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Abstract

Over 30 key leaders in the field participated in a 1-day workshop entitled ‘Recent Advances and
Opportunities in the Development and Use of Humanized Immune System Mouse Models’ to
discuss the benefits and limitations of using human fetal tissue versus non-fetal tissue sources to
generate mice with a humanized immune system. This Comment summarizes the workshop
discussions, including highlights of some of the key advances made through the use of humanized
mice in improving the understanding of immune system function and developing novel
therapeutics for the treatment of infectious, immunological and allergic diseases, as well as current
challenges in the production, characterization and utilization of these animal models.
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Humanized mouse models

Immunocompetent mice are widely used in biomedical research, and use of such mice has
supported many advances across multiple scientific disciplines. However, critical differences
in the genetics and immune systems of mice and those of humans have precluded studies in
mice of uniquely human immune responses. One way to address these species-specific
differences is to conduct in vivo preclinical studies using immunodeficient mice engrafted
with human cells or tissues — i.e., “humanized’ mice or ‘human immune system’ (HIS)
mice (Fig. 1). These humanized mice engrafted with human cells and tissues serve as a
preclinical bridge for several research areas. Engraftment of immunodeficient mice with
human peripheral blood mononuclear cells (PBMCs), hematopoietic stem cells (HSCs) or
human fetal tissues (thymus and liver) began in 1988 following the discovery of the
Prkdcscid (severe combined immunodeficiency (SCID)) mutation on the CB17 mouse strain
background?, with a focus on the development of a model for studies of human
immunodeficiency virus (HIV). Humanized mice also have been used for testing the safety
of drugs that target immunoreceptors exhibiting species-specific functionality. An example
of this is therapy with antibody to the co-stimulatory receptor CD28, for which preclinical
studies of non-human primates did not predict the serious adverse events observed in the
first human clinical trial?.

Injection of human PBMCs is the most direct method for developing HIS mice, although the
expansion of human T cells is followed by acute xenogeneic graft-versus-host disease.
While the rapid development of this disease enables preclinical testing of human
immunosuppressive agents, the relatively short survival of engrafted animals prevents long-
term in vivo functional studies of T cells. Humanization can also be accomplished through
the use of human HSCs derived from umbilical cord blood, bone marrow, fetal liver or adult
mobilized HSCs. Although most HSC-engraftment models require preconditioning with
sublethal X-irradiation or treatment with radiomimetic drugs such as busulfan, several newer
models can support HSC engraftment without preconditioning. Improved immunodeficient
mouse strains that lack mouse natural killer cell activity have been developed, such as the
NOD-Prkdcid //2rgf™iwil/Sz (NSG) strain and related models (NOG, NRG, BRGS, etc.) and
MISTRG mice, that all support greater engraftment of human lymphoid, myeloid and
hematopoietic cells than did the earlier models. MISTRG mouse models represent an
improvement in the development of the innate immune system relative to that of previous
strains34,

Despite such successes, the development of a robust functional human immune system
following HSC engraftment in HIS mice has remained constrained by numerous factors,
including the species specificity of major histocompatibility complex (MHC) antigens,
hematopoietic growth factors and cytokines, suboptimal development of lymphoid
architecture and impaired class switching and affinity maturation of immunoglobulins.

Notably, T cell education in the thymus is restricted largely by mouse MHC (H-2 complex).
The development of human MHC (HLA)-restricted T cells can be accomplished through the
implantation of fetal human thymus and liver tissue along with autologous fetal liver HSCs,
which results in “‘BLT’ (bone marrow, liver, thymus) mice, or through the use of NSG mice
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that have transgenic expression of HLA molecules and are engrafted with partially matching
cord blood HSCs3. Many humanized mouse models also express human cytokines, including
SCF, CSF-1, GM-CSF, IL-3, IL-6, IL-7 and IL-15, that support enhanced differentiation of
human myeloid and lymphoid cell populations3. Transgenic expression of human IL-34
supports the development of human microglia and of the brain HIV-1 reservoir. Such
advances are overcoming many deficiencies of the current models and facilitate the ability to
address specific immunological questions (Table 1).

Applications to human diseases

A few of the key areas in which humanized mice have contributed substantially to the
scientific understanding of human disease are described below. Early studies of humanized
mice helped to identify inflammatory pathways involved in the development of breast
cancer®. However, improvements to relevant humanized mice have made it possible to study
the more-complex interactions among myeloid cells, antigen-presenting cells and T cells,
including regulatory T cells, in the reconstituted tumor microenvironment. Notably, such
models have enabled the combination of patient-derived xenografts with engraftment of
allogenic HSCs for study of the therapeutic potential of checkpoint inhibitors, alone or in
combination with histone-deacetylase inhibitors, to reduce tumor regression. In addition,
autologous models containing patient-derived xenografts and autologous immune cells can
be used to test the efficacy of various immunotherapies directed against a patient’s own
tumor and to predict effective treatments®.

Humanized mice offer the ability to investigate mechanisms of therapeutic effector function
in vivo® and are used to define mechanisms associated with immunotherapy toxicity that
include the development of autoimmune antibodies. For example, treatment of leukemia-
bearing humanized mice with chimeric antigen receptor T cells has demonstrated a key role
for monocytes in producing IL-1 and IL-6 during cytokine-release syndrome’. Blocking the
IL-6 receptor or the IL-1 receptor controls the signs and symptoms of cytokine-release
syndrome or neurotoxicity, respectively’. Thus, humanized mice have contributed
substantially to the improvement of anti-cancer therapies.

Transplantation of non-self (‘allogeneic’ or ‘xenogeneic’) cells and tissues stimulates a
robust host immune response that mediates allograft rejection. Traditional
immunocompetent mouse models are effective tools with which to analyze immune
responses directed against engrafted allogeneic tissues, including PBMCs, human T cell
subsets and human CD34* HSCs. Humanized mice also have enabled the direct study of
human tissue rejection mediated by human immune cells and the testing of novel therapeutic
strategies to prevent rejection8. HIS mice have been used to investigate the immunological
rejection of human skin, pancreatic islets, cardiac tissues, pluripotent stem cell-derived
populations, and xenografts. They also have facilitated the evaluation of human-specific
therapeutics that suppress immune-system-mediated rejection of allografts, including
CTLA4-1g and monoclonal antibodies targeting CD3, CD28, CD154, 4-1BB, ICOS ligand
and OX40 ligand. Moreover, such models have enabled the testing of human regulatory T
cell and mesenchymal stem cell therapies to prevent human allograft rejection, which has
provided insights into T cell effector mechanisms essential for rejection. Overall, HIS mouse
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models have become an essential tool for human transplantation biology for the testing of
innovative approaches to prolong allograft survival.

As autoimmunity is a complex process that involves multiple cell types and genetic loci, the
development of an animal model capable of recapitulating human autoimmune disease
requires the establishment of a sophisticated human immune system in the mouse host. Early
studies using SCID mice given injection of PBMCs from autoimmune patients demonstrated
the occasional development of autoantibodies and engraftment of functional autoreactive T
cells. Although poor B cell maturation in most humanized mouse models has limited the
study of peripheral B cell tolerance, improved HIS mouse models given transplantation of
human HSCs have enabled investigations into mechanisms of central lymphoid tolerance,
including receptor editing and clonal deletion®. Humanized mice also support the
establishment of key features of pristane-induced systemic lupus erythematosus, such as
increased production of anti-nuclear autoantibodies and pro-inflammatory cytokines, as well
as multi-organ and fatal autoimmunity caused by defective transcription factor FOXP310,
The use of more-advanced immunocompetent BLT humanized mice, in which human T cells
become educated on human HLAsS, has facilitated the study of autoimmunity. For example,
BLT humanized mice given adoptive transfer of human CD4" T cells reactive to an insulin
B-chain peptide develop insulitis and diabetes!!. Therefore, various HIS mouse models
exhibit key aspects of human autoimmunity that will be necessary for the development of
novel therapeutics.

Humanized mouse models are perhaps most useful for the study of HIV, as they mimic
human HIV infections with high levels of viremia and depletion of CD4* T cells and also
support the establishment of a persistent latent virus reservoir. BLT humanized mouse
models enable the study of the physiologically relevant mucosal (intravaginal and
intrarectal) and oral routes of HIV transmission as well as of anti-retroviral therapy (ART) to
prevent transmission2. Some BLT models expressing distinct HLA haplotypes develop
human H1V-specific T cell responses capable of selecting for viral escape mutations’3. A
humanized triple-knockout BLT mouse model lacking the RAG-2 recombinase component,
the -y-chain of the IL-2 receptor and the signal-regulatory protein CD47 (RagZ2™'~ 112rg
~I=Cd477"- BLT mice) has supported the study of traditional small-molecule ART and non-
traditional therapeutic approaches, such as treatment with interferon-a4. Humanized NSG
mouse models have also been instrumental in explorations of the efficacy of gene-modified
HSCs toward a functional cure for HIV, including zinc-finger-mediated disruption of the
HIV co-receptor CCR5° and the production of HIV-specific T cells expressing chimeric
antigen receptors!®. Subsequently, HIS (NRG-hu Liv/Thy) mice served as an effective
small-animal model with which to study combined approaches using vaccination and
latency-reversing agents1®, as well as broadly neutralizing antibodies!®, to limit the HIV
reservoir.

The lack of small-animal models with which to investigate liver disease induced by hepatitis
B virus (HBV) or hepatitis C virus (HCV) has impeded delineation of the virological and
immunological mechanisms of viral persistence and efficient testing of new therapeutics.
Humanized mouse models engrafted with human immune cells, human hepatocytes and
hepatic stellate cells have been developed that support infection with HBV or HCV and the
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subsequent immunopathogenesis. When infected with HBV, such engrafted mice mount
virus-specific immune responses and develop histopathological features reminiscent of
human liver disease associated with pathogenic M2-like macrophages!®. The low level of
human hepatocyte development from fetal hepatocytes and low HBV replication have been
improved through engraftment of adult hepatocytes and allogeneic human fetal HSCs’.

Humanized mice are useful for the investigation of other viruses beyond HIV, HBV and
HCV18, Humanized mice infected with the herpesvirus Epstein-Barr virus (EBV) enable
modeling of B cell lymphoproliferative disease and EBV-driven lymphoma formation.
Clinical features of hemophagocytic lymphohistiocytosis and erosive arthritis associated
with EBV infection also can be recapitulated in humanized mice, which has led to the
investigation of therapies for these conditions. Human cytomegalovirus, another herpesvirus,
can establish latent infection in humanized mice in a way similar to its establishment in
humans, including reactivation after treatment with G-CSF, which has enabled the study of
this virus and its control with antiviral agents. Additionally, Dengue virus, a mosquito-borne
flavivirus, can successfully infect humanized mice and establish clinical signs such as fever
and erythema. Dengue virus—infected mosquitoes can model transmission via bite in
humanized mice, which results in higher viremia and a severe form of the diseasel®.
Humanized mice also are capable of supporting infection with Zika virus and developing
Zika virus—specific antibody responses, which has provided a model with which to test
antiviral therapeutics?0. Therefore, humanized mouse are capable of supporting infection
with and immunity to various human viruses, which facilitates the testing of therapeutic
interventions.

While parasitic and bacterial pathogens are generally less host specific than are viruses,
humanized mice have proven useful for studies of certain microbes, particularly when
human hematopoietic and immune cells exert a strong influence on their pathogenesis.
Similarly, humanized mice support infection with Neisseria meningitidis and develop
vascular damage?®, including the release of pro-inflammatory cytokines that leads to
neutrophil infiltration and inflammation and results in skin-graft pathology. Several groups
have also used humanized mouse models to study infection with Salmonella typhi and
dissemination of this bacteria to multiple organs!®. Humanized mice also support infection
with and immunity to Le/shmania major, Borrelia hermsii and some strains of
Streptococcus'8. Thus, humanized mice also aid in understanding of the pathogenesis and
treatment of human bacterial and parasitic infections.

Challenges, alternatives and strategies

Humanized mouse models, generated with either fetal human tissues or non-fetal human
tissues, have dramatically improved the ability to study human diseases. However,
discussions at the meeting made it clear that no single model is sufficient to support the
broad array of research areas described above. Many of these models also have numerous
limitations, including the potential for xeno-reactive graft-versus-host disease and its
ensuing complications; limited lifespan; incomplete human immune function, including a
lack of B cell immunoglobulin G responses; low levels of human-cell reconstitution of gut-
associated lymphoid tissues; and underdeveloped lymphoid organs and poorly developed
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lymphoid architecture. These issues need to be carefully considered in the interpretation of
experimental results. Fetal tissue—based BLT humanized mice pose additional practical
limitations that include the following: access to adequate amounts of tissue; tissue collection
and storage requirements; reproducibility; and broad availability to the research community.
Nonetheless, the availability of a small-animal model greatly facilitates the conduct of rapid,
iterative studies.

Humanized mice generated from non-fetal cells and tissues (for example, neonatal or adult
stem cells, or umbilical cord blood) have been used for specific indications. These newer
models need further development, as they currently do not recapitulate the immune-system
functionality observed in fetal tissue—based BLT humanized mice. Careful head-to-head
(direct) comparisons of humanized mice constructed with HSCs and different sources of
human tissues are needed for better understanding of the potential of the various model
systems to recapitulate critical human immune responses across an array of human diseases.

Conclusions and next steps

Humanized mice have become an important tool for many research applications, including
human immune function, infectious diseases, autoimmune diseases, cancer, and organ or
tissue transplantation. In addition to the need for direct comparisons of humanized mice
generated with fetal tissue and those generated with non-fetal tissue, improving current HIS
mouse models to better recapitulate the human immune system has the potential to lead to
new biological insights and permit the assessment of new biological therapies (Fig. 2). The
US National Institutes of Health is committed to supporting studies that develop humanized
mouse models that do not rely on human fetal tissue and faithfully represent the human
immune system (as indicated in the notices NOT-AI-19-040 and NOT-OD-19-042 and an
announcement of concept clearance (https://www.niaid.nih.gov/grants-contracts/
january-2019-dait-council-approved-concepts#07)).
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Fig. 1|. Humanized mouse models.
Additional information on the humanized mouse models described in the text. Hu,

humanized; PBL, peripheral blood lymphocyte; SRC, SCID-repopulating cell; NeoThy,
neonatal thymus. Adapted from ref.21,
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Fig. 2|. Areasthat require development and optimization in HIS mice.
Areas in the field that need more development and study of humanized mice that better

recapitulate and/or reflect human immune responses; these can be used for better
understanding of infectious disease, autoimmunity and cancer development and for the
evaluation of therapies. GVHD, graft-versus-host disease.
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