environments. Tissue and organ simulations
involving many cells require fast simulations of cell polari-
zation initiation, migration, and reorientation. The need for
a fast single-cell migration model motivated us to consider a
simplified polarization and migration model in which each
simulated migrating cell has the appropriate three-dimen-
sional geometry, a stiff nucleus, the ability to form lamelli-
podia, and appropriate responses to external stimuli. A stiff
nucleus is necessary to describe cell morphology (the lamel-
lipodium is much thinner than the cell body) because
nuclear resistance to deformation is the primary obstacle
preventing cells from migrating through dense 3D fiber
matrices or narrow channel openings. An identifiable
nuclear component also provides a measure for polarization
that agrees with the experimental observation that the nu-
cleus lags behind the cell center in migrating cells. We
therefore include a stiff nucleus as a component of our
model.

As design goals for model cells that can be used in larger-
scale models of cell migration in tissues and organs, model
cells should 1) be three-dimensional, with explicitly
modeled lamellipodium, cytoplasm, and nucleus; 2) employ
intracellular coupling between global inhibition and local
excitation to regulate membrane protrusion and cell
polarization; 3) polarize spontaneously to initiate migration;
4) spontaneously change movement direction to yield a
persistent random walk with timescales tunable to match
experiments; and 5) successfully reproduce the three exper-
imentally observed timescale regimes for the MSD of iso-
lated migrating cells. Here, we present a simulation that
meets these criteria and is fast enough to allow the simula-
tion of the collective motion of many cells (we will present
our collective motion results in a future study). We stress,
however, that unlike the more detailed models we have
cited, our simplified model does not explore in detail the
intracellular mechanisms involved in cell crawling. Fits of
our simulated cell trajectories to the modified F€urth
equation allow objective, quantitative comparison with
previously published experimental trajectories to assess
Biophysical Journal 118, 2801–2815, June 2, 2020 2803
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simulation realism. Finally, we discuss the validity limits of
the simulation and the maximum permissible intervals be-
tween images and minimum permissible simulation dura-
tion to provide time series that allow meaningful
quantification of cell movement.
FIGURE 2 Modified F€urth Equation. The left panel shows a plot of Eq. 2,

the modified F€urth equation with the axes in nondimensional units, for

different values of the excess diffusion coefficient S. The black dashed

line corresponds to the original F€urth equation, with S ¼ 0. For S >

0 (colored solid lines), the short-time diffusive interval increases with S.

The right panel shows the modified F€urth equation with S ¼ 0.1. We distin-

guish the three different regimes characterized by Dfast, veff, and Dslow. To

see this figure in color, go online.
Cell migration parameterization

Cell migration assays, both in experiments and simulations,
start from cell trajectories obtained using time-lapse imaging
with a time interval (typically from 1 s to 5 min) between
frames in an experiment of duration T. Next, we determine
MSDs for individual cells. Often, we then average the MSDs
over different experiments or different cells of the same type
within an experiment. Recently, we proposed to characterize
cell motion using a modified F€urth equation (12):

jD~r j 2 ¼ 2D
�
Dt�P

�
1� e�

Dt
P

��
þ 2DS

1�S
Dt; (1)

where the S is the ‘‘excess diffusion coefficient’’ such that

0 % S < 1. This equation gives the cell’s MSD, jD~r j 2, dur-
ing a time interval Dt. Here, P is a persistence time, and D is
a diffusion coefficient, as in the original F€urth equation,
which is a solution to an Ornstein-Uhlenbeck process
(48). Equation 1 reduces to the original F€urth equation

when S ¼ 0, so that limDt/0jD~r j 2 ¼ ð2D =PÞDt2, which
means that cell motion is ballistic for small time intervals.
However, if S > 0, cell motion is diffusive for Dt < SP,

that is, limDt/0jD~r j 2 ¼ ð2DS =1 � SÞDt. For SP < Dt <
P, cell motion is ballistic with an effective speed veff ¼
ð1 =1 � SÞ ffiffiffiffiffiffiffiffiffi

D=P
p

; forDt> P, cell motion is again diffusive,

with jD~r j 2 � ð 2D =1 � SÞDt. The two diffusive regimes
have different diffusion constants: we define Dfast ¼
ðDS =1�SÞ for the fast, short-time behavior and Dslow ¼
ðD =1�SÞ for long time intervals (12). S ¼ ðDfast =DslowÞ
defines the timescale of the additional short-time diffusion
term that augments the original F€urth equation, justifying
its name.

Equation 1 allows us to define time- and length scales, P
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DP=ð1� SÞp

, respectively, which then define nondi-
mensional variables for time and displacement, th ðt =PÞ
and ~rhð~r = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DP=ð1� SÞp Þ. Expressed using these nondi-
mensional variables, the modified F€urth equation has only
one parameter, the excess diffusion coefficient S:

jD~r j 2 ¼ Dt � ð1� SÞ�1� e�Dt
�

(2)

In the left panel of Fig. 2, we present plots of Eqs. 1 and 2
for different values of S. The gray line shows the original
F€urth model, with S ¼ 0 When S > 0, the cell’s instanta-
neous velocity is ill defined, although we can still calculate
a mean velocity over any finite time interval. We have
shown elsewhere (12) that for real cells, the mean velocity
2804 Biophysical Journal 118, 2801–2815, June 2, 2020
autocorrelation function, where the mean velocity is calcu-
lated over a time interval d, with SP < d < P, is half the sec-
ond derivative of the MSD (12). The right panel in Fig. 2
illustrates the three regimes and indicates the crossovers at
Dt ¼ SP (fast diffusion to ballistic) and at Dt ¼ P (ballistic
to slow diffusion).

From either experimental or simulated trajectories, we
can measure D, P, and S in the following way. Considering
the temporal sequence of cell positions from either an exper-
iment or simulation, we calculate the MSD. Using the sec-
ond derivative of Eq. 1, with respect to Dt, we can
determine D and P by fitting the data with this curve. To
determine S, we first subtract the fitting curve from the
raw data. We then fit the result with a straight line, favoring
points at short time intervals. From the slope of this line, we
estimate S, and from the intercept, we estimate a possible
localization error. We explain this procedure in detail in
the Supporting Materials and Methods, Section S1, and pro-
vide explicit examples applied to experimental data in (12).
Thus, we can obtain a nondimensional MSD curve for any
pseudorandom cell trajectory and map it onto a one-param-
eter family of curves (parameterized by S) given by Eq. 2. In
(12), we show that cell trajectory data from five laboratories
(49–53) for different cell types, substrates, and setups all fit
Eq. 2. Here, we apply this method to quantify simulations
results, enabling straightforward quantitative comparison
between simulations and experiments.
METHODS

Conceptual model

To represent the different biomechanical properties of the different portions

of the cell, in our model, we represent a cell as a 3D object with three

distinct internal compartments: nucleus, cytoplasm, and lamellipodium
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(we will use the italics to distinguish simulation objects from biological ob-

jects, e.g., cell versus cell). Cells move because of actin treadmilling so, on

a rigid substrate, the focal points that connect the cytoskeleton to the sub-

strate barely movewith respect to the laboratory. As the cell moves forward,

the focal points move backward with respect to the cell’s center of mass.

When the focal points are in or near the lamellipodium, in the front of

the cell, the cytoplasm is rich in RAC, which maintains their integrity

and strong binding to the substrate. When they approach the rear of the

cell, the cytoplasm is rich in Rho-A, which promotes focal-point disas-

sembly. Our simplified model does not represent focal points explicitly,

and we model these very rich dynamics by assuming that the lamellipodium

compartment adheres more strongly to the substrate than the cell’s cyto-

plasm compartment (10,17,19). Because nuclei are very rigid compared

to cytoplasm (47), we include a stiff quasispherical nuclear compartment.

The cell exists in an external environment composed of a two-dimen-

sional substrate plane, on which the cell crawls and moves, and an empty

space, themedium, that surrounds the cell. The lamellipodium compartment

generates an F-actin field that promotes lamellipodium expansion at the la-

mellipodium-medium interface, creating a local feedback loop resulting in

protrusive cell movement. Volume and interfacial area constraints over

all cell compartments ensure the global movement of the whole cell in

the direction of lamellipodium expansion. The same constraints on the la-

mellipodium compartment also provide a long-range inhibition mechanism,

constraining the cell’s lamellipodial extension. Long-range inhibition

together with local excitation is a necessary ingredient for spontaneous

symmetry breaking (26).
FIGURE 3 Schematic representation of crawling dynamics in a simu-

lated cell. The actin field in lattice sites occupied by lamellipodium, repre-

sented in green, favors lamellipodium lattice sites overwriting medium

lattice sites, increasing the volume of the lamellipodium compartment

and extending the compartment to the left (1). The volume constraint on

the lamellipodium compartment then favors cytoplasm lattice sites over-

writing lamellipodium lattice sites, decreasing lamellipodium compartment

volume and increasing cytoplasm compartment volume (2). Finally, the

volume constraint on the cytoplasm compartment favors medium lattice

sites overwriting cytoplasm compartment lattice sites. Together, these three

steps create a polarization axis and polarized force generation that causes a

net migration of the cell in the direction of the lamellipodium compartment

(to the left in the figure). To see this figure in color, go online.
Computational model

Our simulations of the biology of cell migration employ the CP/GGH

model (41,54,55) implemented in the open source CompuCell3D simula-

tion environment (56). The CP/GGH model divides space into a cubic

cell lattice, with each lattice site ~r ¼ (x, y, z) having an integer label s.

We define a cell s as the set of lattice sites sharing the same label s. For

readers familiar with CompuCell3D, we note that the simulation represents

each cell compartment (nucleus, cytoplasm, and lamellipodium) as a single

CompuCell3D generalized cell and the modeled cell as a CompuCell3D

cell cluster.

Another label, C, identifies one of the three compartments within each

cell: nucleus (C ¼ 1), cytoplasm (C ¼ 2), or lamellipodium (C ¼ 3).

Defining cell compartments allows the subregions of the cell to have

different biomechanical properties, as observed in real cells (57–59). We

define substrate and medium as additional types of generalized cell.

Configuration changes in the CP/GGH occur ‘‘stochastically’’; we first

calculate the ‘‘effective energy’’ of the current configuration of the cell lat-

tice (see below), Einitial, then randomly pick a source cell lattice site and an

adjacent target cell lattice site. If the source and target lattice sites lie in

different cells or compartments, we propose to copy labels s and C from

the source to the target lattice site, which moves the boundary between

the two cells or compartments, and calculate the effective energy of the pro-

posed final configuration, Efinal. The difference between the final and initial

effective energies DEhEfinal � Einitial represents the ‘‘change of energy’’

for a movement of the boundary between the initial and final positions,

so �DE/(copy distance) is the ‘‘effective force’’ in the direction of the

copy attempt. Here, we take copy distance ¼ 1. If DE % 0, we

accept the copy, and if DE > 0, we accept the copy with probability

expð� DE =TBÞ, where TB is a Boltzmann-like fluctuation amplitude asso-

ciated with the amplitude of the noise term in the Langevin and F€urth equa-

tions. In this dynamics, the average velocity of a boundary in a given

direction is proportional to the effective force in that direction (overdamped

dynamics), as long as the typical magnitude jDE =TB j � 1: The configu-

ration can only change if the selected lattice sites have different labels s

and/or C. The natural time unit of the simulation, a Monte Carlo step

(MCS), consists of N¼ Lx� Ly� Lz such choices and copy attempts, where

Lx, Ly, and Lz are the x, y, and z dimensions of the lattice, in (lattice sites)1/3.
The following discussion of the effective energy considers a single cell

but generalizes easily to arbitrary numbers of cells.

The effective energy includes terms that describe all the separate biolog-

ical mechanisms we wish to include in our model:

E ¼ Einterface þ Etarget volume þ EF�actin; (3)

where Einterface is the typical Potts model term that quantifies the interfacial

energy of the cell spatial configuration:

Einterface ¼
X
~r

X
~vð~rÞ

Jðsð~rÞ;Cð~rÞ; sð~vÞ;Cð~vÞÞ

� ½1� dð sð~rÞ� sð~vÞ Þ�½1 � dð Cð~rÞ�Cð~vÞ Þ� ; (4)

where Jðsð~rÞ;Cð~rÞ; sð~vÞ;Cð~vÞÞ is the interfacial energy per lattice site of

contact surface between neighboring lattice sites at sites at~r and~v, whose

labels are sð~rÞ;Cð~rÞ and sð~vÞ; Cð~vÞ. The sum over ~vð~rÞ sums over the

fourth-neighbor range around~r (32 neighbors) to reduce lattice anisotropy

(60). For neighboring lattice sites that belong to the same cell and compart-

ment (sð~rÞ ¼ sð~vÞ and Cð~rÞ ¼ Cð~vÞ), J ¼ 0. In all other cases, we set

Jðsð~rÞ;Cð~rÞ;sð~vÞ;Cð~vÞÞ to be ferromagnetic (i.e., interfacial energies are

positive). A correct choice of energy hierarchies ensures that the cytoplasm

always surrounds the nucleus and the lamellipodium remains attached to the

cytoplasm, substrate, and medium (see Fig. 3).

The second term on the right-hand side of Eq. 3 constrains the volume of

each cell compartment to be close to its reference volume:

Etarget volume ¼
X3
C¼ 1

lC
�
VC � Vtarget

C

�2
; (5)

where VC is the current volume of the Cth cell compartment, Vtarget
C is its

target volume, and lC is the inverse compressibility of the compartment.

The last term in Eq. 3, extends the usual CP/GGH effective energy to

describe the protrusive forces F-actin polymerization exerts on the leading

edge of the cell. We first define an actin field Fð~r; tÞ associated with the la-

mellipodium compartment of the cell that obeys the simplified reaction-

diffusion equation:

vFð~r;tÞ
vt

¼ DFV
2Fð~r; tÞ þ ksourced ðCðx; y; 1Þ� 3Þ

� kdecay Fð~r; tÞ; (6)
Biophysical Journal 118, 2801–2815, June 2, 2020 2805
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where ksource represents the rate of nucleation and polymerization of F-actin

fibers, which occur only at lattice sites belonging to the lamellipodium

compartment that touch the substrate; DF is an effective diffusion constant

for actin inside the cell (we do not model active transport of F-actin); and

kdecay represents the depolymerization rate of F-actin fibers within the cell

(which also cleans up the model artifact that a moving cell allows a small

amount of F-actin to ‘‘leak out’’ of the cell). We could have modeled the

actin field equation in a variety of ways, subject to the condition that its evo-

lution keeps the actin field reasonably constant inside the lamellipodium

and nearly zero outside such that the gradient is different from zero at

the cytoplasm-medium boundary (see Fig. 3).

We then use this actin field to apply an extensional force on the lamelli-

podium-medium leading edge by increasing the probability of a source site~r

in the lamellipodium compartment overwriting a target site ~v in the

surrounding medium using the following correction to the difference in

effective energy:

DEF�actin ¼ lF�actin½Fð~vÞ�Fð~rÞ� dðCð~rÞ� 3Þ dðsð~vÞ
�mediumÞ; (7)

where the Kronecker deltas d confine the force to act only on the boundary

between lattice sites lying in the lamellipodium compartment of a cell and

the surrounding medium.

Equation 7 applies a force to the membrane in the direction ð~v�~rÞ of the
copy attempt of magnitude, �DEF-actin/(copy distance), where copy dis-

tance is the distance between the source and copy lattice sites. Fð~rÞ is the
field specifying the concentration of F-actin, and lF-actin > 0 is the force

per area per unit F-actin. DEF-actin increases the probability that a lattice

site in the lamellipodium of the cell overwrites a neighboring medium lat-

tice site. Observe that the gradient in the F-actin field reflects that actin fil-

aments inside the cytoplasm apply an outward force on the membrane

toward the medium, whereas no active forces in the medium push back

in the opposite direction. Equation 7 does not attempt to provide a detailed

mechanistic description of actin network dynamics and force generation

but, with the assistance of Eq. 6, heuristically models the force the actin

network exerts on the cell front during protrusion.

TheDEF-actin term, coupled with the volume constraint in Eq. 5 and inter-

facial energy in Eq. 4, also increases the rate at which cytoplasm lattice sites

overwrite lamellipodium lattice sites and medium lattice sites overwrite

cytoplasm lattice sites at the rear of the cell, creating a polarization axis

that directs cell migration in the direction of the lamellipodium compart-

ment, as Fig. 2 shows schematically. Consequently, the model mechanisms

also couple cell-front protrusion to cell-rear contraction.
Cell crawling simulations

Our simulations consider cells with a total target number of lattice sites

(including all three compartments) of ð4p =3ÞR3
cell, where the Rcell is the

‘‘equivalent radius’’ of a sphere with the same target volume as the cell.

We use a 3D square lattice with periodic boundary conditions in the (x,

y) plane of size (Lx, Ly, Lz), scaled in units of Rcell, and settings Lz ¼ 2.1Rcell

and Lx ¼ Ly ˛ [8Rcell, 14Rcell].

Initially, the cell consists of two compartments, the cytoplasm and nucleus,

with no lamellipodium. A lamellipodium formswhen the cell contacts the sub-

strate; after each Monte Carlo step, we convert any cytoplasm lattice site that

touches substrate into a lamellipodium lattice site with a probability propor-

tional to

 
1 � V3

�
Vtarget
3

!
. This timescale is important only when the lamel-

lipodium volume V3 is much different from its target value Vtarget
3 , that is, at

early times in a simulationwhen lamellipodium is being created.We calculate

statistics inmotiononly after the simulated cell achieves stationarybehavioror

details on the CompuCell3D simulation and the initial conditions (see Section

S2 in the Supporting Materials and Methods).
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The target volumes, together with the inverse compressibility of each

compartment (lC), allow the cell to move while maintaining the volumes

of each compartment within 1% of their target values (6).

For a given cell equivalent radius Rcell, we set the cell’s target volume to

Vtarget
cell ¼ ð4p =3ÞR3

cell. The volume fractions of the nucleus and lamellipo-

dium compartments are fn ¼ Vtarget
1 =Vcell and fl ¼ Vtarget

3 =Vcell. We varied

three simulation parameters, Rcell, fl, and lF-actin. We considered the

following parameter ranges: 0.05 % fl % 0.3, 0 % lF-actin % 250, and

10 (lattice sites)1/3 % Rcell % 20 (lattice sites)1/3. These ranges cover the

three-parameter space in which the cells move and do not lose their lamel-

lipodium. We keep all other parameters constant, chosen as we discuss

below.

We chose the interfacial energies between cell compartments to guar-

antee that lattice sites composing a cell occupy a connected region of the

lattice. We established the hierarchy of the interfacial energies by adjusting

the Young contact angle for any triad of compartments so that the cell shape

reproduces the shape observed in typical experiments. The nucleus

compartment has high interfacial energy with both the medium and sub-

strate, ensuring that it remains surrounded by the cytoplasm. Lamellipo-

dium binds more strongly to substrate than cytoplasm binds to substrate

to replicate the experimental observation that the leading edge of a cell

migrating on a substrate adheres to the substrate more strongly than the

trailing edge adheres to the substrate (35,61). In fact, as long as the energy

hierarchy is right, the lowest energy configuration is the same. What matters

then is the ratio of surface energy per site/TB. We need to maintain the

approximate ratio ðEinterface =TBÞ � 1. When this ratio is much bigger

than 1, the simulation freezes; if it is much less than 1, the simulation’s

equilibrium configuration goes from ferromagnetic to isotropic, and the

cell falls apart. As long as we choose parameters between these limits,

the exact values of the interface energy per site do not have much effect

on the simulation. We chose the different inverse compressibility values

such that the contribution from Etarget volume to the simulation dynamics is

on the order of the contribution from Einterface. This balance guarantees

that the target volume term constrains the cell volume without causing

the cell to freeze. We chose lF-actin similarly to balance the force contrib-

uted by the chemotaxis effective energy with the forces contributed by

the other effective energy terms. In practice, we scale TB and all effective

energy terms by Einterface. After this, we can constrain the total effective en-

ergy, and thus the typical value of Einterface, as follows. The CP/GGH has a

numerical stability speed limit of �0.1–0.2 lattice sites/MCS. This speed is

determined by the typical change in total energyDEwhen we make a lattice

copy and means that we must define our parameters so that e

�
�DE
TB

�
( 0.1.

We set Einterface to meet this requirement. Finally, we chose the nucleus vol-

ume fraction fn ¼ Vtarget
1 =Vcell ¼ 0:15 based on the typical values in exper-

iments. Table 1 provides our reference simulation parameter values.

Fig. 4 shows typical cell migration behavior for a typical set of parame-

ters. A cell suspended inmedium is symmetrical, lacks a lamellipodium, and

does not migrate (A, A0, A00). When the cell cytoplasm (gray) touches the

substrate, a roughly symmetrical lamellipodium (green) forms and spreads

over the substrate, forming a circular halo around the cytoplasm (B, B0, B00).
Instability in the feedback between the reaction-diffusion equation for F-

actin, Eq. 6, and membrane protrusion due to Eq. 7 causes the lamellipo-

dium to spontaneously lose its circular symmetry, and multiple incipient

leading edges compete to drag the cell’s center of mass (C, C0, C00) in the

xy plane. Positive feedback between cell movement and F-actin dynamics

reinforces the asymmetry, selecting a single leading edge, and the cell de-

velops a classical-migrating morphology (D,D0,D00). From time to time, the

lamellipodium may split, returning to the morphology of competing incip-

ient leading edges seen in (C), (C0), and (C00); when one section of lamelli-

podium wins, the cell begins to move in a new direction. As in experiments,

the lamellipodium (green) is much thinner than the rest of the cell. Sagittal

sections (A00, B00, C00, D00) show the cell nucleus (yellow) embedded in the

cytoplasm. Video S1 provides a movie of simulated cell migration for

Rcell ¼ 15 (lattice sites)1/3, fl ¼ 0.10, and lF-actin ¼ 175.



TABLE 1 Reference Parameter Values for Simulations

Reference Parameter Values for Simulations

fn DF lc ll ln kdecay ksource TB

0.15 0.0001 10 10 10 0.9 0.9 100 –

Jmedium-substrate Jmedium-

cyto

Jmedium-

lamellipodium

Jmedium-

nucleus

Jsubstrate-

cyto

Jsubstrate-

lamellipodium

Jsubstrate-

nucleus

Jcyto-

lamellipodium

Jcyto-

nucleus

Jfront-

nucleus

20 20 40/3 100 20 20/3 100 20 20 40

The units for simulations include an energy which is always rescaled by the typical fluctuation energy T, MCS for time and (lattice sites)1/3 for length. Hence,

units for the diffusion coefficientDF are (lattice sites)
2/3/MCS, for inverse compressibility (lc, ll, and ln) energy unit/(lattice sites)

2, for decay and source time

constants, 1/MCS, and, finally, for all surface energy terms J, energy unit/(lattice sites)2/3.

CompuCell3D Cell Migration
RESULTS AND DISCUSSION

Fig. 5 shows the total cell displacement from its initial po-
sition after 105 MCSs as a function of lF-actin for four values
of fl and three values of Rcell. The dependence on lF-actin is
always qualitatively the same: for small lF-actin, total cell
displacement may be less than a cell diameter (2Rcell), so
the cell’s center-of-mass motion is confined in the short-
time diffusive regime, and the MSD log-log plot shows a
straight line with slope 1. We classify cellswith these behav-
iors as nonmotile.

For small lamellipodium volume fraction fl, the
lamellipodium never achieves a symmetrical configura-
tion, favoring cell motility. However, for small fl and
large lF-actin, the lamellipodium can detach from the
rest of the cell, which does not occur in normal cell
migration.

For larger lamellipodium volume fraction fl, migration
requires that lF-actin be larger than some minimal value.
For fixed lF-actin, increasing fl decreases the persistence
time of cell movement, so trajectories are more tortuous.

Fig. 6 shows sample configurations and sets of 10 trajec-
tories each for cells with Rcell ¼ 15 (lattice sites)1/3 for a
range of values of lF-actin (the force each unit of lamellipo-
dium generates) and fl (the lamellipodium volume frac-
tion). The background color is cyan for nonmotile cells,
gray for migrating cells, and light red for simulations in
which the lamellipodium compartment of the cell detaches
intermittently between states (C and D), changing direction with each cycle.

(A0), (B0), (C0), and (D0) show the three-quarters view; (A00), (B00), (C00), and (D0
from the cytoplasm compartment. The parameters deter-
mine the persistence time of cell movement. For each
parameter set, the MSD of the cells fits the modified F€urth
equation, Eq. 2, with a unique set of S, P, and D. Figs. S1
and S2 show equivalent results for Rcell ¼ 10 and 20 (lattice
sites)1/3.

Fig. 7 shows scaled MSD versus scaled time (the scaling
was obtained by fitting for D, P, and S with Eq. 2) for a va-
riety of parameter regimes, showing that all trajectories
collapse onto a family of curves characterized by the single
parameter S. Table 2 gives fitted values. The insets present
the MSD curves in unscaled simulation units. Figs. S3 and
S4 show equivalent results for Rcell ¼ 10 and 20 (lattice
sites)1/3.

Different underlying biophysical processes may produce
identical MSD curves (51,62). Comparison between the
temporal autocorrelations of the velocity could, in principle,
resolve some of these redundancies. The velocity autocorre-
lation (VACF) is defined as

VACFh~vðtÞ$~vðtþDtÞ ¼ 1
T�Dt

ZT�Dt

0

dt ~vðtþDtÞ$~vðtÞ;

(8)

where h $i represents averages over experiments or simula-
tion replicas. For a classical persistent random walk, VACF
FIGURE 4 Onset of migration for an initially sus-

pended, nonpolar cell coming into contact with a

substrate. Shown here are the cytoplasm in violet,

lamellipodium in green, and nucleus in yellow in

three different views. Shown top to bottom are items

as follows: the top view of the (x,y) plane, oblique

three-dimensional rendering (z axis has the shortest

length), and lateral sectional view of the (z,y) plane.

(A) shows the initial symmetrical nonmotile cell

with no lamellipodium; (B) shows a nonmotile cell

with symmetrical lamellipodium; (C) shows that

competition between incipient leading edges leads

to the symmetry breaking; (D) shows that the selec-

tion of a dominant leading edge leads to persistent

cell motion in the direction from the nucleus to the

center of mass of the leading edge. The cell cycles

The viewpoints are as follows: (A), (B), (C), and (D) show the top view;
0) show the sagittal section. To see this figure in color, go online.
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FIGURE 5 Cell displacements after 105 MCS in

units of Rcell for different simulation parameters.

For low lF–actin, the cell barely moves. The symbols

and bars show means and standard errors for five

replicas per parameter set. To see this figure in color,

go online.

Fortuna et al.
is a useful measure that may be obtained by taking the sec-
ond time derivative of the MSD curve. However, when the
motion over short time intervals is diffusive, instantaneous
2808 Biophysical Journal 118, 2801–2815, June 2, 2020
velocity is not well defined (12), and we must use a mean
velocity, ~vðt; εÞ, calculated over an appropriate ‘‘finite’’
time interval ε, defined as
FIGURE 6 Typical simulated cell trajectories

and (selected) cell morphologies for different

values of fl and lF–actin. Each panel shows 10

cell trajectories of length 105 MCS, with Rcell ¼
15 (lattice sites)1/3. Axes show x and y positions

measured relative to the center of the cell lattice

in units of Rcell. The background color indicates

confinement (cyan), persistent migration (gray),

and artifactual lamellipodium detachment (light

red). Larger lF–actin and smaller fl increase cell

motility. When lF–actin is too small, the lamellipo-

dium remains symmetrical and the cell does not

migrate, whereas for very small fl, the lamellipo-

dium is not strong enough to drive cell migration

(data not shown). To see this figure in color, go

online.



FIGURE 7 MSD ðjD r!j 2Þ for simulated cells on

a log-log scale, rescaled as described, averaged

over five runs. The insets present the same data

with length given in multiples of the equivalent

cell radius and time in MCS. Observe that all re-

scaled simulation curves collapse to the same one-

parameter family of curves characterized by S, as

in (12). To see this figure in color, go online.

CompuCell3D Cell Migration
~vðt; εÞ ¼ ~rðtþεÞ�~rðtÞ
ε

;

or, in natural units,

~uðt; dÞ ¼ ~rðtþdÞ�~rðtÞ
d

; (9)

where d ¼ ðε =PÞ. From ~uðt; dÞ , we can define a ‘‘mean’’
velocity autocorrelation function jd(Dt) as

jdðDtÞ ¼ ~uðt; dÞ$~uðtþDt; dÞ

¼ 1
T=P�Dt

ZT=P�Dt

0

dt~uðt; dÞ$~uðtþDt; dÞ: (10)

jd detects artifactual correlations when d R Dt because
in this case, the intervals used to calculate both~uðt; dÞ and
~uðtþDt; dÞ overlap.

Fig. 8, upper left panel, presents the mean speed j~uðt; dÞ j
averaged over time and different runs for simulations with
Rcell ¼ 15 (lattice sites)1/3, fl¼ 0.10, and lF-actin ¼ 150,
175, and 200 as a function of d: d : j~uðt; dÞ j does not
converge to a finite value as d / 0 because of the diffusive
behavior of the cells over short time intervals. We plotted
the corresponding MSDs together to emphasize the exis-
tence of the three kinetic regimes. The other three panels
present jd(Dt) vs.Dt for different values of d corresponding
to the simulations with Rcell¼ 15 (lattice sites)1/3, fl¼ 0.10,
and lF-actin as indicated. We show data only for d < Dt. The
modified F€urth equation fit for this simulation data considers
the values of S indicated in the panels. For Dt > S, all
rescaled curves are identical. For Dt < S, the second deriv-
ative of the modified F€urth equation fails to describe the
observed decrease in jd(Dt). This failure results from the
finite precision of the estimate of cells’ mean velocity: for
small d, the uncorrelated displacement in the perpendicular
direction of polarization dominates the correlated displace-
ment parallel to polarization. When calculating jd(Dt) for
small d and finite precision, the contribution from the corre-
lated Langevin component is lost as Dt decreases, resulting
in a vanishing jd(Dt) as Dt decreases (provided it is larger
than d).

Thus, for d<Dt< S, the second derivative of the original
F€urth equation measures the autocorrelation between com-
ponents of velocity parallel to the polarization, whereas
the numerically obtained jd(Dt) measures the correlation
of components of a Brownian movement, which goes to
zero as Dt / 0. Reference (12) shows that experimental
cell trajectories show identical behaviors.

To demonstrate that the present model and its simulations
can quantitatively reproduce experimental data, we show a
simulation (Rcell ¼ 15, fl ¼ 0.30, and lF-actin ¼ 160 over
30 replicates) that yields the value of S ¼ 0.02 obtained
by Thomas et al. (12) for Metzner et al.’s experiments on
MDA-MB-231 cell migration on fibronectin-coated sub-
strates (N ¼ 69) (50). Trajectories were obtained by auto-
matically tracking 69 cells whose positions were acquired
every 1 min, determined from a characteristic intensity pro-
file of the refraction pattern around the nucleus of the cell.
Fig. 9 shows the overlap of simulation and experimental
data for both MSD (left panel) and jd(Dt) with d ¼ 0.515
(right panel), corresponding to 1 min. The experimental
and simulation curves agree because Eq. 2 fits both raw
data sets very well, providing the length and timescales
that allow plotting both data sets on dimensionless axes.
Biophysical Journal 118, 2801–2815, June 2, 2020 2809



TABLE 2 Dependence of Fitted Values of S, P, and D on Key Simulation Parameters for Simulations in which the Cells Are not

Confined or Broken

Simulation Fitting Parameters

Rcell (lattice sites)
1/3 fl lF-actin P (MCS) D (R2

cell/MCS) S 2DP/(1 � S) (R2
cell)

75 841 8.99E�5 1.24E�1 0.17

100 1205 2.68E�4 4.43E�2 0.68

0.05 125 1801 7.70E�4 1.46E�2 2.81

150 4150 2.56E�3 5.84E�3 21.37

175 9616 6.15E�3 1.68E�3 118.49

100 624 2.83E�5 3.71E�1 0.06

125 1065 2.40E�4 4.88E�2 0.54

10 0.10 150 2576 1.83E�3 6.95E�3 9.50

175 6396 6.52E�3 2.15E�3 83.58

200 16,840 1.56E�2 9.58E�4 525.60

150 2279 6.85E�4 1.47E�1 3.17

0.20 175 3878 3.60E�4 3.06E�3 28.01

200 4637 5.82E�3 1.78E�3 54.08

150 2272 2.36E�4 4.55E�2 1.12

0.30 175 3648 2.14E�3 5.41E�3 15.70

200 3714 3.65E�3 2.87E�3 27.20

125 2117 2.65–5 8.64E�2 0.12

0.05 150 6958 7.77E�4 3.13E�3 10.85

175 35,781 6.25–3 4.20E�4 447.45

150 6878 2.83–4 9.68–3 1.98

0.10 175 12,546 2.37E�3 9.84E�4 59.53

200 23,265 5.66E�3 3.93E�04 263.47

15 150 6333 3.56E�5 6.73–02 0.69

0.20 175 7361 7.92E�4 2.87E�03 11.70

200 8213 1.46E�3 1.49E�03 24.02

0.30 150 11,987 2.59E�5 9.46E�02 0.69

160 8327 1.13E�4 2.12E�02 2.77

165 11,507 2.43E�4 1.26E�02 5.66

170 15,079 5.36E�4 4.41E�03 16.23

175 7491 3.29E�4 7.67E�03 4.96

200 10,124 1.27E�3 1.72E�03 25.76

150 10,018 1.028E�4 7.00E�3 2.07

0.05 175 44,862 2.64E�3 3.41E�4 236.95

200 194,567 8.74E�3 1.09E�4 3401.40

20 0.10 175 21,630 7.93E�4 1.14E�3 34.34

200 30,424 2.03E�3 4.19E�4 123.57

0.20 175 26,853 4.10E�4 2.20E�3 22.07

200 12,613 4.74E�4 1.90E�3 11.98

0.30 175 14,932 4.44E�5 2.07E�2 1.35

200 7775 6.71E�5 1.36E�2 1.06

ð2DP =1�SÞ in the last column is the square of the natural length scale
��

2DP
1�S

	1
2�

given in units of R2
cell(Eq. 2).

Fortuna et al.
Figs. 7, S3, and S4 show that all our simulated cell trajec-
tories generate equally high-quality fits. Fig. 10 collapses
experimental data sets analyzed by Thomas and collabora-
tors (12) for 12 experiments; the fits are comparable in
quality. As Figs. 7, 10, S3, and S4 plot the same family of
curves on dimensionless axes, all experimental and simula-
tion data for a given value of S overlap. We therefore expect
that by choosing simulation parameters that match an exper-
imentally observed value of S, we will be able to effectively
replicate any of these experimental data sets, as we did in
Fig. 9.

The modified F€urth equation adds a short-time diffusive
correction to the original F€urth equation. Thomas et al.
2810 Biophysical Journal 118, 2801–2815, June 2, 2020
(12) showed that experimental data agree with this correc-
tion and that it does not result from errors in position
measurement, as sometimes suggested in the literature
(63,64). Here, we tested our simulations for localization er-
rors as an alternative explanation for short-time diffusion,
but our tests ruled out this possibility; localization errors
would produce deviations in short-time MSD several orders
of magnitude smaller than those observed. See Supporting
Materials and Methods Section S3 for details.

Execution times for the simulations are approximately
proportional to the number of simulation lattice sites N ¼
Lx � Ly � Lz, which is, by construction, proportional to
Rcell

3 and roughly independent of lF-actin and fl. Fig. S5



FIGURE 8 Analysis of simulations with Rcell ¼
15 (lattice sites)1/3, lF–actin ¼ 150, and fl ¼ 0.10.

The top left panel shows the mean speed j u!ðt;
dÞ j as a function of d, together with MSD curves

(as a function of Dt) for three different values of

lF–actin. The other panels show, for the same data,

the mean velocity autorcorrelation function jd(Dt)

as a function of Dt for different values of d. In all

panels, the olive dashed line corresponds to the orig-

inal F€urth model. To see this figure in color, go

online.

CompuCell3D Cell Migration
shows execution times for simulations with lF-actin ¼ 150
and fl ¼ 0.05 and 0.10 performed on an Intel i7-3770K
CPU. For a cell with Rcell ¼ 15, a typical migration simula-
tion of duration 105 MCS takes �200 min.

Validating any simulation result requires an objective
quantitative metric to compare simulation and experimental
data. In cell migration experiments tracking either center-of-
mass or geometric center positions of individual cells and
plotting theMSD versus time interval is a standard measure-
ment. Although rough data for the MSD do not allow direct
comparison between experiments or between experiments
and simulations, the fit of these data to the classic F€urth
equation allows direct comparison between experiments
and simulations. However, the F€urth equation omits the
short time/range diffusive motion usually observed in exper-
iments. We demonstrate here that our simulations replicate
this fast diffusive behavior.

Our phenomenological model and simulation do not
include detailed descriptions of the cytoskeleton dynamics
in cell migration, so the fast diffusive behavior shown by
simulations and experiments must emerge from general fea-
tures of how fluctuations act on cell kinetics. To investigate
further, we plotted S vs. D in Fig. 11 a, in which we measure
D in units of ðR2

cell =MCSÞ, as listed in Table 2. That the data
collapse so nicely on a single curve means that Dfast is
constant for a given value of Rcell. We fitted the points to
the function S ¼ ðDfast =Dfast þ DÞ, using the mean value
of Dfast for simulations with the same Rcell. Fig. 11 b shows
S vs.D but withD given in units of ððlattice sitesÞ2=3 =MCSÞ.
Fig. 11 c plots the average values of Dfast in units of
FIGURE 9 Comparison of simulations with

Rcell¼ 15, fl¼ 0.30, and lF–actin¼ 160 andMetzner

data for cell migration on fibronectin coated sub-

strates (50). Both experimental and simulation data

yield the same value for the excess diffusion S ¼
0.02. The left panel shows theMSD. The right panel

shows the mean velocity autocorrelation function for

jd(Dt) for with d ¼ 0.515. The gray line shows the

second derivative of the modified F€urth equation

(Eq. 2) with S ¼ 0.02. To see this figure in color,

go online.
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FIGURE 10 Fits of Eq. 2 for 12 experiments on cell migration from five

different laboratories (49–53), as reported by Thomas et al. (12). The fits are

as good as those for the simulated data and experiment in Fig. 9. To see this

figure in color, go online.

Fortuna et al.
ððlattice sitesÞ2=3 =MCSÞ and shows that Dfast(Rcell) � R�2
cell.

Using this relation to rescale the abscissa in Fig. 11 d, we
observe that the data collapse onto the same curve for all
values of Rcell. The panels of Fig. 11 suggest that the magni-
tude of the additional term in the MSD is because excess
diffusion depends on the number of lattice sites at the sur-
face of the cell and that the excess diffusion is a stochastic
term because of fluctuations of the cell surface. S and D
could, in principle, be unrelated, but Fig. 11 clearly shows
a correlation between the two parameters. S gives the time-
scale for the short-time diffusive behavior, setting the time-
scale at which the drift velocity takes over. We expect it to
depend on a competition between the amplitude of fast fluc-
tuations and the directional persistence of lamellipodium
2812 Biophysical Journal 118, 2801–2815, June 2, 2020
protrusions. In these simulations, we kept the Boltzmann-
like fluctuation amplitude (TB in Table 1) fixed because
changing the fluctuation amplitude might allow us to
explore this relationship.

In summary, in our model, simulated cells migrate such
that 1) they preferentially move in an (instantaneous) polar-
ization direction; 2) this movement is always accompanied
by random fluctuations in the direction perpendicular to
the polarization direction; and 3) although the preferential
direction may drift, the movements in both directions orig-
inate from the same mechanism of lattice site copying. We
conclude that Fig. 11 shows that the ability of the parameter-
ization in terms of S, P, andD to reduce the trajectory data to
a single parameter family of curves demonstrates a consis-
tent relationship between the fluctuations in the forward
and transverse directions. The relationship depends on
R2
cell, indicating that the cell surface plays an important

role in linking these in-principle independent parameters.
This linkage via the surface of the cell probably occurs
because the important dynamics happens at the lamellipo-
dium surface, and when lamellipodium is fully developed,
the lamellipodium surface area fluctuates around a station-
ary value, proportional to the whole-cell surface area. The
relationship between S andD displayed in Fig. 11 d suggests
that fast and slow diffusion may share a common mecha-
nistic origin.

Finally, we remark that, although we would not neces-
sarily expect real cells of different types to show the same
universal quantitative relation between membrane-fluctua-
tion amplitude and persistence of migration direction (and
thus to have their reduced MSDs fit to a single curve),
when we plot S vs. D for a variety of cell-tracking
FIGURE 11 Correlation between S and D. To see

this figure in color, go online. Rescaling of the ab-

scissa to colapse the data in (a), (b), and (d). Dfast

as a function of Rcell.
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experiments, the experimental values fluctuate around the
same function as the simulated ones, S ¼ (1 þ constant �
D)�1 [12].

Simulations allow more precise control of cell positioning
and polarization direction than experiments. Fig. 12 shows
the displacement ‘‘moduli’’ j~rðtþDtÞ �~rðtÞ j for different
t for one simulation run, calculated using different values of
Dt as a function of the cell polarization, here defined as the
distance between the lamellipodium and nucleus centers of
mass measured at the beginning of the time interval. For
Dt < S, in the short time/range diffusive regime, displace-
ment and polarization are uncorrelated (black dots in
Fig. 12, right lower panel). For S < Dt < 1, in the ballistic
regime, displacement and polarization correlate (Fig. 12,
left panel). For Dt > 1, in the long-time diffusive regime,
we expect the cell polarization direction to change over in-
tervals of Dt, reducing the correlation in (mean) velocity.
Fig. 12’s upper right panel (Dt > 1) and lower panel
(Dt < S) show decorrelation between the polarization and
displacement. The upper panel, however, does not show
self averaging, so it does not fill the plot as homogeneously
as in the lower panel. This discrepacy results because the
time series is not long enough for larger Dt. To ensure
self averaging, the correlation between displacement and
polarization for larger Dt requires longer trajectories. The
short time/range diffusive regime provides quantitative in-
formation on the subcellular mechanisms that destabilize
the cell polarization responsible for the ballistic regime,
and hence may be critical to explain the mechanism of
cell migration in a specific experiment. The methods we
use to quantify cell motion yield a sound and robust criterion
to choose adequate time intervals between measurements
and experiment durations to quantify cell migration statis-
tics and correlate them with observations of cell polarization
so that cell polarization may be used as a predictor for cell
displacement.
CONCLUSIONS

The MSDs from our simulations of cell crawling agree with
the MSDs produced by the modified F€urth equation (Eq. 2)
and, consequently, with any experimental measurements of
the motility of the wide variety of cell types that fit to Eq. 2.
Fitting MSD curves to the modified F€urth equation to deter-
mine S, D, and P allows the rescaling of computational units
of length (lattice sites)1/3 and time (MCS) to experimental
micrometers and minutes (the lack of a direct correspon-
dence between CPM/GGH units and experimental units
has been a concern in some previous studies). The strong
agreement between the trajectory statistics for our simula-
tions and experiments suggests that simple phenomenolog-
ical models and simulations may provide sufficiently
quantitative replication of real cell migration behavior to
use in larger-scale simulations of multiple cells in tissue-en-
gineering contexts. The simulations show the spontaneous
polarization, persistent migration, and intermittent loss
and reformation of leading edges that are typical of cells
crawling in vitro on a flat, homogeneous substrate. The sim-
ulations are fast enough to use in simulations of organs and
tissues with large numbers of cells; we will publish these re-
sults in future studies.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.04.024.
FIGURE 12 Cell displacement in units of cell

radius calculated for Dt < S (black dots, lower right

panel), S < Dt < 1 (blue, green, and red dots, left

panel), and Dt > 1 (cyan dots, upper right panel)

as a function of cell polarization for one simulation

run with Rcell ¼ 15, fl¼ 0.10, and lF–actin¼ 175. To

see this figure in color, go online.
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