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Targeted metabolomic analysis 
of serum amino acids in the adult 
Fontan patient with a dominant left 
ventricle
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Mark Gordian Adam5, Manuela Zlamy   4, Irena Odri Komazec1, Ralf Geiger1, 
Christian Niederwanger4, Christina Salvador4, Udo Müller5, Kai Thorsten Laser2,6 & 
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Growing interest lies in the assessment of the metabolic status of patients with a univentricular 
circulation after Fontan operation, especially in changes of amino acid metabolism. Using targeted 
metabolomic examinations, we investigated amino acid metabolism in a homogeneous adult Fontan-
patient group with a dominant left ventricle, seeking biomarker patterns that might permit better 
understanding of Fontan pathophysiology and early detection of subtle ventricular or circulatory 
dysfunction. We compared serum amino acid levels (42 analytes; AbsoluteIDQ p180 kit, Biocrates Life 
Sciences, Innsbruck, Austria) in 20 adult Fontan patients with a dominant left ventricle and those in 
age- and sex-matched biventricular controls. Serum concentrations of asymmetric dimethylarginine, 
methionine sulfoxide, glutamic acid, and trans-4-hydroxyproline and the methionine sulfoxide/
methionine ratio (Met-SO/Met) were significantly higher and serum concentrations of asparagine, 
histidine, taurine, and threonine were significantly lower in patients than in controls. Met-SO/
Met values exhibited a significant negative correlation with oxygen uptake during exercise. The 
alterations in amino acid metabolome that we found in Fontan patients suggest links between Fontan 
pathophysiology, altered cell energy metabolism, oxidative stress, and endothelial dysfunction like 
those found in biventricular patients with congestive heart failure. Studies of extended amino acid 
metabolism may allow better understanding of Fontan pathophysiology that will permit early detection 
of subtle ventricular or circulatory dysfunction in Fontan patients.

Ventricular dysfunction and circulatory failure with progressing end-organ impairment like renal or liver dys-
function are an important cause of morbidity and mortality in adults with complex congenital heart disease 
(CHD), especially in patients with single-ventricle types of CHD and Fontan circulation1,2. Besides limited 
cardiac output, alterations that mark Fontan hemodynamics are passive flow to the lungs, chronically elevated 
venous pressures, and congestion. Unfortunately, the clinical use of traditional markers such as N-terminal pro-
hormone of brain natriuretic peptide (NT-proBNP) levels for non-invasive diagnostics and monitoring in such 
patients is limited3,4. Thus, for early detection of cardiac and circulatory derangement and for evaluation and 
tailoring of treatment options, regular functional assessment of these patients is crucial, with complete clinical 
examination, electrocardiogram, imaging studies, determination of values for traditional laboratory markers, or 
exercise capacity testing. In adult biventricular patients, novel candidate biomarkers, in addition to natriuretic 
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peptides and troponins, for congestive heart failure and vascular perturbations have been identified via metabo-
lomics, the study of small organic molecules, their synthesis, and their breakdown5,6. Interest has grown recently 
in the metabolic status of Fontan patients: besides reported abnormalities in Fontan patients’ glucose metab-
olism7, to date their handling of lipids has been best studied, with important changes shown, especially in the 
cholesterol, lipoprotein, and phospholipid pathways, hinting at chronic low-level inflammation and at altered 
cell signalling and energy metabolism as are found in biventricular patients with congestive heart failure8,9. In the 
biventricular patient with heart failure, alterations occur especially in the handling of amino acids important in 
both myocardium protein turnover and energy metabolism10. Additionally, the Fontan-specific characteristic of 
chronically elevated venous pressure favors development of a protein losing enteropathy together with end-organ, 
especially liver, dysfunction2. Thus, study of the metabolism of amino acids also should be a promising field in 
Fontan patients. With the help of targeted metabolomic examinations we hence elected to investigate amino acid 
metabolism in a homogeneous adult Fontan-patient group with a dominant left ventricle, seeking biomarker 
patterns that might permit a better understanding of Fontan pathophysiology or early detection of ventricular or 
circulatory dysfunction.

Results
After applying all inclusion and exclusion criteria, 20 adult Fontan patients with a systemic left ventricle were 
selected for the study (Supplemental Fig. 1). The results of “traditional” examinations (patient and control clinical 
assessment, exercise capacity testing, routine laboratory analyses) are set out in our recent work on lipid metabo-
lism9. Table 1 lists clinical and exercise capacity testing parameters, showing as major features that in Fontan 
patients, minimum (at exercise) and maximum (at rest) pulse-oximeter oxygen saturation as well as VO2 at the 
anaerobic threshold and at maximum were significantly lower than in controls.

Routine analytes.  Hematocrit, hemoglobin concentrations (“hemoglobin”), gamma glutamyl transferase 
and alanine aminotransferase activities, total bilirubin and creatinine concentrations (“total bilirubin” and “creati-
nine”), and international normalized ratio (INR) values and triglyceride and high density lipoprotein-cholesterol 
(HDL-C) concentrations (“triglycerides” and “HDL-C”) differed significantly between Fontan patients and con-
trols (Table 2).

Metabolomic examination of serum amino acids.  Serum concentrations of 29 amino acids or bio-
genic amines and their derivatives were determined, with selected sums and ratios (Table 3, Fig. 1). In Fontan 
patients serum concentrations of methionine (Met) sulfoxide (Met-SO), asymmetric dimethyl arginine (ADMA), 
glutamic acid, and trans-4-hydroxyproline and the ratio of Met-SO to Met (Met-SO/Met) were significantly 
higher, and serum concentrations of asparagine, histidine, taurine, and threonine were significantly lower than 
in controls.

Fontan patients Controls P-value

Total [n] 20 20

Female sex [n] 7 7

Age [years] 23.1 ± 5.1 24.7 ± 6.6 0.28

After TCPC [years] 18.8 ± 5.2

Bodyweight [kg] 69.8 ± 13.2 73.3 ± 11.7 0.17

Height [cm] 171.3 ± 7.4 174.5 ± 8.7 0.04

Body mass index [kg/m²] 23.8 ± 4.1 22.5 ± 3.3 0.05

SpO2 at rest [%] 93 ± 3 99 ± 1 <0.00001

SpO2 at exercise [%] 90 ± 3 98 ± 1 <0.00001
VO2 at rest [mL/kg/min] 5.6 ± 1.7 5.8 ± 1.1 0.03
VO2AT [mL/kg/min] 24.5 ± 4.9 30.1 ± 3.6 <0.00001

Peak VO2 [mL/kg/min] 28.8 ± 10.1 45.7 ± 6.4 <0.00001

Double inlet left ventricle [n] 10

TA + PS/PA [n] 9

TA + PS + VSD [n] 1

Extracardiac Fontan [n] 16

Open fenestration (at study) [n] 3

LPA dilation/stent [n] 4

Tunnel dilation/stent [n] 6

Closure of fenestration [n] 1

Closure of vv collateral [n] 3

Electrophysiologic examination [n] 2

Table 1.  Participants’ clinical characteristics9. Values are given as mean ± standard deviation. AT, anaerobic 
threshold; LPA, left pulmonary artery; n, number; PA, pulmonary atresia; PS, pulmonary stenosis; SpO2, 
pulsoxymetric oxygen saturation; TA, tricuspid atresia; TCPC, total cavopulmonary connection; VO2, oxygen 
uptake; VSD, ventricular septal defect; vv, veno-venous.
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Correlation of routine biochemical and clinical findings with metabolomic parameters.  Among 
routine analytes, the variables hemoglobin, albumin, and triglycerides displayed significantly positive correlations 
with glutamic acid. Creatinine and triglycerides displayed significantly positive correlations with ADMA, as did 
the variables creatinine and total bilirubin with Met-SO. Hematocrit, hemoglobin, and INR as well as minimum 
and maximum oxygen saturations revealed significantly positive correlations with Met-SO/Met values, and oxy-
gen uptake at the anaerobic threshold and maximum oxygen uptake displayed significantly negative correlations 
with Met-SO/Met values. Single significant correlations between isolated variables included positive correlation 
of albumin with ornithine and serine, of triglycerides with alpha aminoadipic acid, and of the oxygen uptake 
at the anaerobic threshold with threonine as well as negative correlations of alanine aminotransferase activity 
with taurine and of INR with serotonin. No further correlations were identified, especially none with CRP or 
NT-proBNP (Supplemental Table 1).

Discussion
To the best of our knowledge, our study is the first clinical metabolomics study focusing on Fontan patients’ serum 
amino acid patterns. Its main finding is that, in comparison with controls, adult Fontan patients with a mor-
phologically left dominant ventricle exhibit a distorted amino acid metabolome, hinting at altered (myocardial)  
cell energy metabolism and an elevated myocardial protein turnover as well as at oxidative stress and endothelial 
dysfunction, as found in biventricular patients with congestive heart failure.

Altered cell energy metabolism and elevated myocardial protein turnover.  Decreased serum 
concentrations of taurine, asparagine, and threonine and increased concentrations of glutamic acid and hydroxy-
proline in our Fontan patients indicate alterations in (myocardial) cell energy metabolism and elevated myocar-
dium protein turnover, as found in biventricular patients with congestive heart failure. Taurine is abundant in 
myocardial tissue, with a major function in regulation of the respiratory chain: the taurine-deficient heart suffers 
impaired respiratory chain function and diminished long chain fatty acid uptake by mitochondria, as found in 
patients with congestive heart failure10. Decreased concentrations of taurine are described in patients with dilated 
cardiomyopathy and in golden retrievers with heart failure10,11, and many studies report a beneficial effect of tau-
rine supplementation on myocardial function in patients with congestive heart failure12.

Glutamic acid and asparagine also take part in central pathways of aerobic cell respiration and thereby of 
energy production. Via anaplerotic reactions, both amino acids are substantially involved in the tricarboxylic acid 
cycle13. Against the background of a switch in heart failure of preferred myocardial energy substrate from fatty 
acids to glucose and ketone bodies14, our findings hint at altered myocardial energy metabolism, indicating subtle 
ventricular dysfunction. This idea is supported by glutamic acid’s involvement in the synthesis of metabolites, e.g., 
by serving as a precursor for the biosynthesis of amino acids such as proline and arginine15,16. Indeed, increased 
serum levels of glutamic acid indicate increased protein turnover, as typical in adults with congestive heart failure 
or coronary heart disease17,18. The same is true for threonine, a major component of proteins, e.g., of collagen 
and immunoglobulins: We found decreased serum threonine levels, and decreased plasma levels are described 
in patients with chronic heart failure17. The increase that we observed in hydroxyproline, an analyte used to track 
collagen degradation, also reflects elevated protein turnover: Elevated urine and serum hydroxyproline levels are 
reported after muscle damage or in the bedridden and elderly19,20.

Fontan patients Controls P-value

Hematocrit [%] 47.8 ± 5.6 39.3 ± 4.2 <0.00001↑

Hemoglobin [g/dL] 16.4 ± 2.1 12.7 ± 1.4 <0.00001↑

Total cholesterol [mg/dL] 145.3 ± 26.5 149 ± 34.2 0.77

HDL-C [mg/dL] 42.5 ± 15.9 51.3 ± 12.3 0.03↓

Non-HDL-C [mg/dL] 85.2 ± 24.8 73.1 ± 20.8 0.2

Triglycerides [mg/dL] 128.6 ± 86.5 47.3 ± 22.8 0.003↑

Total protein [g/dL] 7.2 ± 0.5 7.0 ± 0.7 0.31

Albumin [mg/dL] 4145 ± 492 4215 ± 208 0.64

Creatinine [mg/dL] 0.8 ± 0.12 0.53 ± 0.18 <0.00001↑

Total bilirubin [mg/dL] 1.22 ± 0.67 0.3 ± 0.29 <0.00001↑

AST [U/L] 35.3 ± 7.7 31.6 ± 8.4 0.12

ALT [U/L] 39.4 ± 11.4 31.9 ± 10.1 0.04↑

gGT [U/L] 86.5 ± 43.6 35.1 ± 19.4 0.00002↑

INR 2.1 ± 0.76 1.02 ± 0.04 <0.00001↑

NT-proBNP [pg/mL] 52.4 ± 69.2 39.3 ± 30.4 0.88

CRP [mg/dL] 0.18 ± 0.2 0.16 ± 0.14 0.47

Table 2.  Values of routine analytes and of amino acids or biogenic amines and their derivatives. Values are 
given as mean ± standard deviation. ALT, alanine aminotransferase; AST, aspartate aminotransferase; CRP, 
C-reactive protein; dL, decilitre; g, gram; gGT, gamma glutamyl transferase; HDL-C, high density lipoprotein-
cholesterol; INR, international normalized ratio; NT-proBNP, N-terminal prohormone of brain natriuretic 
peptide; U, unit; ↑, statistically significant higher serum concentration in Fontan patients than in controls; ↓, 
statistically significant lower serum concentration in Fontan patients than in controls.
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Metabolite HMBD ID Patients Controls p-value q-value mean FC

Ac-Orn HMDB0003357 NA NA NA NA NA

ADMA HMDB01539 0.51 ± 0.12 0.41 ± 0.05 0.0004 0.002↑ 1.26

Alanine HMDB00161 HMDB01310 401.4 ± 84.2 410.5 ± 123.0 0.99 0.99 −1.02

alpha-AAA HMDB00510 1.12 ± 0.61 0.77 ± 0.44 0.03 0.06 1.44

Arginine HMDB00517 HMDB03416 91.7 ± 26.8 108.2 ± 21.8 0.03 0.06 −1.18

Asparagine HMDB00168 HMDB003378 43.7 ± 7.7 50.7 ± 8.0 0.007 0.016↓ −1.16

Aspartic acid HMDB00191 HMDB06483 18.0 ± 10.4 17.2 ± 6.9 0.93 0.96 1.05

c4-OH-Pro HMDB0240251 NA NA NA NA NA

Carnosine HMDB00033 NA NA NA NA NA

Citrulline HMDB00904 29.4 ± 6.3 29.2 ± 6.6 0.91 0.95 1.01

DOPA HMDB00181 HMDB00609 NA NA NA NA NA

Dopamine HMDB00073 NA NA NA NA NA

Glutamine HMDB00641 HMDB03423 717.4 ± 134.1 749.0 ± 111.7 0.38 0.47 −1.04

Glutamic acid HMDB00148 HMDB03339 85.9 ± 63.4 47.0 ± 21.8 0.0006 0.002↑ 1.83

Glycine HMDB00123 321.6 ± 74.1 345.3 ± 91.7 0.41 0.5 −1.07

Histidine HMDB00177 93.1 ± 15 110.4 ± 24.4 0.008 0.02↓ −1.19

Histamine HMDB00870 NA NA NA NA NA

Isoleucine HMDB00172 HMDB0000557 106.6 ± 31.6 100.9 ± 39.5 0.44 0.53 1.06

Kynurenine HMDB00684 NA NA NA NA NA

Leucine HMDB00687 HMDB0013773 222.9 ± 78.6 232.8 ± 106.6 0.99 0.99 −1.04

Lysine HMDB00182 HMDB03405 168.1 ± 23.5 165.8 ± 32.4 0.69 0.79 1.01

Methionine HMDB00696 27.9 ± 8.3 29.4 ± 7.8 0.47 0.55 −1.06

Met-SO HMDB02005 0.94 ± 0.32 0.58 ± 0.23 0.00008 0.0005↑ 1.64

Nitro-Tyr HMDB01904 NA NA NA NA NA

Ornithine HMDB00214 HMDB03374 139.4 ± 82.3 111.6 ± 40.9 0.22 0.29 1.25

PEA HMDB0012275 NA NA NA NA NA

Phenylalanine HMDB00159 77.7 ± 16.9 77.0 ± 12.9 0.99 0.99 1.01

Proline HMDB00162 HMDB03411 259.4 ± 63.7 265.7 ± 61.6 0.73 0.81 −1.02

Putrescine HMDB01414 NA NA NA NA NA

Sarcosine HMDB00271 1.57 ± 0.94 1.62 ± 0.79 0.73 0.81 −1.03

SDMA HMDB03334 0.46 ± 0.06 0.42 ± 0.08 0.1 0.15 1.08

Serine HMDB00187 HMDB03406 158.4 ± 33.3 146.5 ± 23.7 0.21 0.29 1.08

Serotonin HMDB00259 0.56 ± 0.33 0.7 ± 0.21 0.03 0.06 −1.26

Spermidine HMDB01257 NA NA NA NA NA

Spermine HMDB01256 NA NA NA NA NA

t4-OH-Pro HMDB00725 HMDB0006055 15.8 ± 5.06 11.7 ± 5.2 0.007 0.02↑ 1.35

Taurine HMDB00251 100.4 ± 57.1 132.6 ± 56.54 0.02 0.049↓ −1.32

Threonine HMDB04041 HMDB00167 105.6 ± 21.0 127.3 ± 28.4 0.008 0.02↓ −1.21

Tryptophan HMDB00929 HMDB0013609 90.5 ± 20.2 89.5 ± 23.3 0.84 0.89 1.01

Tyrosine HMDB00158 87.0 ± 23.0 83.6 ± 19.4 0.69 0.79 1.04

Valine HMDB00883 298.9 ± 72.5 290.7 ± 76.9 0.7 0.79 1.03

BCAA 628 ± 174 624 ± 217 0.8 0.87 1.01

AAA 255 ± 53 250 ± 47 0.8 0.87 1.02

Total AA 3544 ± 466 3588 ± 682 0.93 0.96 −1.01

Essential AA 1098 ± 223 1113 ± 293 0.97 0.99 −1.01

Fischer ratio 2.47 ± 0.52 2.45 ± 0.5 0.9 0.95 1.01

Met-SO/Met 0.04 ± 0.016 0.02 ± 0.007 <0.00001 0.0001↑ 1.78

Table 3.  Values of amino acids or biogenic amines and their derivatives, and of selected sums and ratios. 
Metabolite concentrations for all analytes with selected sums and ratios, grouped by Fontan patients vs. 
controls. Values are given as mean ± standard deviation, unit of values of data [µmol/l]. FC, fold change 
(Fontan patients vs. controls); HMBD ID, Human Metabolome Database identification; AA, amino acids; 
AAA, aromatic amino acids; Ac-Orn, acetylornithine; ADMA, asymmetric dimethylarginine; alpha-AAA, 
alpha aminoadipic acid; BCAA, branched-chain amino acids; c4-OH-Pro, cis-4-hydroxyproline; DOPA, 
dihydroxyphenylalanine; Met-SO, methionine sulfoxide; Nitro-Tyr, nitrotyrosine; PEA, phenylethylamine; 
SDMA, symmetric dimethylarginine; t4-OH-Pro, trans-4-hydroxyproline; ↑, statistically significant higher 
serum concentration in Fontan patients than in controls; ↓, statistically significant lower serum concentration in 
Fontan patients than in controls. ‘Fischer ratio’ is the ratio of BCAA/AAA.
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Oxidative stress and endothelial dysfunction.  Protein turnover also is elevated in  the presence of 
hyperreactive oxygen species, i.e., under oxidative stress and during endothelial dysfunction, both of which 
are directly linked to heart failure: Nitrous oxide (NO) synthase (NOS) isoforms are expressed not only in 
endothelial cells but also in cardiomyocytes, and NO regulates cardiac function through vascular-dependent 
and -independent effects, with, in the healthy heart, a positive inotropic effect at low NO exposure and a negative 
one at higher exposure21,22. In heart failure, regulation of myocardial NO production and release breaks down, 
with excessive release, and peripheral and vascular endothelial NOS activity is lost, resulting in endothelial dys-
function with decreased NO bioavailability attributable to increased oxidative stress23. In the course of cardiac 
decompensation, NO likely influences several of the core features of cardiac failure, e.g., chamber dilation, defec-
tive b-adrenergic responsiveness, and calcium cycling22.

That serum concentrations of ADMA were elevated also suggests that our Fontan patients were under oxi-
dative stress, with altered endothelial function, consistent with subtle ventricular dysfunction. ADMA, a methyl 
derivate of arginine, is involved in NO-signalling and in pro- and antioxidant and -inflammatory processes. 
It is the major endogenous inhibitor of nitric oxide synthase (NOS). By displacing arginine, the normal NOS 
substrate, ADMA enhances oxidative stress by influencing NO-reactive oxygen species balance and disturbs vas-
odilation21,24–26. ADMA values reportedly track enhanced cardiovascular risk with endothelial dysfunction27,28, 
positively correlating with age, mean arterial pressure, renovascular resistance, intimal media thickness, and 
peripheral arterial occlusive disease5,29–33, ADMA is additionally involved in further nitric oxide (NO)-dependent 
signalling processes, interfering with anti-thrombotic, anti-inflammatory, and anti-apoptotic actions21.

The increases in value for Met-SO and for the Met-SO/Met ratio as indicators of systemic oxidative stress also 
suggest that our patients are under oxidative stress and suffer from endothelial dysfunction. Reaction with oxygen 
species yields Met-SO, which activates endogenous antioxidant enzymes such as Met-SO reductase A and induces 
synthesis of glutathione, thereby counteracting oxidative stress and inflammation34. Increased Met-SO levels have 
been reported in vascular disease, cardiac ischemia, and in left ventricular diastolic dysfunction35,36. The negative 
correlation observed between Met-SO/Met values and oxygen uptake under exercise strikingly emphasizes the 
role of markers of oxidative stress as indicators for subtle ventricular dysfunction in our patients. Finally, our 
hypothesis that oxidative stress affects our patients is supported by the decreased level found of histidine, with 

Figure 1.  Box-and-whisker plots of serum concentrations of amino acids or biogenic amines and their ratios 
that differed significantly between Fontan patients (grey boxes) and controls (white boxes). The boxes show 
the 1st (Q1) and 3rd quartile (Q3), the whiskers the minimum and the maximum. Black circles represent 
outlying values as identified by the interquartile range (IQR) rule (values smaller than (Q1-1.5*IQR) or values 
larger than (Q3 + 1.5*IQR)). ADMA, asymmetric dimethylarginine; Asn, asparagine; Glu, glutamic acid; His, 
histidine; Met, methionine; Met-SO, methionine sulfoxide; Met-SO/Met, methionine sulfoxide/methionine 
ratio; t4-OH-Pro, trans-4-hydroxyproline; Tau, taurine; Thr, threonine.
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its anti-oxidant and anti-inflammatory properties37, and by decreases in HDL-C9,38–40. A direct interplay of lipo-
protein metabolism and markers for oxidative stress exists: lipoprotein disorders are associated with increased 
ADMA41.

ADMA also has been used to track heart failure in patients with CHD, and with regard to heart failure is even 
more sensitive than NT-proBNP. However, only 13% of the patients studied had univentricular heart disease; in 
addition, patient exercise capacity was lower than that in our patient group33. Thus we stress that our findings of 
altered amino acid serum levels might imply subtle rather than frank heart failure42,43, a hypothesis supported 
by the fact that we found no correlation of any of the metabolites with the traditional marker for heart failure, 
NT-proBNP, nor with the traditional marker for inflammation C-reactive protein, and by the fact that neither by 
traditional clinical-laboratory means nor by metabolomic (Fischer ratio) criteria did we find any evidence for 
important (Fontan-associated) liver disease in our patients. Given that many adult Fontan patients will develop 
ventricular dysfunction, to hypothesise subtle heart failure in our patient group might well be appropriate1. Still, 
with respect to the definition of heart failure, which is the “inability of the heart to meet resting and exercise 
demands at low filling pressures”2, we cannot exclude with certainty that the metabolic alterations delineated 
solely reflect Fontan-specific pathophysiology with its circulatory abnormalities, with paramount abnormal sys-
temic or pulmonary endothelial function, and with a tendency towards the formation of veno-venous or aorto-
pulmonary collaterals44–48.

To examine the amino acid profile of Fontan patients with frank ventricular, circulatory, or hepatic impair-
ment and to correlate increases in serum ADMA and Met-SO content with direct measurement of endothelin or 
with collateral vessel flow via magnetic resonance imaging studies thus would be of interest49,50.

Limitations.  Because Fontan patients are few, the studied group size is small, possibly limiting the extent to 
which our findings can be generalized. Also limiting may be our choice of a targeted metabolomic approach and a 
commercial kit, as metabolites not assessed may be important. That we analyzed serum samples precludes direct 
comparison between our results and those of studies that used tissue samples, and we acknowledge that having 
assayed serum rather than vascular or myocardial tissue, we cannot rule out certain system-driven aspects of 
disease pathogenesis: That is, unknown confounders that affect metabolic profiles might be the true basis for the 
observed differences. Moreover, differences in body composition or lifestyle parameters might have influenced 
our results to an unknown degree. We strove to lessen the likelihood of such errors by following a strict inclusion 
and exclusion protocol, especially with regard to (known) comorbidities or medication.

Conclusion
The striking alterations in amino acid profile that we found may link Fontan pathophysiology with altered cell 
energy metabolism, oxidative stress, and endothelial dysfunction as found in biventricular patients with conges-
tive heart failure. Markers identified through mass spectrometry-based extended amino acid metabolism might 
thus complement traditional diagnostic tools such as imaging, exercise capacity testing, and traditional laboratory 
biomarker determinations, yielding a better understanding of Fontan pathophysiology, and they are promising 
candidates for the early detection of ventricular or circulatory dysfunction in Fontan patients.

Methods
Like our recently published results on phospholipid and acylcarnitine metabolomic examinations, this work is 
a subwork of the main study protocol (Trial registration number: ClinicalTrials.gov Identifier NCT03886935)9.

Patients.  Between September 2016 and March 2017, we prospectively examined adult Fontan patients with a 
dominant left single ventricle and age- and sex-matched healthy biventricular controls at the Center of Pediatric 
Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University 
of Bochum, Germany9. All patients had undergone two-stage palliation with partial and total cavopulmonary 
anastomosis. None had had aortic reconstruction or aortopulmonary shunting. Table 4 shows inclusion and 
exclusion criteria. See the flow chart according to STROBE (Strengthening the Reporting of Observational 
Studies in Epidemiology [https://strobe-statement.org/index.php?id=strobe-home]) (Supplemental Fig. 1) for 
details on the flow of patients through the present study.

Clinical and laboratory examinations were performed as described in detail elsewhere9. Age, sex, weight, 
medication, and cardiac risk factor assessment, with blood sampling for routine hematological and biochemical 
profiling, was conducted during an outpatient visit. Fasting patients underwent phlebotomy while recumbent. 
Echocardiography followed, and, after a defined snack rich in carbohydrates, exercise capacity was tested. We 
correlated metabolic results with routine laboratory parameters and exercise capacity parameters51. All patients 
underwent symptom-limited treadmill exercise capacity testing with expiratory gas analysis52. A 12-lead ECG was 
used to determine heart rate. Oxygen uptake at rest ( VO2 at rest, ml/kg/min), at the anaerobic threshold ( VO2AT, 
ml/kg/min), and maximum uptake of oxygen ( VO2 max, ml/kg/min) were measured.

Blood studies required samples 0.5 ml greater than those for routine assessments to permit determinations of 
concentrations of amino acid-metabolism analytes. The blood sample was directly drawn into a tube containing a 
clotting activator and centrifuged within 20 min (15 °C, 10 min, 2500 × g) for separation of serum. Serum aliquots 
were immediately frozen and stored at -80 °C for further analyses. Frozen samples were transported on dry ice to 
the analysing laboratory. Analyses were performed in batches of 10 samples9.

Sample preparation.  Before analysis, all serum samples were processed as described, with samples thawed 
on ice, then centrifuged; the supernatant was subjected to further analyses6,9. The AbsoluteIDQ p180 kit assay 
(Biocrates Life Sciences AG, Innsbruck, Austria) permitted targeted, fully automated quantification of 188 
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analytes (42 amino acids or biogenic amines and their derivatives) based on phenylisothiocyanate derivatization 
in the presence of internal standards followed by liquid chromatography mass spectrometry using a TSQ-Vantage 
(Thermo Fisher Scientific, Waltham, MA) instrument with electrospray ionization.

Statistical analysis.  To exclude metabolites below the limit of detection (LOD), the raw data (µmol/L) were 
cleaned applying a modified 80% rule; for statistical analysis at least 80% valid values above LOD needed to be 
available per analyte in the samples for each group. This reduced the dataset to 143 analytes (29 amino acids or 
biogenic amines and their derivatives). Remaining values below LOD were imputed applying a logspline method 
with values between LOD and LOD/2. After log2 transformation of metabolomics data as well as of routine ana-
lytes and clinical data the dataset underwent multivariate (hierarchical cluster analysis) and univariate statistical 
analyses. Student’s t-testing with a Benjamini-Hochberg correction identified significant metabolite (and clinical 
routine-parameter) differences between patients and controls. P-values were calculated to identify significant 
changes between controls and Fontan patients, and were adjusted for multiple testing, or false discovery rate 
(FDR), according to Benjamini and Hochberg. To interpret the correlation, the significance of the correlation was 
calculated from r and from the degrees of freedom (a variable dependent on the sample number) (Supplemental 
Table 1). As a measure of linear correlation, r can have values between −1 and 1, where 1 indicates total positive 
linear correlation, 0 indicates no linear correlation, and −1 indicates total negative linear correlation. Correlations 
with FDR-adjusted p-values <0.05 and r > 0.5 (<−0.5) were considered statistically significant; in Supplemental 
Table 1, table cells displaying a statistically significant correlation are highlighted by a green background9.

Ethical approval and informed consent.  The study protocol was approved by the local ethics committees 
of the Medical University of Innsbruck, Austria (AN2015-0303 357/4.3), and of the Heart and Diabetes Center 
North-Rhine Westphalia, Ruhr University of Bochum, Germany (AZ 52/2016), the methods were carried out in 
accordance with the relevant guidelines and regulations, and the subjects gave written informed consent.

Pathway analysis.  Information about analytes and the pathways in which they are involved was based on 
https://www.metaboanalyst.ca/ and on the Kyoto Encyclopedia of Genes and Genomes (KEGG).

Data availability
The datasets generated and analyzed during the current study are given as supplementary material (Supplemental 
Table 2).
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