Table 9.
Holdout mean squared error (MSE) for continuous models trained on original training data using linear, random forest, deep neural network (DNN) and ordinal regression, and random forest and DNN split classification.
Model | Continuous MSE | Ordinal MSE | Cohen’s Kappa |
---|---|---|---|
Linear regression | 0.285 | 0.356 | 0.413 |
Random forest regression | 0.264 | 0.332 | 0.446 |
Deep neural network regression | 0.326 | 0.408 | 0.409 |
Ordinal regression | 0.285 | 0.356 | 0.413 |
Random forest split classifiers | 0.285 | 0.317 | 0.476 |
Deep neural network split classifiers | 0.304 | 0.350 | 0.416 |