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Abstract

Purpose of Review—The etiology of BV, the most common cause of vaginal discharge in
women, remains controversial. We recently published an updated conceptual model on BV
pathogenesis, focusing on the roles of G. vaginalis and Prevotella bivia as early colonizers and
Atopobium vaginae and other BVAB as secondary colonizers in this infection. In this paper, we
extend the description of our model to include a discussion on the role of host-vaginal microbiota
interactions in BV pathogenesis.

Recent Findings—Although G. vaginalisand P, biviaare highly abundant in women with BV,
neither induce a robust inflammatory response from vaginal epithelial cells. These early colonizers
may be evading the immune system while establishing the BV biofilm. Secondary colonizers,
including A. vaginae, Sneathia spp., and potentially other BVAB are more potent stimulators of
the host immune response to BV and likely contribute to its signs and symptoms as well as its
adverse outcomes.

Summary—Elucidating the etiology of BV has important implications for diagnosis and
treatment. Our current BV pathogenesis model provides a framework for key elements that should
be considered when designing and testing novel BV diagnostics and therapeutics.
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Introduction

Bacterial vaginosis (BV) is a vaginal dysbiosis resulting from displacement of lactic-acid
producing Lactobacillus spp. with high concentrations of facultative and strict anaerobic
bacteria including Gardnerella vaginalis, Prevotella spp., Atopobium vaginae, Sneathia spp.,
and other BV-associated bacteria (BVVAB). A notable feature is the appearance of a
polymicrobial biofilm on vaginal epithelial cells (1). BV is the most common cause of
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vaginal discharge globally, with an estimated annual economic burden of $4.8 billion dollars
(2). Women with BV are at increased risk for adverse birth outcomes, gynecologic sequelae,

and acquisition of HIV and other sexually transmitted infections (STIs) (3). BV is difficult to
treat and has a high recurrence rate (4).

The epidemiology of BV strongly favors sexual transmission (5). However, the etiology
remains controversial. G. vaginalis, a facultative anaerobe, is present in 95-100% of women
with BV (6) and originally thought to be the single etiologic agent (7). G. vaginalis has
unique characteristics compared to other BVAB that could allow it to function as an early
colonizer on the vaginal epithelium (8, 9). G. vaginalisis able to effectively displace
lactobacilli and adhere to vaginal epithelial cells (9) and has an increased propensity for
biofilm formation compared to other BVAB (8). However, recent data suggest that G.
vaginalis may be necessary, but not sufficient, for BV development (10), as colonization
does not always lead to BV (11). Thus, other BVAB may also play an important role in BV
pathogenesis.

Earlier genomic studies of G. vaginalis found that this genus consists of four non-
recombining groups/clades of organisms with distinct gene pools and genomic properties
(12). More recently, whole genome sequence analysis indicated 13 species exist within the
genus Gardnerella (13). Correspondingly, genomic studies coupled with phenotypic
characterizations have shown differences in pathogenic potential between G. vaginalis
strains (14, 15). Healthy women may be colonized by G. vaginalis strains with lower
pathogenic potential, while strains with higher pathogenic potential may be involved in BV
development. This hypothesis is supported by data from a study investigating the association
of behavioral practices and Nugent score with G. vaginalis clade distribution in women-
who-have-sex-with-women (16). In this study, clades 1-3 and multi-clade (>2) communities
were associated with BV by Nugent score. Clade 4 was neither associated with BV nor
Lactobacillus-deficient microbiota. Clade 1 was associated with increasing number of recent
sexual partners and clade 2 was associated with specific sexual behaviors. Overall, these
data suggest that G. vaginalis clades have varying levels of pathogenicity, with acquisition
through sexual activity.

Based upon our prospective study (10), a mouse model study (17), and an updated literature
review (9, 18-20), we recently modified our prior conceptual model on BV pathogenesis
which mainly involved G. vaginalis (21), to now focus on the roles of G. vaginalis and
Prevotella bivia as early colonizers and Atopobium vaginae and other BVAB as secondary
colonizers in BV (22). The proposed steps of BV development in this model include: (1)
strains of G. vaginalis with higher pathogenic potential displace lactobacilli and initiate
biofilm formation on the vaginal epithelium, (2) synergy between G. vaginalis and P, bivia
(normally present in very low concentrations, acquired from maternal and environmental
sources) occurs on the vaginal epithelium with production of metabolites facilitating their
growth, (3) vaginal sialidase and other enzymes, produced by G. vaginalisand P, bivia,
promote breakdown of the mucous layer of the vaginal epithelium, and (4) loss of the
protective mucous layer leads to increased adherence of secondary colonizers, including A.
vaginae, to the mature, polymicrobial BV biofilm (22).
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Interestingly, although G. vaginalisand P, biviaare highly abundant in women with BV (10),
neither induce a robust inflammatory response from vaginal epithelial cells (17, 23). Other
BVAB, including A. vaginae (24, 25), may be more potent stimulators of the host immune
response to BV and contribute to its signs and symptoms in addition to adverse outcomes
(26). Here we provide a discussion of our current opinions regarding the role of the host
immune response in the pathogenesis of BV. We extend the description of our BV
conceptual model to include a discussion of the immune barrier of an optimal vaginal
microbiota and the role of host-vaginal microbiota interactions in BV pathogenesis, focusing
on G. vaginalis, P. bivia, A. vaginae, and Sneathia spp. (Figure 1). Next, we discuss
implications for BV diagnosis and treatment, outlining areas requiring additional research.

The Immune Barrier of an Optimal Vaginal Microbiota

Lactobacilli colonizing the lower female reproductive tract (FRT) play an important role in
protection against invading pathogens through direct (production of bactericidal compounds
and metabolites) and indirect (modulation of vaginal immune barrier) mechanisms (27).
However, not all vaginal Lactobacillus species benefit the host equally. Data suggest that
Lactobacillis crispatus is the optimal species associated with vaginal health whereas L. iners
may be associated with dysbiosis and colonization with BVAB (25). The role of other
common vaginal lactobacilli such as L. jenseniiand L. gasseriis less studied and requires
additional research.

A key protective mechanism of vaginal lactobacilli includes the production of lactic acid
through fermentation of glycogen by-products, which acidify the cervicovaginal micro-
environment (pH<4.5) (Figure 1A). Several /n vitro studies have demonstrated that lactic
acid is a potent antiviral and bactericidal compound, inhibiting replication/growth of genital
STI pathogens and pathobionts, including Chlamyadia trachomatis (28), Neisseria
gonorrhoeae (29), group B Streptococcus (30), and HIV (31). These micro-organisms are
more sensitive to lactic acid than hydrochloric acid, indicating that a low pH environment is
necessary, but not sufficient, for this inhibitory effect. In the lower FRT, lactic acid exists in
both D- and L-forms and the ratio of D- and L-isomers depends on the predominant
Lactobacillus spp. (32). A recent study demonstrated that D-lactic acid, produced by L.
crispatus but not L. iners, was more protective against chlamydia (28). This suggests that
production of specific lactic acid isoforms may contribute to differential protective capacities
of vaginal Lactobacillus spp. against STIs, including BVAB (e.g. G. vaginalis) that may be
sexually transmitted. Other postulated protective mechanisms include hydrogen peroxide
production by L. crispatus, however, it is still controversial whether this antimicrobial
compound can be produced /n vivo at inhibitory concentrations (33). Lastly, the protective
effect of lactobacilli can be attributed to competitive exclusion, which is the ability to
effectively compete with other micro-organisms for resources in the local micro-
environment (34).

Colonization of the lower FRT with L. crispatus and other protective Lactobacillus spp. also
results in low levels of vaginal epithelial cell activation. Multiple epidemiological studies
have demonstrated that women with a L. crispatus-dominated vaginal microbiota exhibit low
levels of pro-inflammatory cytokines [e.g. interleukin (IL)-1a, IL-1B] and chemokines [e.g.

Curr Opin Infect Dis. Author manuscript; available in PMC 2020 June 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Muzny et al.

Page 4

IL-8, interferon gamma inducible protein (IP-10), macrophage inflammatory protein
(MIP)-3a] in their cervicovaginal secretions (35, 36). In a cross-sectional study investigating
the role of the vaginal microbiota in cervical carcinogenesis, women with a Lactobacillus-
dominant vaginal microbiota showed less evidence of genital inflammation measured by
genital inflammatory scores (e.qg. elevated levels IL-1a, IL-1p, IL-8, MIP-1B3, MIP-3a,
RANTES, TNFa) compared to women with a non-Lactobacillus-dominant vaginal
microbiota (37).

Interestingly, colonization with L. /ners does not provide the same mucosal immune
quiescence as L. crispatus. Two independent studies have shown that L. iners dominance is
associated with elevated levels of chemokines, including IP-10, MIP-3a., and monokine
induced by gamma interferon (MIG), which may result in mucosal recruitment of CD4+
cells and increased risk of HIV (35, 38). |17 vitro studies, employing robust organotypic
human three-dimensional (3-D) female reproductive tract epithelial cell models, validated
these epidemiological findings and showed that L. crispatus does not significantly alter
levels of pro-inflammatory cytokines (IL-1B, IL-6, TNFa), chemokines (IL-8, MIP-3a), or
antimicrobial peptides [human B-defensin (hBD)-2 and secretory leukocyte protease
inhibitor (SLPI)], resulting in low epithelial cell activation (25, 39, 40). Others have
demonstrated that L. crispatus does not significantly change IL-8, RANTES, or SLPI levels
in cervicovaginal monolayer cultures (41). In addition, metabolites produced by lactobacilli
can modulate epithelial cell responses and stimulate secretion of anti-inflammatory
cytokines, including IL-1 receptor antagonist (IL-1Ra), and low-level production of
antimicrobial peptides (e.g. hBD-1, SLPI), resulting in mucosal homeostasis (42, 43).

The Role of Host-Vaginal Microbiota Interactions in BV Pathogenesis

BV is not characterized as a neutrophilic disease (27). Vaginal white blood cells are
uncommon in BV, unless concomitant vaginal ( 7richomonas vaginalis or vulvovaginal
candidiasis) and/or cervical infection (e.g. C. trachomatis) is present (44). BV is also not
commonly associated with pain, redness, or swelling typical of gross tissue inflammation
(27). However, studies have reported elevated cytokine and chemokine levels (e.g., IL-1p,
TNFa, IL-6, and IL-8) in vaginal washes from women with BV (45). Early colonizers such
as G. vaginalisand P, bivia may actively inhibit the host inflammatory response in the
vaginal epithelium, evading the immune system while establishing the BV biofilm (Figure
1B). This is corroborated by data from a mouse model study where 2. b/viaalone or in
combination with G. vaginalis did not cause an increase in histological inflammation in
vaginal tissue (17). In contrast, secondary colonizers of the BV biofilm (e.g., A. vaginae and
other BVAB) may stimulate the host immune response in vaginal epithelial cells and
contribute to the symptoms (e.g., vaginal discharge and odor) and signs (e.g., homogeneous,
white, vaginal discharge) of BV (22) (Figure 1C). Related to these symptoms of BV are the
metabolites produced by BVAB, including biogenic amines (46, 47).

A limited number of studies have examined mechanisms of the host response and immunity
to key BVAB using /n vitro or animal models (17). A recent study utilizing EpiVaginal
tissues demonstrated that apical infection with G. vaginalis does not induce significant
changes in levels of pro-inflammatory immune mediators (48) in accordance with a previous
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study showing that G. vaginalis does not induce IL-1pB, IL-6 MIP-3a or TNFa in a human 3-
D endometrial epithelial cell model (39). Regarding 2. biviaand A. vaginae, Doerflinger et
al demonstrated in a human 3-D vaginal epithelial cell model that A. vaginae induces a
broad range of pro-inflammatory cytokines, chemokines, and antimicrobial peptides
including IL-1B, IL-6, IL-8, MIP-3a, TNFa and hBD-2; whereas £, bivia significantly only
induced IL-1p and MIP-3a (25). Subsequent unsupervised hierarchical clustering analysis
of these data suggests that A. vaginae clusters separately from £ biviabased on their
immune mediator profiles and are distinct from both L. /nersand L. crispatus (23). Other
reports have demonstrated that A. vaginae induces hBD-4, MIP-1B, Gro-a, and G-CSF and
that the host immune response was Toll-like receptor (TLR) 2-dependent (24, 49).
Interestingly, G. vaginalisand A. vaginae have also been found to amplify pro-inflammatory
responses to 7. vaginalis, whereas P, bivia suppressed these responses (50).

Other secondary BVVAB besides A. vaginae may also stimulate the host immune response in
vaginal epithelial cells. One report examining Sneathia spp. found that two species (S.
sanguinegensand S. amnif) induced IL-1a, IL-1pB, and IL-8, but not TNFa., in vaginal
epithelial monolayer cultures (51). With regard to these microbes, A. vaginae or S. amnii
alone and a polymicrobial cocktail of BVAB (G. vaginalis + P, bivia+ A. vaginae + S.
amnii) also induced 1L-36y, a novel cytokine belonging to the IL-1 superfamily, at a higher
magnitude than other BVAB alone (G. vaginalis or P. bivia) in a human 3-D cervical model
(23). Hierarchical clustering analysis revealed two main clusters. G. vaginalisand P, bivia
did not exhibit robust inflammatory profiles and clustered with L. crispatus, while A.
vaginae, S. amnii, and the polymicrobial cocktail formed a separate cluster defined by higher
levels of inflammatory mediators (40). IL-36y was recently shown to play a significant role
in genital HSV-2 pathogenesis (40) and may be a key immune factor in the lower FRT and in
BV (23).

Overall, these data support the hypothesis that G. vaginalisand P. bivia do not induce robust
epithelial cell activation and that secondary colonizers, including A. vaginae, Sneathia spp.,
and other BVAB, are required to induce pro-inflammatory responses observed in women
with BV. However, G. vaginalisand P. biviamight impact other components of the
cervicovaginal epithelial barrier. A mouse model study revealed that G. vaginalis facilitates
ascension of 2. biviato uterine horns (17). In addition, both bacteria contributed to sialidase
activity, which plays an important role in mucus degradation. Interestingly, we have
observed that not all Prevotella spp., similar to G. vaginalis strains, exhibit sialidase activity
and that selected Prevotella spp. induced mucin production in our human 3-D endometrial
epithelial model (manuscript in preparation). Furthermore, vaginal metabolites, such as
lipids (e.g. long chain polyunsaturated fatty acids), are associated with both BVAB and
genital inflammation, whereas anti-inflammatory nucleotides are associated with lactobacilli
dominance (52). Interestingly, elevated levels of biogenic amines produced by BVAB do not
correlate with genital inflammation (52). Overall, these data suggest that the pathogenic
potentials of many BVAB are strain-specific. Robust longitudinal studies coupled with
mechanistic studies utilizing human 3-D models are needed to identify unique mechanisms
of pathogenesis for key BVAB and polymicrobial mixtures.
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Conclusion: Implications for BV Diagnosis and Treatment

Elucidating the etiology of BV has important implications for diagnosis and treatment. In
addition to the commonly used Amsel criteria and Nugent score, five highly sensitive and
specific multiplex PCR tests are available for the diagnosis of BV in symptomatic women
(BD Max™ Vaginal Panel (53), Hologic Aptima® BV (54), LabCorp NuSwab® VG (55),
Quest Diagnostics™ SureSwab® Bacterial Vaginosis, and Medical Diagnostics Laboratory
(MDL) OneSwab® (56)). These assays include various combinations of Lactobacillus spp.
in addition G. vaginalis, A. vaginae, BVAB2, and Megasphaera-1 and —2. Based upon our
conceptual model (Figure 1), it may be prudent to determine the level to which the addition
of P, biviaand Sneathia spp. contributes to the sensitivity and specificity of these assays.

With regards to treatment, one aspect of the high rate of BV recurrence after therapy could
be due to biofilm persistence (57). Biofilm-disrupting agents such as TOL-463 (intra-vaginal
boric acid enhanced with ethylenediaminetetraacetic acid) (58) are being investigated to
determine their role in BV treatment (NCT03930745). Use of biofilm-disrupting agents
could increase the susceptibility of key BVAB to commonly used antibiotics when they are
disassociated from the biofilm (4). Additionally, future studies focusing on interventions that
modify or block the synergistic relationship between key BVVAB and host response
mechanisms are needed (22). Studies on the role of secondary colonizers in BV
symptomatology should also be conducted. Finally, clinical trials evaluating the treatment of
P, biviaor A. vaginae colonization in women without BV are needed. Of note, we are
conducting a clinical trial of treatment of G. vaginalis colonization with amoxicillin among
women without BV (NCT03211156). Vaginal microbiota transplant from a donor with
optimal vaginal microbiota is a new provocative treatment option for women with BV. A
universal donor screening approach was recently implemented in a pilot study (59). An
inherent risk of this procedure, however, is transmission of a sexually transmitted pathogen.
The baseline infection status of the recipient should be known in addition to that of the
donor. Collectively, our model provides a framework for key elements that should be
considered when designing and testing novel diagnostics and therapeutics.
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Key Points

The etiology of BV, the most common vaginal infection, remains
controversial.

G. vaginalisand P. bivia (early colonizers) in addition to A. vaginae, Sneathia
spp. (secondary colonizers) may be key bacteria in the pathogenesis of BV.

G. vaginalisand P, bivia appear to actively inhibit the host inflammatory
response in the vaginal epithelium, potentially evading the immune system
while setting up infection and establishing the BV biofilm.

Secondary colonizers, including A. vaginae, likely contribute to the signs and
symptoms of BV, as they have been found to stimulate the host immune
response in vaginal epithelial cells.

Elucidating the exact etiology of BV has important implications for diagnosis
and treatment moving forward.
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Figure 1. Depiction of putative model for the establishment of BV and immunologic/physiological
changesrelated to host-microbeinteractions.

A. In a healthy state the vaginal microbiome is dominated by Lactobacillus species.
Lactobacilli produce lactic acid, which lowers the vaginal pH and protects against invading
pathogens and pathobionts. Epithelial cells constitutively produce low levels of antimicrobial
peptides (e.g. SLPI) and cytokines. Additionally, epithelial cells and immune cells contribute
to homeostasis by producing anti-inflammatory cytokines (e.g. IL-1RA). B. Vaginal
dysbiosis begins with initial colonization with the facultative anaerobe, Gardnerella
vaginalis, usually following a sexual exposure. G. vaginalis colonizes the vaginal epithelial
cells, replaces lactobacilli, and provides scaffolds for biofilm formation. Following G.
vaginalis colonization, the strict anaerobe, Prevotella bivia, is recruited to the biofilm. G.
vaginalis and R bivia support each other’s growth through ammonia and amino acid
metabolism. Both G. vaginalisand P, biviaare capable of producing enzymes, e. g. sialidase,
which may contribute to mucus degradation and barrier disruption. No overt inflammation is
observed, which suggest that these bacterial species are able to evade host immune response
through unknown mechanisms. C. Other secondary colonizers, e.g. Atopobium vaginae and
Sneathia spp., are recruited to the biofilm. At this stage, exfoliation of epithelial cells coated
with the polymicrobial biofilm occurs. These “clue cells” can be detected in wet mounts of
vaginal fluid and are included in the Amsel criteria. Production of biogenic amines and other
metabolites produced by BV-associated bacteria contribute to elevated vaginal pH and BV
symptoms such as fishy odor. Epithelial cells and recruited immune cells produce pro-
inflammatory cytokines and chemokines, which could lead to genital inflammation.
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