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Abstract

Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging 

modality combining the superior targeting specificity of monoclonal antibody (mAb) and the 

inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to 

develop immunoPET probes, which has been driven by the development and optimization of 

radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short 

circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) 

are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, 
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such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical 

use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, 

immunoPET imaging is gradually changing the theranostic landscape of several types of 

malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune 

cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of 

immunoPET imaging in antibody drug development is of substantial significance because it 

provides pivotal information regarding antibody targeting abilities and distribution profiles. 

Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical 

applications. We also emphasize current conjugation strategies that can be leveraged to develop 

next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the 

development and translation of immunoPET imaging strategies.

Graphical Abstract

1. INTRODUCTION

Molecular imaging is defined as “visualization, characterization, and measurement of 

biological processes at the molecular and cellular levels in humans and other living systems” 

by using molecular imaging agents and tools.1 Positron emission tomography (PET) 

imaging is the foundation of molecular imaging and has drastically improved global 

healthcare since its inception in the clinical practice.2–4 With the gradual discovery of the 

molecular pathogenesis of cancers and contemporaneous understanding of the host immune 

system, molecularly targeted therapies (e.g., small-molecule inhibitors and monoclonal 

antibodies [mAbs]) and immunotherapies (e.g., immune checkpoint inhibitors) have been 

developed. The clinical use of these novel regimens is changing the therapeutic landscape 
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for numerous cancers.5–7 In the era of molecularly targeted therapy and cancer 

immunotherapy, it is clear that PET imaging with traditional radiotracers is inadequate.8 For 

instance, 18F-fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) has been 

integrated into several criteria in predicting and assessing responses to targeted therapies or 

immunotherapies.9,10 However, several studies have reported that 18F-FDG PET/CT 

parameters, such as SUVmax and SUVmean, did not correlate with clinical responses for 

immunotherapy regimens.11,12 Additionally, it is challenging to differentiate immune-related 

adverse events (e.g., sarcoidosis) and pseudoprogression on 18F-FDG PET images,13,14 

leading to misinterpretation.

To further improve the clinical management of cancers and noncancerous diseases, the 

integration of novel molecular imaging approaches into routine diagnostic toolbox is 

critically important.15 Antibody-derived molecular imaging probes have been instrumental 

in visualizing target expression and pharmacokinetics of therapeutic mAbs in living subjects. 

Although several antibody-based tracers for single-photon emission computed tomography 

(SPECT) imaging exist in the clinic,16 PET imaging with antibody-based tracers has distinct 

advantages in terms of image quality, spatial resolution, and quantification.17

2. CONCEPT OF IMMUNOPET

Immuno-positron emission tomography (immunoPET or iPET), which exquisitely fuses the 

extraordinary targeting specificity of mAb and the superior sensitivity and resolution of PET, 

is a paradigm shift for molecular imaging modalities.18 The concept of immunoPET was 

manifested more than two decades ago,19,20 but its development rapidly accelerated in recent 

years with the increasing approval of therapeutic antibodies and the more widespread 

production of long half-life radionuclides. Meanwhile, the concept of immunoPET has 

evolved over the years with the incorporation of antibody fragments or mimetics as targeting 

moieties. More importantly, the clinical application of immunoPET imaging has increased 

our understanding of tumor heterogeneity and refined clinical disease management. For 

instance, the status of programmed death ligand-1 (PD-L1) assessed by 89Zr-atezolizumab 

immunoPET, but not by immunohistochemistry (IHC) or RNA sequencing, predicted the 

therapeutic response of atezolizumab in patients with three types of tumors.21

Despite the existence of several reviews on immunoPET, there are none that 

comprehensively describe the design strategies and the application landscape of this novel 

imaging modality. In this review, we first elaborate on the development of immunoPET 

imaging strategies by introducing positron-emitting radionuclides, associated chelators, 

targeting vectors (e.g., mAbs and antibody fragments), as well as traditional and novel 

conjugation strategies. We then introduce the role of immunoPET in imaging cancers and 

noncancerous diseases, followed by a recapitulation of how immunoPET imaging aids in the 

development of antibody and antibody-based therapeutics. In the last part of the review, we 

discuss practical considerations for future development and translation of immunoPET 

imaging tracers.
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3. DESIGN AND CONJUGATION STRATEGIES OF IMMUNOPET

ImmunoPET applications require simple, fast, and specific radiolabeling of antibody vectors 

under mild conditions. Optimal immunoPET imaging is attributed to a highly specific tumor 

uptake and low background retention. Toward this end, it is essential for a tracer to 

specifically saturate its target as fast as possible, with the unbound tracer cleared out rapidly 

from the blood circulation. Generally, the successful development of immunoPET probes is 

highly dependent on the choice of tumor-targeting vectors, radionuclides, bifunctional 

chelators, and conjugation strategies as discussed below.

3.1. Antibodies, Antibody Fragments, and VHHs

3.1.1. Full-Length Antibodies.—The development and use of mAbs have achieved 

considerable success, and various kinds of mAbs have been adapted to treat solid tumors, 

hematological malignancies, as well as noncancerous diseases.5,22–24 In 2018, the Food and 

Drug Administration (FDA) and European Medicines Agency (EMA) approved 13 antibody 

therapeutics for clinical use.25 Although only five new antibody therapeutics were approved 

in 2019, it is anticipated that at least 13 products will be granted approval in 2020.26 The 

therapeutic mechanisms of mAbs mainly include antibody-dependent cell-mediated 

cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-

dependent cytotoxicity (CDC), interruption of a signaling pathway, inhibition of enzymatic 

activity, and inhibition of immune checkpoint, which are discussed extensively in other 

reviews.27,28 For therapeutic purposes, immunoglobulin G (IgG) is considered to have the 

most favorable balance between clearance and tumor uptake.29 Over the past decade, 

immunoPET imaging with radiolabeled mAbs has progressed rapidly together with the 

development of antibody engineering and production of long-lived PET radionuclides.18 

Currently, mAb-based immunoPET imaging is being actively investigated in preclinical 

models and has attracted considerable attention in clinical practice. The tumor-targeting and 

treatment efficacy of mAbs can be maximized by generating bispecific antibodies (BsAb) or 

trispecific antibodies.30,31 By targeting multiple tumor antigens, these novel polyspecific 

antibodies are alternatives for developing immunoPET probes.32

3.1.2. Limitations of Full-Length mAbs in Immuno-PET Imaging.—Despite the 

clinical success, mAb-derived immunoPET probes suffer from several disadvantages. First, 

the size of mAb (150 kDa; Figure 1a) exceeds the clearance cutoff value (60 kDa) of 

glomerular filtration. Additionally, the interaction between the Fc domain of IgG and the 

neonatal Fc receptor (FcRn) in endothelial cells further protects serum IgG from 

degradation.33–35 Consequently, long-lived radionuclides that match the serum half-life of 

mAbs are required to develop the radiotracers. These factors synergistically contribute to the 

typical features of mAb-based immunoPET imaging, such as slow blood clearance, less 

optimal target-to-background [T/B] ratio, and the necessity to image repeatedly after 

administration of a single dose of the tracer. In addition, the pharmacology of antibody–

antigen binding and the internalization of the antibody–antigen complex must also be 

considered when developing mAb-derived PET imaging tracers.36–38 To maximize tumor 

uptake and detect liver malignancies or metastases, preloading or coadministration of 

unlabeled antibody is required in the course of immunoPET imaging.39 However, the 
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required blocking dose differs in a target- and antibody-dependent manner40 and is greatly 

affected by the antibody treatment schedule at the time of tracer injection.41 Therefore, a 

feasible and reproducible imaging protocol needs to be carefully established before carrying 

out regular immunoPET scanning. Antibodies are produced in eukaryotic cell lines due to 

their complex expression and post-translational modifications.42 Because of this, the use of 

large amounts of antibodies is costly, further increased from the expenses of producing 

radiometals. Therefore, high costs may limit the widespread use of mAb-based immunoPET 

imaging tracers.

3.1.3. VHHs.—Because mAbs tend to circulate in the blood and deposit in normal organs 

such as the liver, spleen, and bone marrow, smaller antibody constructs have been employed 

to accelerate the clearance of unbound radiotracer from systemic circulation and 

correspondingly achieve higher T/B ratios. Furthermore, small antibody fragments may 

penetrate solid tumors more efficiently and homogeneously.43 Several types of smaller 

targeting vectors are available, including camelid heavy-chain-only antibodies (HCAbs) and 

shark-derived immunoglobulin new antigen receptors (IgNARs).44 HCAbs (Figure 1b) are 

naturally occurring antigen-binding antibodies in Camelidae. HCAbs can be obtained by 

immunization of camels, llamas, or dromedaries or from näive or synthetic phage libraries.45 

HCAbs have only two constant domains, as opposed to the three constant domains of an 

IgG. HCAbs are generally humanized for theranostic purposes.46,47

The variable domain of the heavy chain of a HCAb (VHH, Figure 1c), often referred to as 

Nanobody (a trade name of Ablynx) or single-domain antibody (sdAb), is the smallest 

antigen-binding derivative. With its molecular weight around 15 kDa and diameter <4 nm, 

VHH can penetrate deeply into tumor tissues while retaining its antigen recognition ability.
48 VHHs targeting various cellular or subcellular receptors or oncogenic proteins have also 

been generated.49,50 Manifold techniques are available to achieve chemical functionalization 

of VHHs, which indubitably facilitates more sophisticated applications of VHHs.51,52 

Specifically, strategies like PEGylation and albumin hitchhiking may be used to prolong the 

circulatory half-life of VHH,53–55 enabling more thorough and efficient targeting of the 

targets.

It has been suggested that VHHs are “magic bullets” for molecular cancer imaging.56 For 

radiometal labeling, cysteine (Cys) or lysine (Lys) residues on VHHs are chemically 

modified with bifunctional chelators. Whereas for radio-iodination of VHHs, either direct 

electrophilic radioiodination or indirect radiolabeling methods can be used.57 Because of the 

variable number of Lys or Cys residues in the complementary-determining region 3 (CDR3) 

of VHHs, it is challenging to radiolabel VHHs homogeneously using these standard 

methods. Methodologies that enable site-specific radiolabeling are readily available to 

prepare homogeneous VHH-based radiotracers (described in section 3.3.3.).58,59 Despite the 

favorable pharmacokinetics, radiotracers based on VHHs have very high kidney 

accumulation due to the renal clearance of the excess material, limiting their role in 

detecting lesions located in the urinary system or in the vicinity of kidneys. Several factors 

(e.g., the sequence of the VHH, conjugation method, as well as specific receptors in the 

glomeruli) may all contribute to the high kidney retention of the developed radiotracers.60,61 

However, there are strategies to circumvent this phenomenon, including coinfusion of 
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gelofusine and Lys,62 removal of polyhistidine tag (His-tag),63 PEGylation,64 and site-

specific radiohalogen labeling.65 Furthermore, VHHs are also being actively exploited for 

therapeutic purposes,66 either in the form of radioimmunotherapy (RIT),67–69 or in the form 

of photoimmunotherapy (PIT).70,71

3.1.4. Other Engineered Antibody Fragments and Proteins.—Several other 

antibody fragments have been engineered for imaging purposes.72 In general, these antibody 

fragments lack the Fc region and are smaller in size. Single-chain variable fragment (scFv, 

Figure 1d) is one of the most popular antibody fragments with a molecular size of ~25 kDa. 

A scFv clears exceptionally fast from the bloodstream and creates much higher T/B ratios 

compared with an intact IgG. scFv is composed of variable light and variable heavy chains 

that are joined by a flexible peptide linker. As such, the length and amino acid composition 

of the peptide linker between the two domains significantly affect the binding affinity and 

size of the engineered scFv.73 A significant drawback of scFv molecules is their monovalent 

antigen-binding specificity. In certain cases, engineering a monovalent scFv into multivalent 

constructs may enhance the avidity and optimize the tumor-targeting capability. Diabody 

(~60 kDa, Figure 1e) is a divalent variant of the monovalent scFv. Typically, a Cysmodified 

diabody (Cys-diabody) is constructed and used for site-specific radiolabeling.74 Similar to 

radiolabeled VHHs, radiolabeled scFv, and diabody are rapidly cleared by the urinary 

system, resulting in high accumulation of the radiotracers in the kidneys. Other larger 

divalent forms, such as minibody (Mb, Figure 1f) and (scFv)2-Fc constructs, have also been 

developed as targeting vectors.75,76 Several multivalent scFv fragments, such as triabody 

(~90 kDa) and trimerbody (110 kDa), also showed potential as ligands for immunoPET 

imaging.77,78

In the pursuit of proteins with enhanced or novel functions, a multitude of protein scaffolds 

has been generated and used in the field of molecular imaging. These low-molecular-weight 

proteins lack disulfide bonds and glycosylation, so they can be expressed in bacterial 

systems with proper conformation rapidly.79 Currently, one of the most commonly 

engineered protein scaffolds for PET imaging is the Affibody (6 kDa).80 For instance, 

ZHER2:342 is an Affibody molecule targeting human epidermal growth factor receptor 2 

(HER2) and has been widely studied for PET imaging. The most attractive advantages of 

HER2-targeting Affibodies are their unique binding sites on HER2, which are distinct from 

HER2-targeted therapeutics (e.g., trastuzumab).81,82 Therefore, novel imaging approaches 

employing these Affibodies may help discriminate the downregulation and saturation of 

HER2 following HER2-targeted therapies. Other similar molecules that have already been 

used for molecular imaging include adnectins,83 fibronectin,84 knottins,85,86 and anticalins.
87,88 Like VHHs, the primary benefits of these small antigen-targeting moieties are to permit 

same-day molecular imaging.89 The advantages from accelerated clearance are compensated 

by lower tumor uptake, yielding modest imaging quality. To enhance tumor retention and 

decrease kidney retention, several approaches (e.g., PEGylation) can be used to modify the 

targeting vectors.90–92

Of the BsAbs, bispecific T-cell engager (BiTE) antibody constructs (~55 kDa) are designed 

to induce context-dependent anticancer immune responses by cross-linking tumor cells with 

cytotoxic T cells.93–95 One successful example is the blinatumomab, which simultaneously 
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targets CD19-positive B cells and then recruits CD3-positive cytotoxic T cells.96 It is much 

more challenging to design T-cell-dependent BsAb constructs because each arm of the 

antibody has a different antigen-binding affinity. Moreover, the T-cell-targeting arm 

substantially affects the in vivo distribution of the antibody and, therefore, the fate of the 

developed molecular imaging tracers.97,98

3.2. Radionuclides and Chelators

In recent years, various antibodies targeting diverse antigens have been labeled with gamma-

emitting radionuclides (e.g., 131I, 123I, 111In, or 99mTc) and used for diagnosis by SPECT or 

planar imaging or for therapeutic applications. Because of their poor diagnostic 

performance, very few are routinely used in the clinic. With the global installation of 

cyclotrons, a variety of novel positron-emitting radionuclides is being produced.99,100 High-

purity radiometals, a fundamental component in immunoPET imaging probes, are 

increasingly being produced and used in recent years.101,102 Traditionally, radiometals are 

eluted from generators or produced using solid targets with cyclotrons.103 As a supplement 

to solid targets, liquid targets (solution targets) can also be used to produce radiometals upon 

optimization.104 Several factors need to be considered before exploiting them for 

radiolabeling, which include physical properties (e.g., half-life [T1/2] and decay mode), 

chemical properties, production efficiency, safety profiles, and price. The T1/2 of a chosen 

positron emitter has to closely match the biological half-life of the targeting vector. In 

conjugating immunoPET imaging probes, the positron emitter is generally complexed with 

an inert chelator that is attached to the targeting antibody. The major principle is that the 

binding affinity, stability, and pharmacokinetic characteristics of the final 

radiopharmaceutical are in concert with the naive antibody. There are several review articles 

describing various radiometals and their coordination chemistry101,105,106 and 18F 

radiolabeling of heat-sensitive molecules.107 In this section, we will confine to the most 

promising radionuclides and related chelators used for immunoPET imaging (Table 1).

3.2.1. Zirconium-89.—Zirconium-89 (89Zr, T1/2 = 78.4 h) has been extensively used in 

the biomedical imaging field due to its fitting emission energy properties and long half-life, 

which matches the circulation half-life of mAbs.108,109 89Zr can be produced via several 

different nuclear reaction pathways, such as the natSr(α,xn)89Zr reaction, 89Y(d,2n)89Zr 

reaction, or 89Y(p,n)89Zr reaction.110 However, the production of 89Zr using solid targets 

with a small medical cyclotron might still be challenging. Recent studies have reported the 

production of 89Zr via solution targets, which are filled with a yttrium nitrate solution 

(Y(NO3)3·6H2O). 111,112 Further refinement of the irradiation procedures of liquid targets 

may potentially broaden the availability of 89Zr and therefore the development of 89Zr-based 

PET imaging. In developing 89Zr-mAb conjugates, 89Zroxalate (89Zr–Zr(ox)2) can be 

converted to 89Zr-chloride (89Zr-ZrCl4), which tends to undergo aquation and chelation with 

chelator-modified mAbs more rapidly.113,114 Moreover, 89Zr-chloride lacks the toxic oxalic 

acid of 89Zr-oxalate.115

89Zr is coupled to a mAb of interest through a bifunctional chelator, which possesses a 

ligand for capturing 89Zr and a reactive group for conjugating Lys or Cys residues on the 

mAb surface. Desferrioxamine (Figure 2a), denoted as Df or DFO, is a clinically used 
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chelator for complexation of 89Zr. Traditionally, the preparation of 89Zr-mAb conjugates 

involves a multistep synthesis, in which a succinylated-derivative of desferrioxamine B (N-

sucDf) was used to modify mAbs.116–118 This pioneering work paved the way for 

subsequent preclinical and more importantly, the clinical success of 89Zr-mAb immunoPET 

imaging. The development of a novel p-isothiocyanatobenzyl-derivative of desferrioxamine 

B (known variously as p-SCN-Bn-deferoxamine, Df-Bz-NCS or DFO-pPhe-NCS; Figure 

2b) further allowed efficient and rapid preparation of 89Zr-mAb conjugates. This process 

involves the first coupling of Df–Bz–NCS to the lysine-NH2 groups of a mAb under alkaline 

conditions (pH 8.9–9.1) followed by radiolabeling with 89Zr-oxalate.119,120

Despite their attractive characteristics, such chelators are unable to saturate the octavalent 

demands of the Zr4+ cation,121 which results in less stable 89Zr-immunoconjugates as 

indicated by accumulation of free 89Zr in the bone. Preclinical studies suggested that 89Zr’s 

tropism for bone may introduce undesirable radiation to bone marrow and confound imaging 

conclusions of bone malignancies or joint inflammation.122,123 The clinical impact of 

unbound 89Zr remains to be determined. A family of novel bifunctional chelators that impart 

enhanced stabilities has been developed to surmount this problem. One of these, the 

tetrahydroxamate chelator called DFO* (Figure 2c) and its derivative DFO*-pPhe-NCS 

(Figure 2d) were synthesized successfully.124,125 89Zr-DFO*-trastuzumab was 

thermodynamically more stable and had significantly lower bone uptake compared to the 

DFO modified mAb.125 More recently, DFOcyclo*-pPhe-NCS (Figure 3a), a novel DFO* 

derivative, was developed.126 When competed with excess DFO, this novel chelator was 

more stable than DFO and DFO* for chelating 89Zr. ImmunoPET imaging and 

biodistribution studies further demonstrated significantly lower bone uptake of 89Zr-

DFOcyclo*-trastuzumab than 89Zr-DFO-trastuzumab. Despite this, 89Zr-DFOcyclo*-

trastuzumab and 89Zr-DFO*-trastuzumab showed comparable imaging performance (Figure 

3b). Desferrichromes (DFC) and related compounds have also been explored for 

coordinating 89Zr, but the DFC system did not show a dramatic advantage over DFO in in 

vivo imaging studies.127

Other novel 89Zr chelators include those that do not contain hydroxamate moieties, such as 

p-SCN-Bn-H6phospa,128 3,4,3-(LI-1,2-HOPO),129 p-SCN-Bn-HOPO,130,131 and many 

other novel chelators containing hydroxamate moieties.132–137 For instance, DFO-1-

hydroxy-2-pyridone ligand (DFO-HOPO) is an octadentate chelator for 89Zr. 89Zr-DFO-

HOFO showed excellent renal clearance and significantly lower bone uptake compared with 
89Zr-DFO.135 Meanwhile, other novel 89Zr chelators with cyclic structures have been 

developed.136,138,139 Most recently, ligands containing carboxylate or amino donors have 

been tested as 89Zr chelators.140 Of these, 1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA, vide infra) has been shown to outperform other analogues because 
89Zr-DOTA demonstrated exceptional stability and more rapid systemic clearance. However, 

the high temperature (90 °C), longer reaction duration (45 min), and the need to use 89Zr-

ZrCl4 may hinder its application in the immunoPET imaging field.

3.2.2. Copper-64.—Copper-64 (64Cu, T1/2 = 12.7 h) stands out as an immunoPET 

imaging radionuclide because of its ready availability and favorable properties. 64Cu is 

typically produced by bombardment of an enriched nickel target via the 64Ni(p,n)64Cu 
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nuclear reaction.141 Interestingly, a recent study reported the possibility of 64Cu production 

using a liquid target.142 Because 64Cu undergoes β− emission in addition to β+ emission, it 

is a promising theranostic radionuclide. Furthermore, the combination of 64Cu and 67Cu 

(T1/2 = 61.8 h, β−: 100%) results in an attractive theranostic pair.143 To avoid nonspecific 

deposition of 64Cu in healthy tissues, various macrocyclic ligands and their derivatives have 

been developed. DOTA and its derivatives (Figure 4a–d) are the most commonly used ones 

to chelate 64Cu for PET imaging.144,145 However, it has been shown that DOTA is not the 

chelator of choice to develop immunoPET tracers.146,147 NOTA (1,4,7-

triazacyclononane-1,4,7-triacetic acid)-based chelators (Figure 4e,f) are the most successful 

for chelating both 64Cu and 68Ga (vide infra) and are well-suited for radiolabeling of heat-

sensitive antibody vectors at room temperature (rt). A comparison of the NOTA derivative 

1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA, Figure 4g) and DOTA 

for labeling a mAb with 64Cu demonstrated better in vivo performance of 64Cu-NODAGA-

mAb than that of 64Cu-DOTA-mAb.148 p-SCN-Bz-MANOTA (Figure 4h), another NOTA 

derivative, outperformed DOTA and NODAGA as 64Cu-MANOTA-Fab showed the highest 

stability and the lowest background uptake in immunoPET imaging studies.149

In addition, a series of cyclam-based macrocycles have been devised for 64Cu-labeling of 

antibodies. One of such agents, CB - TE2A (4, 11 - bis (carboxymethyl) - 1, 4, 8, 11 - 

tetraazabicyclo[6.6.2]hexadecane, Figure 4i), has shown its merits as an effective chelator 

for 64Cu.150 Unfortunately, the unfriendly labeling conditions (95 °C, 60 min, pH 6–7) limit 

the use of CB-TE2A in applications with antibody-based agents.151 CB-TE1A1P [(1,4,8,11-

tetraazacyclotetradecane-1-(methanephosphonic acid)-8-(methanecarboxylic acid), Figure 

4j] bearing a methanephosphonic acid and a carboxymethyl pendant arm can be radiolabeled 

with 64Cu at rt.152,153 While CB-TE2P [1,4,8,11-tetraazacyclotetradecane-1,8-di-

(methanephosphonic acid), Figure 4k] can also be used for 64Cu-labeling at mild conditions,
154 CB-TE1A1P is more favorable for antibody labeling because the carboxylate group 

allows for facile bioconjugation. Indeed, several studies have used 64Cu-CB-TE1A1P for 

immunoPET imaging.155,156 To further capitalize the better radiochemical yield (RCY) of 

cyclam derivatives, several other cyclam-based bis-(phosphinate)-bearing ligands for 

conventional or click chemistry-based 64Cu-labeling were developed.157,158 These novel 

cyclam-based bifunctional ligands are highly promising for developing immunoPET probes 

with 64Cu under mild conditions (25–37 °C, 10–20 min, pH 5.5–6.2).158 SarAr (Figure 4l) is 

a sarcophagine-based chelator used for developing immunoPET probes and can be labeled 

with radiometals under mild conditions (20–37 °C, 5–30 min, pH 5–5.5).159,160

The use of different chelators may result in varied accumulation patterns of the 64Cu-labeled 

mAb in the blood pool and in other healthy organs (e.g., liver) despite the similar tumor 

uptake.161 Generally, 64Cu undergoes hepatobiliary clearance which may result in increased 

liver and intestine signals, limiting the detection of diseases at these sites as well as diseases 

at the adjacent organs or tissues (e.g., pancreas). However, this problem can be resolved with 

64Cu-labeled VHHs, which precisely detected small pancreatic tumors with clarity and high 

T/B ratio.162

3.2.3. Yttrium-86.—Yttrium-86 (86Y, T1/2 = 14.7 h) decays via electron capture (ec) and 

positron emission, accompanied by the emission of γ rays. Several nuclear reactions have 
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been explored to produce 86Y. To date, the recommended reaction is 86Sr(p,n)86Y reaction,
163–165 where the target material SrCO3 or SrO is enriched for irradiation with energies from 

8–15 MeV. Although a liquid target has also been used to produce 86Y,104 the yield is 

generally low and methods for separating radiation-induced chemical species need to be 

established. With the refinement of methods for separating radioyttrium,166 the large scale 

production of 86Y is feasible with hospital-based cyclotrons. The most appealing application 

of 86Y is in tandem with yttrium-90 (90Y, T1/2 = 64.1 h), which is a pure beta emitter with 

excellent therapeutic properties.167,168 The advantage of this theranostic pair is that 

quantitative PET imaging with 86Y allows precise dosimetry of 90Y-based 

radiopharmaceuticals.169 Both clinical and preclinical studies have suggested that sequential 

use of 86Y and 90Y is an attractive theranostic pair if proper targeting vectors are used.170,171 

Derivatives of ethylenediaminetetraacetic acid (EDTA, Figure 5a,b), diethylenetriamine 

pentaacetic acid (DTPA, Figure 5c), and DOTA are the most widely used chelators for 

yttrium radiolabeling of mAbs.172,173 Several studies have shown that incorporating the 

isothiocyanatobenzyl group (SCN-Bz) into the backbone of DTPA (Figure 5d) may 

sterically hinder the release of yttrium from the radiopharmaceuticals.174,175 To further 

improve the coordination efficiency of DTPA derivatives, CHX-A′′-DTPA (Figure 5e) and 

p-SCN-Bn-CHX-A′′-DTPA (Figure 5f) bearing a cyclohexyl were developed, and these 

chelators possessed improved stability over DTPA in radiolabeling mAbs.176–179

3.2.4. Radioiodine-124.—Radioisotopes of iodine have long been used as theranostic 

agents in the field of thyroid cancer.180 One among these, 124I (T1/2 = 4.18 d) can be 

produced through the 124Te(p,n)124I reaction.181,182 Iodine-124 has gained interest in 

radiolabeling mAbs since the clinical feasibility of immunoPET imaging with a 124I-labeled 

HMFGI mAb was first demonstrated in 1991.183–186 ImmunoPET imaging with 124I-labeled 

antibody agents are useful for evaluating bone metastases, another major benefit compared 

to those labeled with bone-seeking radiometals (e.g., 89Zr). It is important to mention that 
124I-labeled immunoPET probes may not be appropriate for detecting primary thyroid 

cancers, stomach cancers, and urinary malignancies (e.g., bladder cancer and prostate 

cancer) because thyroid and stomach can scavenge iodide produced by deiodination and 

iodide is cleared via the urinary system. In addition to its role in PET imaging, 124I is a 

theranostic agent because of Auger electrons produced during its decay.187 ImmunoPET 

imaging using 124I-mAb is fully concordant with 131I-mAb RIT, where immunoPET 

imaging acts as a scouting procedure prior to RIT.188 Currently, the IODO-GEN method is 

the method of choice for radioiodination of noninternalizing mAbs.189 In an attempt to trap 

radioiodinated mAbs inside the tumor cells for improved molecular imaging, residualizing 

prosthetic agents for radioiodination have been developed and used by several groups.190–195

3.2.5. Fluorine-18.—With a high positron yield of 97%, a low mean positron range of 

0.5 mm, and no simultaneous γ ray emission, fluorine-18 (18F, T1/2 = 110 min) is an ideal 

radionuclide for PET imaging.196 Diabodies and VHHs labeled with 18F have short plasma 

half-lives and can permit same-day imaging,197 a practical advantage over mAb-based 

imaging tracers. However, 18F has not been used to develop immunoPET probes until 

recently due to the harsh radio-labeling conditions and low RCY.
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With the development of automated chemistry stations, several prosthetic groups for 

radiofluorination have been reported.198 [18F]Fluorobenzaldehyde ([18F]FBA, Figure 6a) is 

among the most popular prosthetic groups used for radio-fluorination of biomolecules.199 N-

Succinimidyl-4-[18F]-fluorobenzoate ([18F]SFB, Figure 6b) is another prosthetic group 

which can form a stable amide bond with the Lys residue on proteins or peptides.200–202 

Generally, an average RCY of 30%–35% will be obtained when [18F]SFB is used for 

labeling proteins or peptides.203 N-[2-(4-[18F]-Fluorobenzamido)-ethyl]maleimide 

([18F]FBEM, Figure 6c) is a thiol-reactive 18F-labeling agent that can be site-specifically 

conjugated to Cys residues.204–207 However, the radiosynthesis of [18F]FEBM is a multistep 

and time-consuming process and often results in low RCY. It has been reported that the 

preparation of [18F]FBEM using automated radiochemical procedures requires less time and 

provides higher RCY (~17%).208 Another prosthetic group that facilitates radio-labeling of 

biomolecules under mild conditions (37–40 °C, 15 min, pH 8.5–9.0) is 2,3,5,6-

tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]TFPFN, Figure 6d).209,210 Recent studies 

simplified the synthesis of [18F]TFPFN without drying [18F]fluoride,211,212 but the 

unfavorable RCY (~5%) in labeling VHHs may limit its applications.213 Direct 18F-labeling 

approaches include the silicon–fluoride acceptor approach (18F-SiFA),214–217 and the 

organotrifluoroborate ([18F]BF3) method,218 but one concern is that the solvents (e.g., 

acetonitrile) or the acidic conditions (pH 2.0–2.5) used in these methods are detrimental for 

sensitive antibodies.

In 2009, McBride et al. reported the aluminum-fluoride (Al18F) chelation strategy where 

fluorine is firmly bound to Al3+ by forming Al18F, which is complexed to NOTA with the 

resultant complex conjugated to the biomolecule of interest.219 This method has since been 

widely used for radiofluorination of various biomolecules.220 Although this procedure 

allows rapid fluorination of peptides, the high temperature (~100 °C) necessary for the 

complexation is unsuitable for most antibodies and some peptides. To overcome this 

drawback, a facile two-step procedure was described,221 where [18F]AlF was first 

complexed to NODA-MPAEM at high temperature (105–109 °C, 15–20 min; Figure 6e) and 

the purified intermediate then conjugated to antibodies via the maleimide–thiol reaction at rt 

for 10 min. Building upon this work, a series of novel acyclic polydentate ligands permitting 

facile Al18F radiolabeling of antibodies have been developed.222,223 RESCA-

tetrafluorophenyl ester ((±)-H3RESCA-TFP, Figure 6f) and RESCA-maleimide ((±)-

H3RESCA-Mal, Figure 6g) are two chelators that can be used to conjugate biomolecules via 

the Lys or Cys residues, respectively.224 Future studies are warranted to evaluate the 

diagnostic value of Al18F-RESCA-labeled antibodies.

3.2.6. Gallium-68.—Gallium-68 (68Ga, T1/2 = 1.1 h) is an attractive positron-emitting 

radionuclide because it is readily available from an affordable in-house 68Ge/68Ga generator. 

Because 68Ge has a half-life of 270.8 days, the shelf life of the generator is about 6–12 

months based on elution schedules.225 Meanwhile, other means have been explored to 

produce 68Ga on a large scale.226–228 Although extensively studied for 67Ga/68Ga 

complexation, the DOTA-Gallium complex is less stable than its counterpart NOTA 

analogue. Currently, NOTA and its derivatives are the “gold standard” for 67Ga/68Ga 

complexation because of their fast and efficient radiolabeling at rt and high in vivo stability.
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229 HBED and its derivatives (Figure 7a–c) enabled 68Ga-labeling of heat-labile antibodies 

and antibody fragments at ambient temperatures.230,231 H2dedpa and its bifunctional 

derivative p-SCN-Bn-H2dedpa (Figure 7d,e) were developed for labeling peptides with 68Ga 

or 64Cu and tracers based on these chelators have shown promising imaging potentials.
232–234 CP256 (Figure 7f) and YM103 (Figure 7g) are two other acyclic ligands that have 

yielded encouraging imaging results.235 PCTA and its derivative (Figure 7h,i) were superior 

with respect to kinetics and RCY for radiolabeling mAbs with 64Cu.236,237 Similarly, 68Ga-

PCTA complex also showed improvement over 68Ga-NOTA for conjugating peptides.238 

TRAP-Pr, a derivative of NOTA bearing phosphinic acid groups, showed significantly 

improved specificity for Ga3+ in radiolabeling peptides,239 but the harsh radiolabeling 

conditions (95 °C, pH 3.2) prohibit its use in radiolabeling of antibody vectors. To the best 

of our knowledge, many of the chelators mentioned above (e.g., p-SCN-Bn-H2dedpa, 

YM103, and PCTA) have not been utilized in developing immunoPET probes, but it is 

plausible that these chelators may have a certain value for 68Ga-based immunoPET probes.

3.2.7. Other Radiometals.—Scandium-44 (44Sc, T1/2 = 3.9h) is a positron-emitting 

isotope and can be produced from a generator or a cyclotron source.240–242 Our team 

showed that CHX-A”-DTPA as opposed to other conventional chelators(i.e., DOTA, NOTA, 

DTPA), achieved 44Sc-labeling of a Fab fragment at rt.243 We are positive that the 

development of novel chelation strategies will further expand applications of 44Sc in the 

biomedical imaging field.244,245

Manganese-52 (52Mn, T1/2 = 5.591 d) can be produced via several nuclear reactions 

including the natCr(p,x)52Mn reaction.246,247 Manganese-52 has a higher β+ branching ratio 

of 29.4% and a lower β+ energy of 575 keV when compared to 89Zr (β+: 22.8%, Eβ+max = 

901 keV), making it a promising alternative to 89Zr for immunoPET imaging. In a proof-of-

concept study, we reported that the chelation of 52Mn via DOTA is possible and 

immunoPET imaging with 52Mn-DOTA-mAb is feasible over the course of several days.248 

Other radiometals that can be incorporated into immunoPET imaging include 152Tb (T1/2 = 

17.5 h),249 76Br (T1/2 = 16.2h),250,251 and 132La (T1/2 = 4.59 h).252,253

3.3. New Conjugation Strategies

Lysine-based random conjugation is the most prevalent method used for chemical 

modification of antibodies, followed by nonspecific Cys-based conjugation. Indeed, many 

clinical-grade radiolabeled antibodies have been produced via lysine functionalization. 

However, modification of antibodies at undesirable sites may compromise the 

immunoreactivity and distribution profiles of the radiolabeled antibodies. Hence, continuous 

efforts have been devoted to developing site-specific conjugation strategies to produce well-

defined radio-tracers for high-quality imaging.254

3.3.1. Conventional Site-Specific Conjugation.—For site-specific modification 

purposes, proteins and antibodies are produced with short peptide tags via standard protein 

engineering and recombinant expression protocols. Generally, tags are introduced at the C-

terminal end of the mAbs or sdAbs to avoid antigen-binding interference. Cys engineering is 

the most frequently used method for site-specific radiolabeling of antibody vectors (Figure 
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8a).255,256 The most commonly used strategy for Cys modification is via the maleimide 

conjugation, which is reversible and may result in the release of the maleimide scaffold in 

plasma (retro-Michael reaction).257 Recently, a novel strategy that may realize irreversible 

Cys bioconjugation was described.258 Thanks to the continuous advancement of the 

biomedical field, more sophisticated techniques are being exponentially developed for site-

specific modification of proteins.259 Future studies may synthesize novel immunoPET 

agents taking advantage of these emerging techniques.

3.3.2. Click Chemistry-Mediated Radiolabeling.—Click chemistry has been 

increasingly applied to develop new molecular imaging probes.260,261 Of various click 

chemistry reactions, the Cu(I)-catalyzed 1,3-dipolar cycloaddition between azides and 

alkynes (CuAAC) is frequently used to develop radiopharmaceuticals. 18F-labeled small-

molecule probes prepared via the CuAAC reaction are actively assessed in clinical settings.
262,263 If it is necessary to avoid the use of Cu(I) catalyst, particularly when developing 

immunoPET probes with radiometals, the catalyst-free strain-promoted azide–alkyne 

cycloaddition (SPAAC) reaction is a bioorthogonal alternative (Figure 8b).264,265 However, 

the synthetic complexity and hydrophobicity of the cyclooctyne precursors in the SPAAC 

system may potentially limit its widespread application. The inverse electron demand Diels–

Alder (IEDDA) reaction between strained trans-cyclooctene (TCO) and electron-deficient 

tetrazine (Tz) is a giant step forward in the field of bioorthogonal chemistry in terms of 

reactivity and application possibilities (Figure 8c).266 As such, this chemistry has been 

applied in a myriad of uses developing molecular imaging probes.267–269 Moreover, the 

axial TCO isomers were found to be more reactive than their equatorial analogues.270

Photoclick chemistry has been used in the field of chemical biology for years.271,272 On the 

basis of the previous success, several groups have used photochemical methods to develop 

immunoPET probes recently.273–275 Upon further refinement, these novel bioconjugation 

methods may eliminate time-consuming purification steps and maximize RCY, which is 

particularly needed for short-lived radionuclides such as 11C (T1/2 ≈ 20 min) and 68Ga (T1/2 

= 1.1 h).

3.3.3. Enzyme-Mediated Radiolabeling.—Enzymatic methods are well suited to 

achieve site-specific labeling of antibody vectors. Prominent one among them utilizes 

sortase A (SrtA), an enzyme derived primarily from Gram-positive Staphylococcus aureus. 

Typically, SrtA recognizes substrates containing C-terminal LPXTG motifs (where X = any 

amino acid except proline) and cleaves the peptide between threonine and glycine (Gly), 

leading to loss of the downstream part of the substrates (e.g., His-tag) and formation of new 

peptide bonds with nucleophilic substrates containing N-terminal Gly residues.276 While 

SrtA is a well-established enzyme responsible for anchoring LPXTG-containing proteins to 

the growing cell wall and pili of various Gram-positive bacteria, recombinant SrtA has been 

developed into a valuable protein engineering tool in recent years.277 By employing sortase-

mediated transpeptidation, it is facile to install functional moieties (e.g., chelator and dye) 

onto the N- or C-terminus of an antibody in a site-specific fashion (Figure 9). The use of 

SrtA has facilitated site-specific radiolabeling of VHHs using either 18F55,278 or radiometals.
64,162 A unique two-step modular system is also available to conjugate immunoPET probes. 
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In this system, SrtA is used to incorporate the strained cyclooctyne functional groups into 

the targeting vector of interest, followed by azide–alkyne cycloaddition reaction between the 

click chemistry handles.279,280 With further improvement of the catalytic activity of SrtA 

and evolution of Ca2+ independent SrtA mutants,281–283 SrtA will serve as a versatile 

platform for developing more sophisticated immuno-PET probes.

Butelase-1 is another transpeptidase found in Clitoria ternatea (butterfly pea) and recognizes 

a tripeptide motif, Asn-His-Val.284,285 Butelase-1 efficiently cyclizes peptides and proteins 

with a high yield. Although it is the fastest peptide ligase, its biological applications are 

limited because it cannot be produced as of now using recombinant techniques. 

Theoretically, a combination of butelase-1 and SrtA may facilitate the labeling of proteins at 

two distinct sites. This was proven in a recent work by Harmand et al.,286 which reported 

that the combination of SrtA and butelase 1 allowed facile preparation of C-to-C fusion 

proteins and dual-labeling of an IgG1 molecule with two fluorescent dyes. A combination of 

butelase-1 with other transpeptidases may be possible in the future.

Recently, a chemoenzymatic strategy combining glycan engineering and click chemistry was 

invented. The combination of these strategies allowed site-specific attachment of molecules 

to the heavy chain glycans. This methodology involves the following steps: (1) removal of 

galactose residues on the CH2 domain of the heavy chains of an antibody using β−1,4-

galactosidase, (2) attachment of azide-modified monosaccharide to the heavy chain glycans 

using β-galactosyltransferase mutant to Gal-T(Y289L), (3) synthesis of chelator or dye-

containing cyclic dibenzocyclooctyne (DIBO or DBCO), (4) catalyst-free click chemistry 

between azide-bearing antibody and DIBO-bearing payload (e.g., chelator or dye), and (5) 

radiolabeling of the site selectively modified antibody using radionuclides of interest (Figure 

10).287 This method has been applied to design dual-labeled agents for PET and optical 

imaging of colorectal cancers.288 A recent study demonstrated that 89Zr-DFO-trastuzumab 

developed using this chemoenzymatic strategy outperformed its counterpart developed by 

random conjugation method because the site-specifically modified 89Zr-DFO-trastuzumab 

showed enhanced immunoreactivity and stability in immunoPET imaging studies.289 

Although being able to yield homogeneous and well-defined products, this method suffers 

from a lengthy and relatively tedious protocol.

HaloTag is a genetic construct with multifunctional and versatile capabilities. The molecular 

mechanism of this system is based on a mutant bacterial haloalkane dehalogenase enzyme, 

which is obtained from Rhodococcus rhodochrous.290,291 Use of the HaloTag technology 

begins with the fusion of the HaloTag (33 kDa) to the protein of interest. A HaloTag-specific 

ligand is then introduced, resulting in the formation of an irreversible covalent bond between 

the HaloTag-modified protein and the ligand.292,293 As we all know, His-tag is ubiquitously 

introduced in protein production, but its role is merely limited to the isolation and 

purification of proteins.294,295 In comparison, HaloTag can be employed to rapidly purify 

proteins and the isolated proteins may further enable multimodal molecular imaging. 

Preliminary evidence has demonstrated the feasibility of HaloTag-based pretargeted 

imaging. This strategy involves first administering a HaloTag-modified antibody for 

pretargeting and then a small radiolabeled molecule with a short circulation time for 

imaging.296
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Analogous to these, Schibli et al. reported that microbial transglutaminase (mTGase) can 

modify mAbs in a stoichio-metric manner and the site-specifically engineered mAbs are of 

particular interest for molecular imaging.297,298 Another bacterial enzyme lipoic acid ligase 

(LplA) was also used with [18F]fluorooctanoic acid ([18F]FA) for site-specific radio-labeling 

of a Fab fragment.299 Although mTGase and LplA have shown potential in mediating site-

specific radiolabeling of biomolecules, their robustness needs to be confirmed by future 

studies.

3.3.4. Pretargeted ImmunoPET Imaging Strategies.—The slow blood clearance of 

mAb is problematic because it leads to high background activity and radiation exposure, 

especially to the red bone marrow. Aside from reducing the molecular size and removing or 

blocking the Fcγ receptors (FcγRs), pretargeted immunoPET imaging holds promise to 

improve the imaging quality while decreasing radiation exposure.300 In addition, this 

imaging approach enables the use of short-lived PET radionuclides (e.g., the widely 

available 68Ga and 18F).301 Pretargeted imaging was initially achieved using the biotin–

streptavidin interaction and BsAbs.302,303 In the avidin–biotin pretargeting approach, a 

streptavidinmodified immunoconjugate, and radiolabeled biotin were used.304,305 

Streptavidin and biotin-based pretargeting systems have been investigated in several clinical 

studies.306–308 However, the bacterially derived streptavidin constructs are prone to have 

immunogenicity, which may limit repeated imaging or therapy.309 A second concern for this 

system is that endogenous biotin in patient blood and tissues may competitively occupy and 

block the binding sites of streptavidin, thus preventing the binding of radiolabeled biotin.

In a BsAb-based pretargeted imaging system, a BsAb that can bind to target antigen and 

radiolabeled hapten is first injected, enabling the saturation of the target and washing out of 

the unbound antibodies. Once the unbound antibody is cleared from the blood and normal 

tissues, a radiolabeled chelate is injected and a portion will be captured by the BsAbs at the 

tumor sites with the remainder eliminated rapidly from the body. This strategy has been 

refined over the years and used in clinical studies for pretargeted radioimmunotherapy 

(pRIT),310 as well as for pretargeted immunoSPECT and immunoPET imaging.311–314 

Traditionally, BsAbs used for pretargeted imaging and therapy were produced by chemical 

methods315,316 or by recombinant expression from Escherichia coli or myeloma cell 

cultures.317,318 Although several clinical studies have validated the therapeutic effect of 

pRIT using the antibodies produced this way,319,320 the murine or chimeric property of such 

agents limit their clinical use. To further advance the clinical translation and application of 

pretargeted imaging and therapy, a more innovative Dock-and-Lock method is now being 

used to develop humanized recombinant BsAbs on a large scale.321 One such example is the 

anti-CEA × anti-HSG TF2 BsAb, which contains a humanized antihist-amine-succinyl-

glycine (HSG) Fab fragment from the anti-HSG mAb 679 and two humanized anti-CEA Fab 

fragments derived from the hMN14 mAb (labetuzumab).219,321 As the hapten peptides of 

the pretargeted system, the radiolabeled small molecules bear two HSG groups and various 

chelators (Figure 11), allowing versatile labeling with radionuclides of interest (e.g., 68Ga 

and [18F]AlF). Currently, several other such BsAbs (e.g., TF4 for CD20 and TF10 for a 

mucin antigen) produced via this approach are also being actively investigated for 

theranostic purposes.322–324 Using the directed evolution and yeast surface display,325 
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Orcutt and coauthors at the Massachusetts Institute of Technology (MIT) constructed 

another pretargeted system,326,327 which exploits a principle similar to the streptavidin–

biotin system but replaces streptavidin with a C825 scFv capturing benzyl(Bn)-DOTA-

radiometal complex. In this system, use of a clearing agent (e.g., dextran-(Y)-DOTA-Bn 

conjugate) further improved the imaging quality and therapeutic outcome.328,329

In recent years, bioorthogonal chemical reactions have been developed as alternatives to 

biologic pretargeting interactions for recruiting radiolabeled probes to the tumor-bound 

mAb, as excellently described in several reviews.330–332 Since its initial report,266 the 

IEDDA reaction has been widely used for pretargeted tumor imaging. Various TCO-

conjugated antibodies and 111In-, 18F-, or 64Cu-labeled Tz probes have been used to achieve 

pretargeted imaging.333–335 These novel strategies substantially improved T/B ratios and 

reduced radiation dose to the bone marrow. Ideal imaging results were achieved when the 

tagged biomolecules (e.g., TCO-modified mAb) were completely cleared from the 

circulation before injecting the radiolabeled Tz, which could be accomplished by injecting a 

clearing agent (e.g., Tz-galactose-albumin).336,337 Furthermore, sequential use of the 

enzyme-mediated site-specific modification and click chemistry produced improved imaging 

results.338 On the basis of the available evidence, the added value of this strategy is confined 

to the production of homogeneous immunoconjugate and reduced use of the antibody 

because the imaging performance was comparable to that of the randomly labeled analogous 

construct.339 Along with this, several other Tz-modified chelators have been developed for 

labeling peptides with radiometals,340,341 but their performance with antibodies remains to 

be determined. It is also notable that some chemical reactions are not suitable for in vivo 

pretargeted imaging due either to the interactions of the radioligand with serum albumin or 

to the slow reaction kinetics.342,343

As discussed above, high-affinity Affibodies have been successfully applied for molecular 

imaging of cancers. The unfavorable part is that their rapid renal clearance, reabsorption, 

and internalization unavoidably lead to high accumulation of the radiotracers in the proximal 

tubule of the kidneys. Pretargeted imaging approaches have been harnessed to overcome this 

disadvantage.344–347 One such approach is the peptide nucleic acid (PNA)-mediated 

hybridization system, where the primary PNA strand used for tumor targeting can selectively 

and rapidly hybridize with the secondary complementary PNA strand equipped with radio-

nuclides. For instance, Vorobyeva et al. developed a modular system consisting of 

ZHER2:342-SR-HP1 (primary targeting agent) and 68Ga-HP2 (secondary targeting agent).348 

They reported that this Affibody-based imaging approach yielded increased tumor uptake 

and decreased kidney uptake in preclinical ovary cancer models.

3.3.5. Clearance-Enhanced ImmunoPET Imaging.—Other than the above-

mentioned methods for increasing image contrast and improving image quality, use of 

urokinase and a urokinase-cleavable bifunctional chelator (CB-TE1A1PUSL-DBCO) is a 

promising radionuclide clearance enhancement system.349 This system has been used to 

develop 64Cu-CB-TE1A1P-USL-trastuzumab,156 where injection of urokinase triggers 

urokinase-responsive cleavage of the radiotracer, leading to enhanced elimination of 

radioactivity from the blood circulation, enhanced hepatic radioactivity clearance, and 

significantly increased tumor-to-blood ratio. These studies indicate that urokinase and 

Wei et al. Page 16

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



urokinase substrate linkers can be used to induce clearance of radioactivity from the 

nontargeted tissues and shorten the time required to obtain optimal immunoPET imaging 

contrast.

4. IMMUNOPET IMAGING OF CANCERS

The major application of immunoPET imaging is to facilitate better management of cancer 

patients. According to several clinical reports, immunoPET imaging provided excellent 

specificity and sensitivity in detecting primary tumors.184,186 ImmunoPET imaging is also 

an appealing option for detecting lymph node and distant metastases.118,350 More 

importantly, accumulating clinical evidence suggests that immunoPET can detect previously 

unknown lymph node and distant meta-stases.39,41 These impressive results indicate that 

immunoPET may complement IHC staining in clinical dilemmas when suspected lesions are 

inaccessible for biopsy. However, suboptimal imaging conditions (e.g., imaging protocol and 

facility performance) and low expression of the target in small tumor lesions may lead to 

underestimation of the tumor burden and target abundance. Following immunoPET imaging, 

patients with positive findings can be selected for subsequent therapies (e.g., antibody 

therapy and antibody-based RIT), whereas patients with negative or heterogeneous findings 

may need multidisciplinary treatments. ImmunoPET is a useful diagnostic tool but also a 

theranostic companion for radiation dosimetry prior to administering the therapeutic 

radiopharmaceuticals (discussed in section 8). Moreover, immunoPET imaging is useful for 

improved triage during early disease stages and to facilitate image-guided surgery.351,352 

The information provided by immunoPET will significantly enhance the existing diagnostic 

methods for better tumor characterization. One can envision that tumors may be classified 

not only according to their origins and mutation status but also according to the expression 

of specific tumor antigens in the future.

4.1. Receptor Tyrosine Kinases

Receptor tyrosine kinases (RTKs) are often overexpressed and/or mutated in a variety of 

cancers.353 As the best-studied oncogenic drivers, RTKs have been among the most explored 

targets for developing anticancer therapeutics. Indeed, mAbs and small-molecule tyrosine 

kinase inhibitors (TKIs) suppressing RTKs or their ligands are the most typical examples of 

targeted cancer therapies. Along with this success, substantial efforts have been dedicated to 

developing immunoPET imaging approaches for revealing the heterogeneous status of RTKs 

in cancers.354

4.1.1. Epidermal Growth Factor Receptor.—Human epidermal growth factor 

receptor (EGFR) is a RTK regulated by at least seven activating ligands in humans.355 

Several mAbs (e.g., cetuximab, panitumumab, and nimotuzumab) targeting the extracellular 

domain of EGFR and TKIs (e.g., erlotinib) targeting the intracellular domain of EGFR have 

been approved for treating EGFR-positive cancers. An initial clinical study demonstrated 

that 89Zr-Df-cetuximab immunoPET imaging could visualize EGFR expression and predict 

the treatment efficacy of cetuximab in advanced colorectal cancers.356 However, a follow-up 

study showed that 89Zr-Dfcetuximab uptake failed to predict the efficacy of cetuximab 

monotherapy in patients with RAS wild-type metastatic colorectal cancer.357 89Zr-Df-
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cetuximab was further investigated in nine patients with head and neck squamous cell 

carcinoma (HNSCC) or nonsmall-cell lung cancer (NSCLC). The results showed no direct 

relationship between EGFR expression and tumor uptake of the radiotracer in terms of the 

T/B ratio,358 which was in concert with the results reported by two other studies.359,360 

Because cetuximab irreversibly binds to EGFR expressed in liver cells, van Loon et al. 

reasoned that an optimal preloading of unlabeled cetuximab is needed to first saturate liver 

EGFRs.358 In addition, Pool et al. found that shed EGFR ectodomain levels in liver and 

plasma interfere with EGFR-targeted immunoPET imaging agents, and increased 

administration of radiotracer could improve tumor visualization.361

Panitumumab is a fully human mAb targeting EGFR.362 Niu et al. initially reported that 
64Cu-DOTA-panitumumab immunoPET imaging failed to quantify EGFR protein expression 

in three different HNSCC xenografts,363 probably due to the poor penetration of the 

antibody and varying tumor vasculature in the used models. However, several other studies 

showed that uptake of 89Zr-panitumumab was associated with EGFR expression in other 

tumor models.364–366 Additionally, a group reported the clinical safety and feasibility of 
89Zrpanitumumab immunoPET in noninvasively characterizing EGFR expression.367,368 

Scott et al. screened a variety of mouse mAbs and found that mAb 806 specifically targets 

the overexpressed or activated forms of EGFR.369,370 ch806, a chimeric form of mAb 806, 

has been validated as an effective therapeutic antibody and ch806-based molecular imaging 

showed specific accumulation of the antibody at multiple tumor sites.371,372 In an attempt to 

trap the radioiodinated ch806 in lysosomes, ch806 was further radiolabeled with 

residualizing peptides 124I-IMP-R4 and 124I-PEG4-tptddYddtpt. The tumor uptake of 124I-

IMP-R4-ch806 (Figure 12) and 124I PEG4-tptddYddtpt-ch806 was apparent in preclinical 

glioma models.373,374 More recently, two other preclinical studies have demonstrated the 

value of 89Zr-Df-nimotuzumab immunoPET diagnosing epidermoid carcinomas and 

gliomas.375,376

Affibody-based PET imaging probes are also being developed to image EGFR expression.
377–381 Burley et al. developed two Affibody-based EGFR-targeting radioligands 89Zr-DFO-

ZEGFR:03115 and 18F-AlF-NOTA-ZEGFR:03115).382 The authors found that 18F-AlF-NOTA-

ZEGFR:03115 PET imaging could correlate EGFR downregulation in response to cetuximab 

treatment in preclinical HNSCC models. These probes may have clinical utility because of 

the poor performance of 89Zr-Df-cetuximab and the dichotomous role 64Cu-DOTA-

panitumumab in mapping EGFR levels. Although the development of next-generation 

EGFR-targeting mAbs may overcome cetuximab-induced resistance,383,384 VHH-based 

EGFR-targeting therapeutics may also overcome cetuximab-induced resistance. One such 

VHH, 7D12, penetrates more deeply and homogeneously into tumors than cetuximab.385,386 

Therefore, 7D12-based nuclear medicine imaging approaches may serve as promising tools 

in selecting patients suitable for VHH-based therapies.387,388

4.1.2. Human Epidermal Growth Factor Receptor 2.—Human epidermal growth 

factor receptor 2 (HER2/ErbB2) has attracted much interest as a molecular imaging target in 

the past two decades. Along with the clinical approval of HER2-targeted antibody 

therapeutics (e.g., trastuzumab, trastuzumab emtansine [T-DM1], and pertuzumab), several 

antibody-based radiotracers have been developed for imaging HER2 expression.389 Of them, 
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two initial clinical studies using 111In-DTPA-trastuzumab reported uptake of the tracer in the 

myocardial wall and detection of new HER2-positive breast cancer lesions.16,390 Since 89Zr 

became clinically available,118 successive translational studies have reported the value of 
89Zr-Df-trastuzumab immunoPET in detecting both previously known and unknown 

metastatic breast cancer lesions,41 detecting heterogeneous HER2 expression in breast 

cancer lesions before T-DM1 treatment and predicting T-DM1 treatment outcomes.
391–393 64Cu-DOTA-trastuzumab is an alternative that has also been tested in the clinic.
394,395 In addition to trastuzumab, pertuzumab is another FDA-approved mAb targeting 

HER2. 89Zr-Df-pertuzumab has been successfully translated into the clinic and 89Zr-Df-

pertuzumab immunoPET imaging was able to detect primary breast cancers and distant 

breast cancer metastases including brain metastases (Figure 13a–d).396 However, no clinical 

studies have directly compared the diagnostic efficacies of 89Zr-Dftrastuzumab and 64Cu-

DOTA-trastuzumab.

Increasing evidence supports HER2 as a broad tumor biomarker beyond its established role 

in breast cancers.397 Preliminary studies have reported the value of HER2-specific 

immunoPET in elucidating HER2 expression levels in gastric cancer and esophagogastric 

adenocarcinoma.398–400 Because HER2 serves as a biomarker for ovarian cancer and also 

potentially for advanced thyroid cancers, it is rational that HER2-targeted immunoPET 

imaging was able to map HER2 expression in these solid tumors.401–404

Although a combination of 18F-FDG PET and 89Zr-Dftrastuzumab immunoPET robustly 

predicted the treatment efficacy of T-DM1, 89Zr-Df-trastuzumab did not accumulate in a 

proportion of HER2-positive lesions.391 Temporal modulation of HER2 expression with 

mucolytic treatment enhanced tumor uptake of 89Zr-Df-trastuzumab in a preclinical breast 

cancer model.405 Moreover, it has been shown that caveolin-1 mediates HER2 

internalization and depletion of caveolin-1 with lovastatin increased tumor uptake of 89Zr-

DFO-trastuzumab.406 This effect was further validated by a more recent study where oral 

administration of lovastatin enhanced tumor accumulation of 89Zr-DFO-pertuzumab in 

preclinical gastric cancer models.407 More importantly, image-guided modulation of HER2 

expression and internalization could improve the efficacy of trastuzumab treatment.408 

These results together demonstrate that modulation of HER2 expression or internalization 

could increase tumor uptake of HER2-targeted immunoPET probes and also the efficacies of 

HER2-targeted therapeutic regimens.

Small biomolecules (e.g., antibody fragments, sdAbs, and Affibodies) are also being used as 

HER2-targeting vectors.409,410 Beylergil et al. developed 68Ga-DOTA-F(ab′)2-trastuzumab 

and investigated the diagnostic utility of this radiotracer in 15 patients with breast cancer. 

Although less optimal than radiolabeled trastuzumab, this imaging approach detected 

diseases in 4/8 patients with HER2-positive breast cancers.411 2Rs15d is a sdAb developed 

against HER2 and has shown excellent targeting of HER2 in both preclinical settings,63 and 

clinical settings.412 In both cases, 68Ga was randomly conjugated on Lys residues of 

2Rs15d without compromising the targeting affinity of 2Rs15d, in part due to the absence of 

Lys residues in its antigen-binding domains. (Note: 2Rs15d contains six lysines that are 
dispersed in the framework and away from the receptor-binding regions.) A recent study 

revealed that SrtA-mediated site-specific radiolabeling of 2Rs15d yielded homogeneous 
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68Ga-NOTA-2Rs15d, and immunoPET imaging with this radiotracer readily visualized 

HER2-positive breast cancers.413 However, the renal clearance of 68Ga-NOTA-2Rs15d and 

the resultant high tracer retention in bilateral kidneys is problematic, which was also 

observed in several other 18F-labeled VHHs.202,414 In this setting, two HER2-specific 

VHHs (i.e., 2Rs15d and 5F7) were radiolabeled with [18F]TFPFN and subsequent 

immunoPET imaging with the synthesized probes successfully detected tumors with 

prominent tumor uptake and substantially lower renal uptake.415 Furthermore, [18F]AlF-

NOTA-Tz-TCO-GK-2Rs15d was developed by the IEDDA reaction and incorporation of a 

renal brush border enzyme-cleavable Gly-Lys (GK) linker in the prosthetic moiety. This 

strategy achieved quite high RCY (~17%) while also maintaining high T/B ratios (Figure 

13e,f).416 2Rs15d has been validated useful as a vehicle for RIT after labeling with 177Lu or 
131I,67,417 providing valuable therapeutic options accompanying the above-mentioned 

immunoPET imaging. A clinical trial evaluating the safety and distribution of 131I-

SGMIB-2Rs15d in breast cancers has completed patient recruitment (NCT02683083).

ZHER2:342 is a second-generation HER2-targeting Affibody and has been radiolabeled 

nonselectively with 125I and 111In418,419 or site-specifically with 18F-FBEM.205,420,421 Xu et 

al. further modified ZHER2:342 with a hydrophilic linker (Cys-Gly-Gly-Gly-Arg-Asp-Asn) 

that is conjugated with maleimidomonoamide-NOTA and radiolabeled the derivative with 

Al18F.422 The authors found that this modification produced excellent imaging contrast and 

low abdomen uptake of the developed tracer. DOTA-ZHER2:342‑pep2 (ABY-002) is a 

chemically synthesized derivative of ZHER2:342 with a DOTA coupled to its NH2 terminus. 

Therefore, this agent could be site-specifically radiolabeled with 111In or 68Ga.423–425 

Furthermore, 111In-ABY-002 and 68Ga-ABY-002 demonstrated the potential in visualizing 

HER2-expressing metastatic lesions in patients with breast cancer.426 Another group of 

HER2-specific molecular imaging tracers is based on the Affibody MMA-DOTA-Cys61-

ZHER2:2891-Cys (ABY-025).427–429 Of them, 68Ga-ABY-025 can be produced in compliance 

with Good Manufacturing Practice (GMP)430 and can be used to accurately image HER2 

expression in metastatic breast cancers.431–434 Because 18F is a radionuclide validated for 

clinical use and its longer half-life enables imaging over a longer time window compared to 
68Ga, Glaser et al. used three methods (i.e., 18F-SiFA, 18F-AlF-NOTA, and 18F-FBA) to 

radiolabel ABY-025. They found that 18F-FBA-ZHER2:2891 (GE226) emerged as a highly 

specific candidate for imaging HER2 expression in pre- and post-treatment settings.435,436 

ZHER2:2395 is another variant of ZHER2:342 and has a C-terminal Cys.437 This Affibody 

molecule was site-specifically labeled with Al18F-NOTA (90 °C, 15 min) with an acceptable 

RCY (21% ± 5.7%).438

Aiming to improve the therapeutic effect of HER2-targeted therapies, BsAbs are being 

increasingly produced,439–442 which may serve as appealing immunoPET imaging 

components. Because of the progress in preclinical and clinical studies, we are optimistic 

that HER2-targeted immunoPET imaging will provide a noninvasive and dynamic 

visualization and quantification of HER2 expression in heterogeneous tumors, which will 

refine clinical management of HER2-targeted therapeutics. Apart from detecting the 

heterogeneous HER2 expression in tumor tissues for initial patient selection,443 HER2-

specific immunoPET may serve as a useful tool in predicting therapeutic responses 

following HER2-targeted therapies.444,445 This will be especially useful when the applied 
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HER2-specific vector binds to epitopes different from that of the clinically approved 

antibodies (e.g., trastuzumab and pertuzumab).446

4.1.3. Human Epidermal Growth Factor Receptor 3.—Human epidermal growth 

factor receptor 3 (HER3/ErbB3) has weak intracellular kinase activity and does not form 

homodimers, but it is a signal amplifier after forming heterodimers with other EGFR family 

members (i.e., HER2 and EGFR). It has been well established that HER3 is related to the 

development and progression of several types of cancers.447 With the broad clinical 

application of HER2- and EGFR-targeting agents, increasing evidence indicates that HER3 

is also implicated in the resistance of HER2- or EGFR-targeting therapeutics.448 As such, 

more than 13 HER3-targeting mAbs (e.g., patritumab, lumretuzumab, KTN3379, 

REGN1400) are under clinical investigation as either monotherapy agents or components of 

combination therapies.449 Additionally, duligotuzumab (MEHD7945A) is a human IgG1 

mAb dually targeting HER3 and EGFR.450,451

Patritumab is a fully human anti-HER3 mAb and has shown to have an excellent safety 

profile in clinical trials. Although a preclinical study showed the feasibility of 64Cu-DOTA-

patritumab immunoPET in imaging HER3 expression,452 the clinical use of 64Cu-DOTA-

patritumab was not satisfactory because tumor uptake of 64Cu-DOTA-patritumab was not 

robust.453 The discrepancy observed in these two studies may possibly be caused by the 

substantial uptake of the radiotracer in human livers and less potent targeting property of the 

antibody. GSK2849330 is another fully human HER3-specific mAb and dose-dependent, 

saturable uptake of the agent was reported in a preclinical study where 89Zr-GSK2849330 

was employed.454 More recently, van Oordt et al. characterized the value of 89Zr-

GSK2849330 immunoPET in clinical settings.455 The authors validated 89Zr-Df-

GSK2849330 saturation after preloading with unlabeled GSK2849330 and also observed a 

significant uptake of the tracer in the liver and spleen. Lumretuzumab (RG7116) is a 

humanized mAb targeting the extracellular domain of HER3.456 ImmunoPET imaging with 
89Zr-lumretuzumab provided useful information on HER3 expression in multiple tumor-

bearing mouse models.457 A follow-up clinical study using 89Zr-lumretuzumab further 

demonstrated tumor uptake of the tracer.458 The study also revealed significant liver uptake 

of the tracer, which was partially caused by Kupffer cell-mediated capture and clearance of 

the glycoengineered antibody.

Several other HER3-targeting vectors, including HER3 specific antibody fragments and 

Affibody, have been developed and employed as PET and fluorescent imaging probes.
459–462 However, probes of long retention time are favored for imaging HER3 because this 

receptor has a low density on the tumor cells but high abundance in the normal organs and 

tissues, such as the small intestine. Furthermore, Affibody-based imaging probes have very 

fast blood clearance due to their small sizes (~7 kDa), which results in substantial kidney 

retention that interferes with image interpretation.463,464 To this end, a biparatopic VHH 

construct MSB0010853 (39.5 kDa), which blocks two different HER3 epitopes, was 

developed (Figure 14a).465 Warnders et al. reported that tumor uptake of 89Zr-MSB0010853 

correlated with HER3 expression (Figure 14b), and its uptake in tissues was dose-dependent. 

Owing to the relatively larger size and the albumin-binding capacity of 89Zr-MSB0010853, 
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bloodstream circulation of this tracer was relatively longer and renal uptake is relatively 

lower (<15% ID/g).465

4.1.4. Vascular Endothelial Growth Factor Receptor.—Vascular endothelial-

derived growth factor (VEGF)/VEGF receptor (VEGFR) signaling pathway is the key 

pathway regulating vasculogenesis and angiogenesis during physiologic homeostasis and 

diseases.466 A number of therapeutic agents targeting VEGF (e.g., bevacizumab and 

ramucirumab) and VEGFR (e.g., sorafenib and sunitinib) have been approved for clinical 

use around the world.467 As a neutralizing mAb targeting VEGF-A, the benefits of 

bevacizumab have been validated for different oncological indications.468 To date, clinical 

immunoPET studies using 89Zr-Df-bevacizumab were performed in a variety of tumors, 

including breast cancer,469 neuroendocrine tumors,470 renal cell carcinoma (RCC),471 

NSCLC,472 and glioma.473,474 89Zr-Df-bevacizumab immuno-PET imaging detected VEGF-

A downregulation induced either by the mammalian target of rapamycin inhibitor 

(everolimus) in patients with neuroendocrine tumors,470 or by the HSP90 inhibitor, 

luminespib (NVP-AUY922), in ovarian cancer xenografts.475 However, clinical 89Zr-Df-

bevacizumab immunoPET imaging failed to monitor VEGF reduction in patients with breast 

cancer following NVP-AUY922 treatment.476 To enhance the penetration of bevacizumab 

across the blood–brain barrier (BBB), intra-arterial administration and blood–brain barrier 

opening (BBBO) are two emerging strategies.477 In agreement with this clinical evidence, 

BBBO with mannitol followed by intra-arterial administration of 89Zr-Df-bevacizumab 

resulted in significantly higher accumulation of the tracer in the ipsilateral hemisphere.478

To gain a more thorough insight into tumor response following antiangiogenic treatment, 

ranibizumab (a humanized Fab fragment targeting all isoforms of VEGF-A) was 

radiolabeled with 89Zr.479 Uptake of 89Zr-ranibizumab in the tumor center reduced 

substantially following sunitinib treatment. However, immunoPET scanning performed 7 

days after the termination of the treatment showed that tracer accumulation in the tumor 

centers increased and returned to baseline. It is worthwhile to note that uptake of 89Zr-

Dfbevacizumab in RCC and normal organs may also rebound following sunitinib treatment,
471 but a similar phenomenon was not observed following sorafenib or everolimus treatment 

of RCC.480,481 All of the clinical evidence indicates that expression of VEGF not only varies 

in different patients but also among the metastases and within the tumor in a single patient. 

VEGF-directed immunoPET is useful for visualizing the dynamic changes of VEGF before 

and after VEGF-targeted therapies. It has been postulated that antiangiogenic therapies 

induce the apoptosis of the endothelial cells and “normalize” the hyper-permeability of the 

tumor vasculature.482 Therefore, disruption of the tumor vasculature may lead to reduced 

tumor uptake of the radiotracer, regardless of the VEGF levels. This factor should be taken 

into consideration when interpreting the imaging results.

Although VEGF-A binds to both VEGFR-1 and VEGFR-2, VEGFR-2 plays a key role in 

regulating angiogenesis and vascular permeability. Results from several preclinical studies 

demonstrated that it was also feasible to image tumor vasculature by targeting 

VEGFR-2.483–485
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4.1.5. Other Receptor Tyrosine Kinases.—Other than the EGFR family members, 

there are many other RTKs implicated in the pathogenesis and progression of cancers and 

non-cancerous diseases.486 Of them, c-MET (also known as mesenchymal–epithelial 

transition factor), platelet-derived growth factor (PDGF) receptor (PDGFR), and insulin-like 

growth factor-1 receptor (IGF-1R) are emerging therapeutic and diagnostic targets.

c-MET is the receptor for the hepatocyte growth factor (HGF). The HGF/c-MET pathway is 

vital for the development and metastatic progression of gastrointestinal cancers,487 NSCLC,
488 and several other malignancies.489 Furthermore, c-MET is closely related to the acquired 

resistance of EGFR-targeted or VEGFR2-targeted therapies in a broad range of solid tumors.
490 Current efforts are directed to validate c-MET as a biomarker and HGF/c-MET pathway 

inhibitors as anticancer therapeutics. However, several clinical trials have failed to 

demonstrate the synergistic effect of c-MET or HGF inhibitors in combination therapies, 

such as onartuzumab plus erlotinib in NSCLC,491 and rilotumumab plus epirubicin, 

cisplatin, and capecitabine in gastric or gastro-esophageal junction adenocarcinoma.492 

Therefore, development and clinical translation of companion diagnostic probes may 

underpin clinical investigation of HGF/c-MET pathway inhibition for cancer therapies. Luo 

et al. produced a recombinant human HGF (rh-HGF) and demonstrated that 64Cu-NOTA-rh-

HGF PET imaging indirectly visualized c-MET-positive human glioblastoma in mouse 

models.493 Using a fully human mAb rilotumumab (AMG102) which selectively targets 

HGF, Price et al. developed 89Zr-DFO-AMG102 and reported that immunoPET imaging 

with this tracer determined HGF in the local tumor microenvironment (TME).494 To directly 

delineate c-MET abundance, several radiotracers have been developed and tested in 

preclinical mouse models.495,496 Onartuzumab is a one-armed monovalent antibody 

targeting the c-MET.497 Pool et al. demonstrated that 89Zr-Dfonartuzumab immunoPET 

imaging could visualize erlotinib-induced c-MET upregulation and luminespib-induced c-

MET downregulation in NSCLC models.498 Escorcia et al. reported the theranostic value of 
89Zr-Df-onartuzumab and 177Lu-DTPA-onartuzumab in pancreatic ductal adenocarcinoma 

(PDAC) xenograft models. In this theranostic scenario, immunoPET imaging with 89Zr-Df-

onartuzumab identified c-MET-positive PDAC xenografts and targeted radioligand therapy 

with 177Lu-DTPA-onartuzumab efficiently delayed the growth of the selected tumors.499 A 

more recent study by Klingler et al. reported the synthesis of 89Zr-DFO-azepinonartuzumab 

within 10 min via the one-pot photoradiochemical conjugation reaction.500 When compared 

to the conventional 89Zr-DFO-Bn-NCS-onartuzumab, immunoPET imaging with 89Zr-DFO-

azepin-onartuzumab resulted in comparable T/B ratios but a lower uptake in the liver. These 

results highlight the feasibility of immunoPET in assessing the dynamics of the HGF/c-MET 

signaling pathway and selecting candidates most likely to benefit from HGF/c-MET-targeted 

therapies.

PDGF and PDGF receptors (i.e., PDGFRα and PDGFRβ) stimulate the growth of tumor 

cells and regulate tumor angiogenesis as well as tumor stromal fibroblasts.501,502 Although 

no PDGF-specific TKIs have been approved, olaratumab (LY3012207, IMC-3G3), a human 

IgG1 mAb targeting PDGFRα, was approved by the FDA in 2016 for treating soft-tissue 

sarcomas.503 To directly image stromal PDGFR, PDGFRβ-targeting Affibodies have been 

radiolabeled with 111In or 68Ga and tested in preclinical glioma models.504–506 By using a 
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dual cysteine disulfide bond linker, a dimeric Affibody molecule ZPDGFRβ was produced and 
89Zr-DFO-ZPDGFRβ immunoPET imaging visualized PDGFRβ-expressing colorectal 

adenocarcinomas.507 Overexpression of PDGFRa has been reported to be associated with 

lymph node metastases of papillary thyroid cancers.508–511 Accordingly, Wagner et al. 

developed 64Cu-NOTA-D13C6 and reported that immunoPET imaging with this tracer 

identified papillary thyroid cancers that have the potential to metastasize (Figure 15).512

IGF-1R is universally expressed in hematologic and solid tumors.513,514 Insulin-like growth 

factors and IGF-1R are attractive targets for cancer therapy and imaging.515 R1507 is a mAb 

targeting IGF-1R and molecular imaging with R1507-based radiotracers, 111In-R1507 and 
89Zr-Df-R1507, successfully determined IGF-1R expression in breast cancer xenografts.516 

We screened an IGF-1R-specific mAb 1A2G11 and developed an immunoPET probe 89Zr-

Df-1A2G11,517 which specifically accumulated in IGF-1R-positive pancreatic cancers.518 In 

accordance with the antibody-based imaging findings, an Affibody-based immunoPET 

tracer also specifically delineated U87MG tumors with enhanced clearance from the renal-

urine system.519 These preclinical results imply that IGF-1R-specific immunoPET may help 

identify patients that would benefit from anti-IGF-1R therapies and enable dynamic 

monitoring of the IGF-1R expression following the therapies.520

4.2. Clusters of Differentiation

Clusters of differentiation (CD) antigens have long been investigated as either diagnostic or 

therapeutic targets for a broad spectrum of diseases. In this review, we will describe in-depth 

some selected markers (i.e., CD20, CD38, CD146, and CD105). However, there are many 

other CD antigens that have shown potential as molecular imaging targets, including CD54 

(known as intercellular adhesion molecule, ICAM-1),521 CD44,118,522–524 CD47,525–527 and 

CD138.528,529

4.2.1. CD20.—Lymphoma is an umbrella term for a large group of cancers that often 

arise from the lymph nodes. CD20 and CD30 are two common biomarkers for molecular 

imaging of lymphoma.530–532 Rituximab, a CD20-specific chimeric mAb, was approved by 

the FDA for the treatment of non-Hodgkin’s lymphoma (NHL) in 1997 and rheumatoid 

arthritis (RA) in 2006.533 Studies have reported the feasibility of 64Cu-DOTA-rituximab and 
89Zr-rituximab immunoPET in revealing CD20 expression in NHL-bearing humanized 

mouse models.534,535 Of them, 89Zr-rituximab has been translated for clinical use. Muylle et 

al. have reported that 89Zr-rituximab immunoPET/CT scanning without preloading of cold 

rituximab enabled clearer tumor visualization and higher tumor uptake (Figure 16).536

Recently, antibody fragments targeting human CD20 have been engineered and investigated 

after being labeled with 124I, 89Zr, or 64Cu. Olafsen et al. engineered two rituximab 

fragments of different sizes (a Mb of 80 kDa and a scFv-Fc fragment of 105 kDa). The 

authors reported that both fragments offered CD20-specific imaging, but the Mb-based 

radiotracer resulted in images of higher contrast.537 Humanized obinutuzumab (GA101) and 

fully human ofatumumab are two other CD20-targeting mAbs showing superior activity 

when compared to rituximab.538 Yoon et al. radiolabeled these two mAbs with 89Zr and 

compared their diagnostic efficacies with 89Zr-rituximab.539 The authors reported that both 
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89Zrobinituzumab and 89Zr-ofatumumab localized lymphoma xenografts more clearly than 

89Zr-rituximab. Zettlitz et al. further engineered antibody fragments from obinutuzumab and 

radiolabeled these CD20-specific vectors with 89Zr, 124I, and 18F.197,540 Similarly, the 

authors found that obinutuzumab-based radiotracers outperformed rituximab-based 

radiotracers in delineating CD20 expression.540 To further conquer the poor tumor 

penetration and undesirable pharmacokinetics of full-length antibodies, a set of hCD20-

targeting sdAbs were generated.68 One of these sdAbs, sdAb 9079 was radiolabeled with 
68Ga and 177Lu and used for immunoPET imaging and targeted therapy of lymphoma, 

respectively.

Both 124I-rituximab and 89Zr-rituximab immunoPET/CT imaging was able to visualize 

CD20 expression in patients with RA.541,542 In addition to imaging NHL and RA, recent 

studies have reported the value of 89Zr-rituximab immunoPET imaging in diagnosing orbital 

inflammatory diseases and interstitial pneumonitis,543–545 but rituximab treatment has not 

been approved for these diseases.

4.2.2. CD38.—CD38 is a transmembrane glycoprotein highly and uniformly expressed 

on multiple myeloma (MM), NHL, and several types of solid tumor cells.546,547 Several 

CD38-specific mAbs (e.g., daratumumab, isatuximab, and MOR202) have been developed. 

Daratumumab is a fully human mAb and has been proven a clinical success for treating 

MM.548 Recently, both 64Cu- and 89Zr-labeled daratumumab have shown excellent imaging 

attributes for detecting subcutaneous and disseminated MM (Figure 17a–c).549,550 

Preclinical applications of CD38-targeted immunoPET imaging has also been extended to 

detecting lung cancer, hepatocellular carcinoma, and lymphoma (Figure 17d).551–553 

Additionally, CD38-specific sdAbs were generated for imaging and treating MM.554,555 

Small agents like sdAbs penetrate more effectively into the disseminated MM lesions than 

the conventional mAbs. Because daratumumab administration interferes with CD38 

detection and some of the sdAbs binds to CD38 independently of daratumumab,555,556 

immunoPET probes derived from sdAbs will be very useful for detecting MM at early stages 

and evaluating the efficacy of daratumumab treatment.

Accompanying the above imaging success, substantial preclinical evidence has 

demonstrated that CD38-targeted RIT could achieve the eradication of disseminated MM.
557–559 Using a less immunogenic two-step pRIT strategy consisting of a novel 028-Fc-C825 

bispecific protein (targeting CD38 antigen and yttrium-DOTA ligand) and a 90Y-DOTA-

biotin dramatically reduced tumor growth and increased survival in both MM and NHL 

models.560 These results indicate the superiority of CD38 for both immunoPET imaging and 

pRIT. Clinical translation of these CD38-targeted theranostic agents will likely improve the 

management of patients with MM (NCT03665155).561

4.2.3. CD146.—CD146, also known as MUC18 or MCAM, was originally identified as a 

marker for melanoma and now is a novel biomarker for several cancers.562 Recently, Jiang et 

al. demonstrated that CD146 interacts with VEGFR-2 in the endothelium and promotes 

angiogenesis. Additionally, they found that an anti-CD146 mAb (AA98) or CD146 siRNA 

could successfully inhibit the CD146/VEGFR-2 pathway.563 It has been proven that AA98 

has anticancer effects in several types of cancer, including leiomyosarcoma, pancreatic 
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cancer, hepatocellular carcinoma, breast cancer, among others.564–567 The work is of 

importance because intrinsic or acquired resistance to bevacizumab occurs in clinical 

practice,568 and novel agents targeting CD146 may have therapeutic benefits.

Our group initially generated a murine anti-CD146 mAb (denoted as YY146) and 

radiolabeled it for immunoPET imaging of glioblastoma multiforme.569 In the work, we 

reported that 64Cu-NOTA-YY146 immunoPET imaging could delineate U87MG tumors as 

small as 2 mm in diameter. Additionally, we explored the potential therapeutic effects of 

YY146 on U87MG cells. Another immunoPET imaging agent based on YY146 was 

developed by labeling the YY146 with 89Zr.570 Follow-up studies from our group revealed 

that 64Cu-NOTA-YY146 immunoPET could clearly visualize both subcutaneous and 

metastatic lung cancer xenografts.571,572 Furthermore, 89Zr-Df-YY146-ZW800, a dual-

modality imaging tool, enabled immunoPET and near-infrared fluorescence (NIRF) imaging 

of CD146-positive hepatocellular carcinomas (Figure 18a,b).573 The prominent and 

persistent uptake of 89Zr-Df-YY146-ZW800 also facilitated image-guided resection of the 

orthotopic HepG2 tumors (Figure 18c). On the basis of the previous success, a more recent 

study further developed a theranostic pair consisting of 89Zr-Df-YY146 and IR700-

YY146.122 While immunoPET imaging with 89Zr-Df-YY146 precisely diagnosed CD146-

positive melanomas, PIT with IR700-YY146 efficiently eradicated a large portion of 

CD146-positive small melanomas in an image-guided manner. These promising results 

imply that the development of humanized YY146 (huYY146) would be worthwhile. In 

future clinical scenarios, immunoPET imaging with 64Cu-NOTA-huYY146 or 89Zr-Df-

huYY146 may identify patients with an increased likelihood of responding to CD146-

targeted therapies. CD146-targeted immunoPET imaging will be able to monitor early 

treatment responses to such therapies.

4.2.4. CD105.—Endoglin (CD105) is a transforming growth factor-β (TGF-β) coreceptor 

expressed on proliferating vascular endothelium in solid tumors.574,575 A recent study 

elucidated that increased tumoral cytoplasmic and endothelial expression of CD105 was 

significantly associated with advanced stage, renal vein invasion, and microvascular invasion 

of RCC.576 TRC105, a therapeutic mAb that binds to human CD105 with high avidity, has 

been demonstrated to be safe and effective in patients with advanced solid tumors such as 

RCC and hepatocellular carcinoma.577–581

The first successful immunoPET imaging of CD105 expression in murine breast tumor 

models was reported by our group in 2011.582,583 64Cu-DOTA-TRC105 and 89Zr-Df-

TRC105 were used in these two studies. 66Ga-NOTATRC105,584 and multimodality imaging 

probes targeting CD105,585–587 have since been developed and validated in various solid 

tumor models. Of note, 89Zr-Df-TRC105–800CW immunoPET imaging could noninvasively 

monitor lung metastases from breast cancer and facilitate straightforward image-guided 

surgical removal of the tumors.585 We also generated and characterized a Fab fragment from 

the TRC105 and then investigated its potential utility for PET imaging of tumor 

angiogenesis in breast cancer models.588,589 To develop highly specific noninvasive imaging 

probes for pancreatic cancer, we synthesized a bispecific heterodimer by conjugating an 

antitissue factor (TF) Fab with an anti-CD105 Fab and then labeled the heterodimer with 
64Cu. This dual-targeting technique provided synergistic improvements in binding affinity, 
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and immunoPET imaging with the developed 64Cu-NOTA-heterodimer clearly delineated 

both subcutaneous and orthotopic pancreatic tumors (Figure 18d,e).590 After dual-labeling 

of the heterodimer with 64Cu and fluorescent dye, dual-modality PET/NIRF imaging using 
64Cu-NOTA-heterodimer-ZW800 also specifically and readily detected pancreatic tumors.
591

These studies strongly demonstrated the feasibility of noninvasive imaging of CD105 

expression using PET or PET/NIRF technologies. Broad clinical applications of TRC105-

based imaging will enable noninvasive detection of both primary and small metastatic tumor 

nodules, intra-operative guidance for tumor removal, selective patient stratification for 

TRC105 therapy, and image-guided RIT.592 In addition, CD105 expression is upregulated on 

tumor endothelial cells following inhibition of the VEGF signaling pathway.593,594 As such, 

TRC105-based immunoPET imaging may select patients who will potentially benefit from 

the combinational therapy with TRC105 and VEGF inhibitors or antibodies.

4.3. Carbohydrate Antigens

4.3.1. Carbohydrate Antigen 19.9.—Carbohydrate antigen 19.9 (CA19.9) is an 

established biomarker for several epithelial tumors, lung cancer, breast cancer, and PDAC. 

5B1 is a fully human IgG targeting CA19.9 and has been widely used for theranostic 

purposes.595–597 In a first-in-human clinical trial, immunoPET imaging with 89Zr-DFO-5B1 

detected known PDACs, metastases, and small LN metastases,39 which remained undetected 

on conventional imaging studies.

By using the chemoenzymatic methodology described above,287 5B1 was also site-

specifically modified with DFO and radiolabeled with 89Zr. ImmunoPET imaging with 
89Zr-ssDFO-5B1 showed exceptional uptake of the radiotracer in the CA19.9-positive 

BxPC-3 models but not the CA19.9-negative MIAPaCa-2 models. Moreover, dual-modal 

imaging with 89Zr-ssdual-5B1 delineated both primary and metastatic tumors in an 

orthotopically implanted PDAC model.598 Because tumors shed CA19.9 into the 

bloodstream, it is sometimes necessary to inject cold antibody to saturate the shed antigen.
599 By utilizing the IEDDA reaction with TCO-conjugated antibodies and Tz-conjugated 

radioligands, several pretargeted immunoPET imaging strategies have been explored. One 

such system with 5B1-TCO and Tz-PEG11-Al[18F]-NOTA resulted in clear delineation of 

the CA19.9-expressing PDAC xenografts. However, radioactivity in the intestine retained 

over the imaging course. Another pretargeting approach consisting of 5B1-TCO and 64Cu-

NOTA-PEG7-Tz or 64Cu-NOTA-Tz showed improved diagnostic value, with the former 

combination showed better T/B contrast at the earlier imaging time-points (Figure 19).600

4.3.2. Carbohydrate Antigen 125.—Mucin 16 (MUC16) is a glycoprotein highly 

expressed in several types of cancers (e.g., ovarian, endometrial, and fallopian tube cancers). 

Carbohydrate antigen 125 (CA-125) is the released extracellular region of MUC16 following 

proteolytic cleavage and is regularly used to screen for ovarian cancer, to monitor cancer 

treatment efficacy, and to check for cancer recurrence.601 B43.13 (oregovomab) is a high-

affinity murine mAb and has been employed as an immunotherapeutic agent in the treatment 

of advanced ovarian cancers. To facilitate early detection of ovarian cancers, 64Cu-NOTA-
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mAb-B43.13 and 89Zr-DFO-mAb-B43.13 were developed sequentially.602,603 ImmunoPET 

imaging with these two tracers clearly delineated CA125-positive OVCAR3 tumors. 89Zr-

DFO-mAb-B43.13 immunoPET imaging is particularly attractive because it also detected 

LN involvement with high contrast and accuracy.603 REGN4018 is a human BsAb that 

specifically binds to MUC16 and CD3.604 Although circulating CA-125 serves as an antigen 

sink and interferes with MUC16-targeted therapies, the potency of REGN4018 is not 

hampered by the circulating CA-125. It has been shown that the site-specifically labeled 
89Zr-DFO-REGN4018 localized to the spleen and lymph nodes of nontumor-bearing mice. 

The imaging capabilities of 89Zr-DFO-REGN4018 was further investigated in humanized 

mouse models with two humanized targets (CD3 and MUC16). In these models, the 

bispecific 89Zr-DFOREGN4018 specifically accumulated in the secondary lymphoid organs 

as well as the MUC16-expressing tumors (Figure 20). Currently, REGN4018 is undergoing a 

phase I clinical trial (NCT03564340) either as a monotherapy agent or in combination with 

cemiplimab (an anti-PD-1 antibody).

4.4. Prostate-Specific Membrane Antigen

Using 18F-FDG or 11C-choline PET tracers to image prostate cancer (PCa) often yields false 

negative or false positive uptake due to the slow growth and the low glycolytic rate of most 

PCas. Interpretation of 18F-FDG PET images in PCa is often difficult or even impossible 

because of the spillover effects from the accumulation of the tracer in the bladder and the 

intestine.605 Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein 

that is highly expressed on most prostate adenocarcinomas and has gained increasing interest 

as a target molecule for imaging and therapy in the past five years.606–608 A recent study has 

elucidated a novel oncogenic signaling role of PSMA and reported that suppression of 

PSMA inhibited the PI3K signaling pathway and promoted tumor regression in preclinical 

PCa models.609 Studies using both antibodies and small-molecule agents have been 

conducted to develop PSMA-targeted SPECT and PET imaging platforms. PSMA-targeted 

theranostic approaches have been extensively reviewed elsewhere.610–613 Herein, we only 

focus on PSMA-specific immunoPET imaging probes.

A variety of mAbs specific for intracellular and extracellular epitopes of PSMA have been 

developed.605,614–616 J591, a humanized mAb which binds to an extracellular domain of 

PSMA, has been clinically investigated for both imaging and therapy.617–621 Recently, Fung 

et al. demonstrated that 124IJ591 and 89Zr-J591 had comparable surface binding and 

internalization rates in preclinical prostate models.622 These studies imply that PCa 

theranostics using 177Lu- and 124I-or 89Zr- labeled J591 is feasible, safe and may have 

superior targeting toward bone lesions relative to conventional imaging modalities. This may 

refine management strategies for patients with PSMA-positive PCas. Capromab (7E11) is a 

murine mAb, which has been investigated clinically as a SPECT imaging agent for recurrent 

and metastatic PCas623 and a therapeutic agent after labeling with 90Y.624 Because 

capromab binds to an epitope on the intracellular domain of PSMA, tracers derived from this 

mAb are limited to detecting dead cells and do not possess advantages in imaging soft-tissue 

and bone metastases from PCas when compared to tracers binding to the extracellular 

domain.625 D2B is another PSMA-specific murine mAb for developing theranostic agents.
626,627 More recently, Barinka and co-workers reported the characterization of four novel 
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murine PSMA-specific mAbs. One of these, 5D3, demonstrated 10-fold higher affinity 

compared to J591.628 A follow-up study further revealed that 5D3 may serve as a promising 

surrogate for imaging PSMA expression.629

When compared to mAbs, VHHs and engineered antibody fragments offer faster delivery 

and similar tumor delineating properties.630,631 Viola-Villegas et al. engineered a Mb and a 

diabody from the intact antibody J591 and reported that immunoPET imaging with these 

smaller antibody fragments offered rapid tumor accumulation and accelerated clearance in 

PSMA-expressing PCas.632 One such radiotracer, 89Zr-IAB2M, was further translated in a 

dose-escalation clinical trial that included 18 patients with metastatic PCas.633 In this 

clinical study, immunoPET imaging with 89Zr-IAB2M delineated metastatic PCa lesions in 

17 of 18 patients 48 h after the intravenous injection of the radiotracer (10 mg). Moreover, 
89Zr-IAB2M immunoPET outperformed 99mTc-MDP and CT in detecting bone lesions and 

magnetic resonance imaging (MRI) and 18F-FDG PET in detecting LN/soft tissue 

metastases (Figure 21).633 A phase I/IIa trial further confirmed the diagnostic efficacy of 
89Zr-IAB2M.634 Another advantage of this probe was its negligible accumulation in lacrimal 

and salivary glands because a major side effect of PSMA-targeting agents is the xerostomia.
635 Beile et al. initially generated three mAbs against cell-adherent PSMA from spleen cells 

of mice636–638 and more recently developed multimeric antibody fragments from these 

murine antibodies.639 They showed that the radiolabeled antibody fragments had stable 

tumor uptake and faster serum clearance.

Amassing clinical studies investigating PSMA-targeted PET imaging have demonstrated 

uptake of the tracers in non-prostate malignancies.640,641 It has been proposed that uptake of 

PSMA-targeted tracer in nonprostate malignancies is due to the significant angiogenesis in 

tumor tissues.642 Indeed, PSMA is expressed by the neovasculature endothelium but not by 

the tumor cells or the normal vasculature endothelium in most solid tumors.643,644 In this 

context, several clinical studies have suggested that PSMA is another promising surrogate 

for molecular imaging of tumor neovasculature.645,646 As such, PSMA-targeted PET and 

immunoPET imaging will help select patients for subsequent PSMA-targeted therapies 

and/or antiangiogenesis therapies (e.g., bevacizumab).

4.5. Carcinoembryonic Antigen

As a key member of carcinoembryonic antigen-related cell adhesion molecules 

(CEACAMs), carcinoembryonic antigen (CEA) serves as a vital tumor antigen and a serum 

tumor marker.647 Arcitumomab (CEAScan) is a 99mTc-labeled hapten-peptide pretargeted 

imaging probe approved by the FDA and EMA for detecting colonic cancer metastases.648 

However, this agent was withdrawn from the market because of competition from the more 

cost-effective 18F-FDG. To improve the imaging quality and specificity, several CEA-

specific pretargeted immunoSPECT imaging agents were investigated. These efforts are 

exemplified in a study by Sharkey et al.,649 in which a superior tumor-to-blood ratio 

(~100:1) was obtained in human colon cancer xenografts. Alternatively, CEA-directed 

pretargeted immunoPET imaging was designed by first pretargeting CEA with a multivalent 

BsAb (which also targets HSG) followed by the injection of a radiolabeled hapten peptide. 

In this strategy, the DOTA-containing IMP288 peptide allowed 68Ga complexation and the 
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NOTA-containing IMP-449 peptide allowed facile [18F]AlF chelation.311,650 In addition to 

detecting subcutaneous tumors, two recent studies demonstrated that TF2/68Ga-IMP288 

pretargeted immunoPET outperformed 18F-FDG PET in detecting disseminated human 

colorectal cancers (Figure 22).651,652 Moreover, this highly sensitive pretargeting technique 

could be used to visualize CEA-containing human colorectal cancer tissues and normal 

epithelial cells.653 The study also demonstrated that pretargeted immunoPET has superior 

accuracy than 18F-FDG PET in delineating CEA+ tumors due to the highly specific tumor 

uptake and low background activity. Upon clinical translation, this novel imaging method 

may be useful to identify tumor lesions during surgical dissection. A recent first-in-human 

clinical trial has reported that TF2/68Ga-IMP288 pretargeted immunoPET imaging revealed 

abnormal foci in all patients with relapsed medullary thyroid cancer.654 This study also 

demonstrated that a 30 h time lag between the injection of TF2 and 68Ga-IMP288 and a 

TF2-to-IMP288 molar ratio of 20 were the most favorable conditions for imaging. 

Moreover, an ongoing clinical trial is evaluating the diagnostic role of TF2/68Ga-IMP288 

pretargeted immunoPET imaging in patients with HER2-negative but CEA+ breast cancers 

(NCT01730612).

Along with this progress, a series of antibody fragments were engineered from a murine 

mAb T84.66 and have been radiolabeled with radiometals such as 64Cu and 124I.655–657 To 

improve the T/B ratio of the engineered antibody fragments, mutation of the residues in the 

Fc fragment essential for FcRn binding can be performed. For instance, Kenanova et al. 

formatted a series of anti-CEA scFv-Fc fragments658,659 and found that PET imaging with a 
124I-labeled scFv-Fc bearing one double mutation (H310A/H435Q) showed the highest 

imaging quality.658 To further permit same-day immunoPET imaging, several types of 

labetuzumab fragments have been radiolabeled with [18F]AlF using the chelating ligand 

NODAMPAEM.660 Despite the facile and rapid procedure, high kidney and liver 

accumulation of the developed tracers may hinder the clinical translation.660

AMG 211 (MEDI-565) is a BiTE composed of a humanized anti-CEA arm and a 

deimmunized anti-CD3 arm. AMG 211 could efficiently activate human T cells which lysed 

CEA+ colorectal tumor cells in a preclinical model.661 However, this treatment effect was 

not observed in patients with advanced gastrointestinal adenocarcinoma.662 To uncover the 

underlying reasons for the poor efficacy, the in vivo biodistribution and tumor targeting 

ability of AMG 211 was investigated with 89Zr-AMG 211 immunoPET imaging.663,664 The 

results revealed the accumulation of the tracer in CD3-rich lymphoid organs (e.g., spleen 

and bone marrow). Tumor uptake of 89Zr-AMG 211 was evident yet varied strikingly within 

and between patients, attributed to the heterogeneous expression of CEA in different tumor 

lesions and varying tumor vasculature and tissue permeability.664 To specifically deliver 

interleukin-2 (IL-2) to CEA+ tumors and overcome the adverse effects of IL-2 monotherapy, 

cergutuzumab amunaleukin (CEA-IL2v) has been designed and is actively undergoing a 

clinical investigation in combination with the anti-PD-L1 atezolizumab in CEA-expressing 

advanced solid tumors (NCT02350673).665 Recently, a pilot immunoPET imaging study 

with 89Zr-CEAIL2v showed a preferential drug accumulation in CEA+ tumors, and two 

cycles of CEA-IL2v administration reduced the number of tumor lesions and tumor uptake 

of the radiotracer (Figure 23).666 This exploratory study also indicated nonspecific uptake of 
89Zr-CEA-IL2 in nonmalignant lymphoid organs, suggesting the in vivo distribution of 
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CEA-IL2v is driven by the synergistic effect of CEA targeting and IL-2 binding on immune 

cells.

4.6. Carbonic Anhydrase IX

Carbonic anhydrase IX (CAIX) is a cytosolic and trans-membrane enzyme belonging to the 

zinc-containing metal-loenzyme family.667 By catalyzing the conversion of carbon dioxide 

and water to carbonic acid (CO2 + H2O ⇄ HCO3
− + H+), CAIX contributes to the acidic 

extracellular environment of hypoxic tissues, predominantly hypoxic tumors and metastases.
668 CAIX is homogeneously overexpressed in 95% of clear cell renal cell carcinoma 

(ccRCC) cases, so it is an optimal theranostic target for ccRCC. Several mAbs (e.g., cG250 

or girentuximab) targeting CAIX are undergoing clinical investigations.669,670 On the basis 

of preclinical studies, where 124I-cG250 and 89Zr-cG250 immunoPET imaging clearly 

visualized CAIX-expressing ccRCC xenografts,671–673 a recent clinical study reported that 
89Zr-girentuximab immunoPET imaging precisely predicted the pathology of all the 

immunoPET-positive primary renal lesions. This result changed the clinical decision for 

36% of patients with recurrent/metastatic ccRCC (Figure 24).674 Several proof-of-concept 

clinical studies have also validated the safety and superior diagnostic value of 124I-cG250 in 

ccRCC,184,186,675 with an average sensitivity and specificity of 86.2% and 85.9%, 

respectively.186 Additionally, multimodal imaging with 124I-cG250 could realize precise 

intraoperative localization of ccRCC, which further guided and confirmed complete surgical 

resection of the diseases.676 In contrast to 124I-cG250, which rapidly releases 124I after 

being internalized into tumor cells, the residual radiometal 89Zr from 89Zr-cG250 will be 

trapped inside the tumor cells.672

M75, another mAb targeting CAIX, is regularly used in IHC studies to detect CAIX.677 In 

recent studies this mAb has been radiolabeled with 64Cu and 61Cu, and the developed radio-

tracers revealed specific binding in CAIX-expressing colorectal cancer models.678,679 

Moreover, several other CAIX targeting mAbs have shown preliminary anticancer effects.
680–682 Up to now, they have not been used for immunoPET imaging. Lastly, it is 

worthwhile to note that CAIX is highly expressed in a plethora of other tumor cells, tumor-

associated stromal cells, and cancer stem cells.668 Because of the above-described merits 

and limited presence of CAIX in normal tissues, CAIX may serve as an ideal target for 

developing advanced theranostic agents.

4.7. Trophoblast Cell Surface Antigen 2

Trophoblast cell surface antigen 2 (TROP-2), a 46 kDa transmembrane glycoprotein, is 

overexpressed in a broad range of cancers.683,684 Sacituzumab govitecan (IMMU-132) is an 

antibody–drug conjugate (ADC) targeting TROP-2 and has been approved as a third-line 

therapy for metastatic triple-negative breast cancers.685 Moreover, its application is being 

extended for the treatment of several other malignancies. hRS7 is a humanized IgG1 mAb 

targeting TROP-2. hRS7-based immunoPET or immunoSPECT imaging clearly visualized 

TROP2 expression in PCa models.686 TF12 (157 kDa) is a trivalent BsAb composed of an 

anti-HSG Fab and two anti-TROP-2 Fabs derived from the hRS7.687 Using TF12, 

pretargeted immunoPET imaging, pRIT, and image-guided surgery of human PCas have all 

been achieved.688–690 While TROP-2 immunoPET imaging is of clinical interest for 
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selecting TROP-2-positive patients, its value in evaluating the therapeutic response 

following IMMU-132 treatment is limited because TROP-2 is not a predictive biomarker for 

response.691

4.8. Stem Cell Antigens

Cancer stem cells (CSCs) are characterized by undifferentiated features, which may include 

self-renewal, long-term replication, and diverse differentiation abilities.692 It has been 

proposed that CSCs are a major driving force of tumor occurrence and metastasis.693 

Additionally, chemotherapy and radiotherapy resistances are mediated in part by CSCs.694 

Therefore, noninvasive imaging of CSCs is clinically relevant and may aid the identification 

and eradication of CSCs. Of the various stem cell markers, leucine-rich repeat-containing G-

protein coupled receptor 5 (LGR5), prostate stem cell antigen (PSCA), and CD133 are three 

attractive biomarkers that have been exploited for immunoPET imaging.

LGR5, a marker of adult stem cells, is highly expressed in some human cancers.695 

Noninvasive LGR5 assessment was achieved with two LGR5-targeting immunoPET probes 

(i.e., 89Zr-DFO-8F2 and 89Zr-DFO-9G5). 89Zr-DFO-8F2 showed higher specificity over 
89Zr-DFO-9G5 in visualizing LGR5 expression in colorectal tumors.696 While PSMA-

targeting agents have shown great promise in patients with PCas, PSCA is an alternative 

target for designing theranostic agents. Using an anti-PSCA mAb, 7F5, and a newly 

developed chelator, L5-NCS, David et al. showed that 64Cu-L5-7F5 immunoPET imaging 

clearly visualized PSCA-positive PC3 tumors with minute activity in the liver. In 

comparison, 64Cu-NODAGA-7F5 immunoPET imaging showed much less tumor 

accumulation but significantly higher liver uptake (Figure 25).158 A11 is a humanized anti-

PSCA Mb and 124I or 89Zr-labeled A11 was able to detect PSCA-expressing PCas697 as well 

as to evaluate the treatment response.698 Additionally, PSCA-targeted fluorescence or dual-

modal immunoPET/fluorescence imaging agents hold great promise for intraoperatively 

visualizing PSCA-positive PCas and pancreatic cancers.699–701

AC133, an epitope of the second extracellular loop of CD133, is one of the most extensively 

investigated markers for CSCs.702 An initial study showed that anti-AC133 mAb-based 

fluorescence imaging agents visualized CD133-overexpressing tumors.703 More recently, 

immunoPET imaging with an AC133-targeted radiotracer (64Cu-NOTA-AC133 mAb) 

permitted successful detection of CD133+ U251 tumors and glioma stem cells. More 

importantly, the 64Cu-NOTA-AC133 mAb immunoPET imaging patterns correlated well 

with the cytoarchitecture of the orthotopically growing gliomas.704 In the efforts for imaging 

CSCs, one recurring concern is that CSCs are not abundant in the TME. Taking this fact into 

consideration, we advocate the use of PET imaging over other imaging modalities for 

detecting and quantifying CSCs.

4.9. Proteases

Proteases are a group of evolutionarily conserved enzymes and can be classified into six 

groups by their mechanisms of action: Cys, serine, threonine, aspartate, glutamic acid 

proteases, and metalloprotease. Proteases play essential roles in tumor angiogenesis, 

invasion, and metastasis.705 Therefore, proteases are attractive targets for developing 
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molecular imaging probes. Urokinase plasminogen activator (uPA) receptor (uPAR) is one 

of the validated targets. AE105, a high-affinity peptide antagonist against uPAR, has been 

radiolabeled and investigated extensively in preclinical studies.706 Inspired by the preclinical 

success, 64Cu-DOTA-AE105 and 68Ga-NOTA-AE105 have been successfully translated into 

the clinic for PET imaging of uPAR in patients with solid tumors.707,708 Using an IgG1 

mAb (ATN-291) specifically targeting human uPA, Yang and co-workers developed a 

radiotracer 89Zr-Df-ATN-291.709 The authors reported the utility of 89Zr-Df-ATN-291 

immunoPET in monitoring the expression of uPA/uPAR in several mouse xenografts. Matrix 

metalloproteinases (MMPs) have been heralded as attractive targets for cancer therapy for 

decades.710 LEM-2/15 is a mAb specific for membrane type 1-matrix metalloproteinase 

(MT1-MMP, MMP14), and immunoPET imaging with 89Zr-DFO-LEM 2/15 specifically 

localized the intracranial patient-derived xenograft tumors.711 Moreover, 89Zr-DFO-LEM 

2/15 immunoPET imaging showed a higher specificity than 68Ga-DOTAAF7p, a MT1-

MMP-specific peptide-based tracer, in identifying PDACs.712

Prostate-specific antigen (PSA) is a target in the androgen receptor (AR) pathway. PSA level 

in the blood is a reliable readout of AR pathway activity. “Free” PSA (fPSA) is a 

catalytically active serine protease and has been exploited as an immunoPET imaging target. 

5A10 is a mAb that selectively binds fPSA. 89Zr-5A10 immunoPET detected intratumoral 

fPSA expression following different pharmacological interventions.713 However, 89Zr-5A10 

immunoPET yielded less favorable imaging contrast because 89Zr-5A10 targeted secreted 

PSA with only a small proportion of the tracer directed to the tumor sites. Therefore, an 

immunoPET probe with increased internalization into tumor cells would image the AR 

pathway activity more clearly. To achieve this, two mAbs (i.e., 11B6 and its humanized 

version hu11B6) targeting human kallikrein-related peptidase 2 (hK2), another serine 

protease regulated by the AR pathway, were used for immunoPET imaging.714 In contrast to 

the transient uptake of 89Zr-5A10 in tumors, 89Zr-11B6 internalized into the tumor cells and 

showed steadily increasing tumor uptake. Moreover, 89Zr-11B6 immunoPET imaging 

delineated AR-driven hK2 expression in mice bearing subcutaneous or metastatic human 

PCa xenografts.714

4.10. Membrane-Bound Surface Glycoprotein Mesothelin

Membrane-bound surface glycoprotein mesothelin (MSLN) is overexpressed in 

mesothelioma and several other solid tumors such as ovarian, lung, breast, and pancreatic 

cancers.715,716 It is worth mentioning that soluble mesothelin is a superior tumor marker for 

monitoring tumor burden and therapeutic response in patients with malignant pleural 

mesothelioma.717 Substantial studies have reported the feasibility of MSLN imaging using 

several MSLN-targeting mAbs such as a murine mAb 11–25, a chimeric mAb amatuximab, 

and an ADC DMOT4039A (composed of MMOT0530A and MMAE).718–720 In a clinical 

study evaluating the treatment efficacy of DMOT4039A in patients with pancreatic or 

ovarian cancer, Lamberts et al. found that uptake of 89Zr-MMOT0530A correlated with 

MSLN expression from IHC staining.721 These results indicate that this imaging technique 

may guide individualized antibody-based therapies. As observed in a previous study,361 

several recent studies have demonstrated that shed antigen MSLN in blood circulation 

negatively regulates the circulation and tumor-targeting efficacy of amatuximab.722,723 
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These results indicate the role of MSLN-targeted immunoPET in assessing the performance 

of mesothelin-targeted therapeutic antibodies and selecting patients for mesothelin-targeted 

therapies.724

4.11. Glycoprotein A33

Glycoprotein A33 (GPA33) is a cell surface target uniformly overexpressed in over 90% of 

colorectal cancers and a subset of gastric and pancreatic cancers.725 This antigen has been 

extensively studied as a target for both RIT and SPECT imaging using a murine mAb 

A33.726,727 Following the humanization of A33 (huA33) and preclinical evaluation of 

huA33-based immunoPET tracers,728,729 recent studies have translated 124I-huA33 to the 

clinic. This immunoPET imaging technique enabled the quantitative assessment of GPA33 

status in colorectal cancers.185,730 Pretargeted immunoPET imaging has been successfully 

employed to delineate GPA33-expressing human colorectal carcinoma xenografts. In such a 

work by Zeglis et al., huA33-TCO was administered 24 h prior to 64Cu-Tz-SarAr to reach 

the tumors and permit blood clearance.339 Owing to the superior stability and exclusive renal 

clearance of 64Cu-Tz-SarAr, the in vivo pretargeting yielded specific uptake of the 

radioligand in the colorectal tumors with high T/B ratios (Figure 26). This imaging strategy 

also outperformed a previous pretargeted imaging strategy, in which substantial uptake of 
64Cu-Tz-NOTA was observed in the gastrointestinal tract.335 In the future, the combination 

of GPA33-specific immunoPET imaging and pRIT may allow precise diagnosis and 

treatment of colorectal cancers.329,731,732

4.12. Other Promising Tumor Biomarkers

Several other cell surface antigens have shown promise for imaging cancers at the cellular 

and molecular levels in either preclinical or clinical settings, such as folate receptor alpha,
733,734 tumor vascular markers,735–737 death receptor 5,738–740 glypican-3,741–743 cell 

adhesion molecules,744,745 six-transmembrane epithelial antigen of prostate-1 (STEAP1),
746–749 hormone receptors,750–752 TGF-β pathway,753–755 chemokine receptors,756,757 and 

extracellular matrix-like fibronectin.162,188 Here, we also discuss some of the promising 

targets briefly.

Tumor-associated glycoprotein (TAG)-72 is another glyco-protein highly expressed in the 

majority of adenocarcinomas. 3E8 is a humanized mAb against TAG-72 and has shown 

theranostic potential in colorectal cancer xenografts.758 For antibody fragment-based 

immunoPET imaging of TAG-72, PEGylated targeting vectors may serve as favorable 

surrogates for efficiently delivering the radionuclide to the tumor site while lowering kidney 

uptake.759–761 Delta-like 3 (DLL3), a Notch pathway ligand, has been identified as a marker 

for pulmonary neuroendocrine tumors (i.e., small cell lung cancer and large cell 

neuroendocrine carcinoma) and neuroendocrine PCas.762–764 As such, DLL3 may also serve 

as a tractable immunoPET imaging target.765,766 Similar to the GPA33-targeted theranostic 

scenario, GD2-specific immunoPET imaging may help assess GD2 expression in patients 

with neuroblastomas.767,768 Along with the clinical use of GD2-targeted antibody therapy 

and RIT,769–771 and future implementation of pRIT,772 GD2-targeted immunoPET imaging 

may guide precise anti-GD2 therapies and complement other imaging modalities to refine 

the management of neuroblastomas.
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5. IMMUNOPET IMAGING OF IMMUNE SYSTEM

Cancer immunotherapy is increasingly becoming the standard-of-care treatment for a broad 

spectrum of cancers. IHC, polymerase-chain-reaction (PCR)-based assays and serum or 

blood biomarkers are regularly used to predict the therapeutic responses of immunotherapy 

regimens. Despite these approaches, it is still very challenging to properly select patients 

suitable for immunotherapy and precisely evaluate the treatment responses. Furthermore, 

immune-related adverse events are increasingly being reported. Currently, there are no 

reliable surveillance strategies to diagnose those unexpected complications.773,774 

Accumulating evidence has suggested that immunoPET imaging may substantially improve 

the clinical immunotherapy by dynamically visualizing immune responses across the whole 

body.775–777 To achieve this goal, radiotracers have been developed to image interleukins 

and specific immune cells, including B cells,778 natural killer cells,779,780 macrophages,
781–783 myeloid cells,278,784 and T cells. In this section, we mainly present the most recent 

evidence of immunoPET strategies in delineating T cells by targeting lineage-associated 

antigens, immune checkpoint molecules, OX40, and interferon gamma (IFNγ).

5.1. Lineage-Associated Antigens

In addition to tracking T cells via ex vivo direct labeling or reporter gene imaging,785–787 it 

is advantageous to track T cells using novel immunoPET techniques by targeting general T 

cell markers (e.g., CD3, CD4, CD8, CD2, and CD7). ImmunoPET imaging with a 89Zr-

labeled antimouse CD3 antibody (clone 17A2; R&D Systems) revealed a correlation 

between high tumor uptake of the radiotracer and better therapeutic response of 

anticytotoxic T lymphocyte antigen 4 (CTLA-4) therapy in a preclinical colorectal cancer 

model.788 However, significant liver accumulation of the radiotracer was found on 

immunoPET images, which was explained as liver clearance of the radiolabeled antibody. 

Another study also labeled the same clone (clone 17A2; Bio X Cell) with 89Zr and 

confirmed the uptake of the developed radiotracer in lymphoid organs (i.e., spleen, lymph 

nodes, and thymus) and tumor-infiltrating lymphocytes (TILs) in syngeneic bladder cancer 

models.789 But what was different in this study was that the tracer was largely deposited in 

the spleen rather than in the liver, similar to that reported in another study.790 CD2 and CD7 

are pan T cell markers and immunoPET tracers targeting these two markers have been 

developed to track adoptively transferred T cells.791 However, the safety profiles, long-term 

effects, and impact of these tracers on the functionality of T cells remain to be determined.

To noninvasively detect CD8+ T cells, two Mbs (i.e., 2.43 Mb and YTS169 Mb) were 

engineered from two parental rat antimouse CD8 mAbs. Both 64Cu-NOTA-Mbs retained 

high antigen specificity in imaging CD8+ T cells.792 IAB22M2C is a clinical-stage Mb that 

targets human CD8 with high affinity. A recent phase I study has demonstrated the safety 

profile of 89Zr-Df-IAB22M2C immunoPET imaging in patients with solid tumors.793 This 

study also reported a specific accumulation of the radiotracer in CD8+ T cell-rich tissues, 

such as lymph nodes, spleen, and tumors. A phase II clinical trial with this immunoPET 

probe investigating the correlation between 89Zr-Df-IAB22M2C immunoPET signal and 

CD8 status assessed by IHC in patients with metastatic cancers is currently underway 

(NCT03802123).
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Two diabody-based anti-CD4 and anti-CD8 tracers, 89ZrmalDFO-GK1.5 cDb and 89Zr-

malDFO-2.43 cDb, also specifically targeted various lymphoid organs and allowed 

longitudinal monitoring of transplanted T cells.794 To thoroughly assess CD8-targeted 

immunoPET imaging, 89ZrmalDFO-169 cDb binding to CD8a of all mouse strains was 

assessed.795 ImmunoPET imaging with this radiotracer detected intratumoral CD8+ T cells 

after anti-CD137 or anti-PD-L1 therapy in immune-competent mice bearing CT26 tumors. 

Afterward, 64Cu-TETA-169 cDb was developed and used to image CD8+ T cells after 

immunotherapy using different treatment protocols.796 As reported by the work, serial 64Cu-

TETA-169 cDb immunoPET imaging mapped T cell distribution and also detected 

treatment-associated hypertrophy of liver and spleen following multiple cycles of 

immunotherapy.

Other types of antibody vectors used for imaging T cells include VHH and monovalent 

antibody. Rashidian et al. produced a CD8-specific mouse VHH (VHH-X118) and 

fabricated 89Zr-PEGylatedVHH-X118 using sortase-catalyzed site-specific conjugation.64 

This immunoPET probe robustly detected thymus, secondary lymphoid structures as well as 

CD8+ T cells in B16 melanomas. This study also highlighted the value of CD8-targeted 

immunoPET in predicting the treatment response of anti-CTLA-4 immunotherapy, where 

the homogeneous distribution of immunoPET signal within the tumors predicted a favorable 

response to the anti-CTLA-4 immunotherapy. Moreover, another recent study radiolabeled a 

CD8-specific monovalent antibody with 89Zr and immuno-PET imaging with the developed 

agent (denoted as ZED8) efficiently detected human CD8-expressing tumors.797 This tracer 

was developed under quality standards appropriate for regulatory approval and is currently 

under clinical investigation (NCT04029181).

5.2. Immune Checkpoints

Immune checkpoints are critical components of inhibitory immune signaling pathways. The 

first-generation immune checkpoint inhibitors are immunomodulatory mAbs that block 

immune checkpoints. Notably, immune checkpoint inhibitors blocking CTLA-4, 

programmed death receptor 1 (PD1), and PD-L1 have emerged as trailblazers in treating 

various kinds of cancers.6 Accordingly, immunoPET probes targeting CTLA-4, PD1, or PD-

L1, are extensively investigated.

CTLA-4 is a negative immune regulator highly expressed on regulatory T cells (Treg) and 

on activated T cells. Recent studies have elucidated that CTLA-4 and PD-1 may share one 

pathway by inhibiting signaling through CD28, which is a costimulatory receptor that 

promotes T cell activation and proliferation.798 Several studies have reported the feasibility 

of CTLA-4-targeted immunoPET in imaging T cells in humanized mice799 and in immune-

competent mice.800 H11 is a VHH targeting mouse CTLA-4 and immunoPET with 89Zr-

H11-PEG clearly delineated CTLA-4 expression within the TME.801 Moreover, several 

studies have shown the expression of CTLA-4 on tumor cells,802 which was corroborated by 

an imaging study where 64Cu-DOTA-ipilimumab showed persistent accumulation in the 

CTLA-4-expressing A549 tumors.803

PD1 is a characteristic marker expressed on exhausted CD8+ T cells. Pembrolizumab and 

nivolumab are anti-PD-1 checkpoint inhibitors used for treating a variety of solid tumors. 
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Several immunoPET probes using pembrolizumab/ nivolumab and 89Zr/64Cu have been 

developed and investigated in preclinical studies.804–808 Of them, 89Zr-pembrolizumab and 

64Cu-pembrolizumab PET/CT examinations showed prominent uptake of the radiotracers in 

the humanized mice bearing A375 melanomas, indicating infiltration of PD-1-positive 

human lymphocytes into the tumors.806 Similarly, 89Zr-Df-nivolumab immunoPET imaging 

delineated PD-1-positive human lymphocytes in A549 tumors and salivary glands in 

humanized mice.808 More recently, a seminal study by Niemeijer et al. investigated the 

clinical value of 89Zr-Dfnivolumab immunoPET imaging in 13 patients with NSCLC prior 

to the nivolumab treatment.809 For the first time, this study reported a correlation between 
89Zr-Df-nivolumab uptake and PD-1 expression in the TILs assessed by IHC in clinical 

settings (Figure 27a,b). This study also indicated the value of 89Zr-Df-nivolumab uptake in 

predicting the treatment efficacy of nivolumab. However, this predictive value needs to be 

confirmed in a larger patient cohort.

Two IHC methods for determining PD-L1 expression have been approved to predict patient 

response before anti–PD-L1 therapies. However, sampling limitations and multifaceted 

expression of PD-L1 may lead to underestimation of the target. Substantial preclinical 

evidence has suggested that immuno-PET imaging can assess the heterogeneous status of 

PD-L1 throughout the whole body and thus can overcome above drawbacks.810–813 In a 

recent first-in-human clinical trial (NCT02478099), 89Zr-atezolizumab was assessed in 22 

patients with progressive bladder cancer, NSCLC or triple-negative breast cancer.21 

ImmunoPET imaging with 89Zratezolizumab showed deposition of the radiotracer in non-

malignant lymph nodes, spleens, and sites of inflammation. More importantly, 89Zr-

atezolizumab immunoPET visualized all the metastatic tumor lesions by imaging 

heterogeneous PD-L1 expression. High tumor uptake of 89Zr-atezolizumab correlated with 

better response to atezolizumab treatment, whereas PD-L1 IHC failed to predict the 

treatment outcome. 89Zr-atezolizumab immunoPET imaging could also select RCC patients 

who may benefit from nivolumab therapy.814 Moreover, there are two ongoing clinical trials 

evaluating the diagnostic value of PD-L1-targeted immunoPET in advanced thoracic 

malignancies (NCT03746704) and in locally advanced or metastatic solid tumors 

(NCT02453984).

Engineered small proteins (e.g., fibronectin, ~10 kDa) are alternative targeting moieties that 

have been used for imaging PD-L1 expression.815 Following a preclinical study which 

discovered the high binding affinity of 18F-BMS-986192 (an 18F-labeled adnectin) to human 

and cynomolgus PD-L1,816 a recent clinical study reported that 18F-BMS-986192 immuno-

PET could noninvasively image the heterogeneous PD-L1 status in lung cancers (Figure 

27c). High-affinity consensus (HAC) PD1 (14 kDa) is another high-affinity binder 

engineered from PD-1 protein and can be used for imaging human PD-L.817 In the course of 

optimizing HAC-PD1 variants for PD-L1 imaging, aglycosylated HAC-PD1 showed 

increased tumor uptake and decreased glandular uptake.818 Other targeting vectors that have 

been integrated into immunoPET for imaging PD-L1 include an Affibody molecule,819 

VHHs,820–822 and a Fab fragment.823

Beyond imaging PD-L1 expression pre- and postimmuno-therapy, PD-L1-targeted 

immunoPET is an innovative approach to monitor PD-L1 upregulation following radiation 
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therapy824,825 or PD-L1 downregulation after molecular-targeted therapy.826 Although anti-

PD-L1 therapy has become the first-line treatment option for patients with NSCLC, 

therapeutic resistance occurs in some patients. Among many potential reasons, secreted PD-

L1 splicing variants may induce resistance to anti-PD-L1 therapy by acting as decoys in 

plasma.827 Similar to that observed in other conditions,722,723 PD-L1-targeted immunoPET 

may predict and assess anti-PDL1 resistance because soluble PD-L1 will relocate the 

radiotracer to the plasma and liver but not to the tumor sites. Besides its expression on tumor 

cells, PD-L1 is also expressed in normal lymphoid organs and is an independent marker for 

brown adipose tissue (BAT) (Figure 28),828–830 indicating that PD-L1-targeted immunoPET 

may as serve as a cutting-edge imaging technique to aid basic research.

5.3. Other Emerging T Cell Markers

OX40, also known as CD134, is a 50 kDa type I membrane glycoprotein belonging to the 

tumor necrosis factor (TNF) receptor superfamily.831 Binding of OX40 by its ligand OX40L 

results in the activation of T cells, indicating OX40 is a promising candidate for monitoring 

clinical immunotherapies. By radiolabeling a murine mAb (clone: OX-86; Bio X Cell) with 
64Cu, Alam et al. developed an OX40-targeted radiotracer 64Cu-DOTA-AbOX40.832 The 

authors found that early immunoPET imaging with 64Cu-DOTA-AbOX40 characterized the 

spatiotemporal expression of OX40+ T cells and also predicted the response of CpG 

vaccination in lymphoma models. These results demonstrated that OX40-targeted 

immunoPET could adequately visualize the heterogeneous dynamics of OX40+ T cells in 

immune responses across different subjects. For further clinical translation, this murine 

antibody-based immunoPET imaging strategy needs to be optimized with human or 

humanized antibodies.

IFNγ is a soluble immunomodulatory factor that exerts effects on both innate and adaptive 

immunity. IFNγ is primarily secreted by activated lymphocytes such as CD4+ and CD8+ T 

cells.833 Gibson et al. recently labeled an IFNγ-targeting rat mAb (AN-18) with 89Zr and 

found that tumor cell uptake of 89Zr-anti-IFNγ was IFNγ-dependent.790 After a series of 

CpG vaccination and mAb treatment experiments, they further demonstrated the robust 

ability of 89Zr-anti-IFNγ immunoPET in detecting T cell activation and exhaustion in 

spontaneous tumor models. These results together support the future development of IFNγ-

targeted immunoPET for clinical use. In addition to the targets discussed above, there are 

several other targets successfully leveraged for imaging T cells, including granzyme B834,835 

and IL-2 receptor.836 However, peptides and interleukins rather than antibodies were used as 

the targeting vectors in these platforms.

6. IMMUNOPET IMAGING OF INFLAMMATION

Although 18F-FDG PET is a clinically viable method to noninvasively quantify 

inflammation, it lacks specificity due to the uptake of the tracer by metabolically active 

tissues. Inflammation is decisive in tumor progression, and inflammation and cancer share 

certain signaling molecules.837 Therefore, some of the aforementioned immunoPET probes 

could reasonably be extended to detect and evaluate inflammatory diseases.838 In this 

section, we highlight the role of immunoPET in detecting several inflammatory diseases.
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6.1. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a polygenic and multifactorial joint disease characterized by 

autoantibodies to various molecules such as IgG and citrullinated proteins.839 Treatment 

strategies for RA mainly include disease-modifying antirheumatic drugs, which can be 

further categorized into small molecules (e.g., methotrexate) and biologic agents (e.g., anti-

TNFα mAbs).840 Although RA is incurable, it is important to identify and treat RA patients 

at earlier stages to delay the joint damage.

To track autoantibody to glucose-6-phosphate isomerase (GPI), Wipke et al. initially 

radiolabeled an anti-GPI IgG with 64Cu and found that the developed probe specifically 

localized to the diseased joints.841 This highlighted the possibility that immunoPET imaging 

may help us understand the sophisticated autoimmunity responses involved in human RA. 

F8-IL10 is a novel treatment option for RA patients. F8-IL10 was developed by fusing the 

Fv fragment of the human antibody F8 with the anti-inflammatory cytokine IL10, resulting 

in selective delivery of IL10 to the fibronectin-expressing inflammatory sites.842 A 

translational study investigating [124I]I-F8-IL10 found that this radiotracer accumulated 

readily in the arthritic joints of RA patients. However, this immunoPET study also revealed 

very rapid blood clearance of the radiotracer and unexpected high uptake in the liver and 

spleen.843 Certolizumab pegol (CZP) is a PEGylated fab fragment targeting TNFα and has 

shown remarkable efficacy in controlling the symptoms of RA. 89Zr-DFO-CZP was recently 

synthesized and immunoPET imaging with this tracer specifically located diseased joints 

and paws of transgenic mice expressing human TNFα.844

Fibroblast activation protein (FAP) is a type II trans-membrane glycoprotein belonging to 

the family of serine prolyl oligopeptidases. In addition to being a theranostic target for 

cancers,845–847 FAP is closely associated with the progression of RA. A fully human 

noninternalizing anti-FAP antibody 28H1 that binds to both murine and human FAP has 

been reported.848 When labeled with 89Zr, it specifically visualized inflamed joints of RA 

models (Figure 29).849 More importantly, 28H1-based molecular imaging tracers could 

monitor the response of RA to different treatment options at molecular levels.850–852

6.2. Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder composed of two 

major subtypes: Crohn’s disease and ulcerative colitis.853 In current clinical practice, 

endoscopy is the most commonly applied technique to diagnose and monitor IBD. However, 

this invasive examination fails to provide information regarding molecular markers involved 

in the development and progression of IBD. By targeting integrins and immune mediators, 

immunoPET imaging approaches have been adapted to sensitively grade the disease severity.
854 An initial study radiolabeled a β7 integrin-specific mAb (FIB504.64) and showed 

specific uptake of 64Cu-DOTAFIB504.64 in the gut of mice with dextran sulfate sodium 

(DSS)-induced colitis.855 To lower background signals in nontarget organs, immunoPET 

probes were developed using FIB504.64 fragments.856 In these studies, 64Cu-NOTA-

FIB504.64-F(ab′)2 outperformed 64Cu-NOTA-FIB504.64-Fab in detecting DSS-induced 

colitis. Moreover, 64Cu-NOTA-FIB504.64-F(ab′)2 immunoPET also demonstrated better 
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imaging contrast than 64Cu-DOTA-DATK32, a mAb-derived tracer targeting the integrin 

heterodimer α4β7.

More recently, several immunoPET tracers targeting innate immune cells, interleukins, and 

CD4+ T cells have been characterized in murine models of colitis. Dmochowska et al. 

reported increased IL-1β and increased infiltration of CD11b+ CD3− innate immune cells in 

the inflamed colon of colitic mice.857 ImmunoPET imaging studies in this work further 

corroborated the above observations. While 89Zr-α-CD11b (clone M1/70) immunoPET 

detected colonic inflammation with higher sensitivity than MRI, 89Zr-α-IL-1β (clone B122) 

immunoPET correlated the disease severity, although less robustly than 18F-FDG (Figure 

30a–c). 89Zr-malDFO-GK1.5 cDb is an antimouse CD4 radiotracer initially used for 

imaging immune system reconstitution.794 Freise et al. recently assessed the diagnostic 

value of 89Zr-malDFO-GK1.5 cDb in tracking CD4+ T cell infiltration in DSS-induced 

colitis mouse models.858 ImmunoPET imaging showed radiotracer uptake in mesenteric 

lymph nodes and colons of the colitic mice (Figure 30d,e), which correlated with increased 

infiltration of CD4+ T cells into the inflamed colons revealed by IHC staining. Taken 

together, immunoPET is less intrusive and could provide useful information regarding the 

dynamics of immune cells throughout the intestines. This may in turn help monitor the 

disease severity and predict the treatment responses.

6.3. Other Inflammatory Diseases

With the development of specific mAbs for various inflammation-related antigens, 

immunoPET probes have been developed to image several other inflammatory diseases such 

as graft versus host disease,859,860 atherosclerotic plaques,861–863 and inflammation-induced 

lymphangiogenesis.864,865 In addition, immunoPET or immunoPET/MRI hybrid imaging 

are being used to detect bacterial, fungal, or viral infections.866–870 In the case of invasive 

pulmonary aspergillosis, a mouse mAb mJF5 and its humanized derivative hJF5 have proven 

to be highly specific to mannoprotein antigens produced by Aspergillus. Preclinical studies 

have validated the accuracy of 64Cu-DOTA-mJF5 and 64Cu-NODAGA-hJF5 in detecting 

Aspergillus lung infection.871–873 From these preclinical reports, it is conceivable that upon 

continuous investigation and clinical translation, immunoPET imaging holds enormous 

potential to diagnose the abovementioned inflammatory diseases.

7. IMMUNOPET IMAGING OF BETA CELL MASS

Diabetes mellitus (DM) is a metabolic disease characterized by a functional loss of beta cell 

mass (β cell mass, BCM) or the insufficient response of beta cells to insulin. It has been 

estimated that over 550 million people will suffer from diabetes by 2030.874 To monitor the 

early and dynamic change of BCM, various molecular imaging probes have been developed, 

including several antibody-based probes.875 Transmembrane protein 27 (TMEM27) is a 

validated BCM biomarker, and TMEM27-targeted immunoPET and fluorescent imaging 

probes have shown promise in imaging BCM.876 Dipeptidyl peptidase 6 (DPP6) is a newly 

identified biomarker for pancreatic alpha and beta cells. A VHH (i.e., 4hD29) targeting 

DPP6 was produced, initially radiolabeled with 99mTc, and used for immunoSPECT 

imaging of endocrine cell mass (ECM).877 More recently, 68Ga-NOTA-4hD29 was 
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developed and immunoPET imaging with this agent successfully detected DPP6-positive 

tumors.878 Upon clinical translation, this agent holds promise for detecting ECM, 

transplanted human islets, and DPP6-positive tumors.

ImmunoPET imaging of BCM is advantageous compared to other imaging modalities 

because of its targeting sensitivity and specificity. In preclinical models, beta cell-specific 

immunoPET has been used to image insulinomas and grafted human islets. However, it is 

very challenging for immunoPET to detect islets scattered across the pancreas in preclinical 

models, due either to the high background signal or to the restricted species reactivity of the 

antibodies. It remains to be determined whether immunoPET imaging can visualize beta cell 

islets in humans. If so, this novel imaging modality may improve the management of 

diabetes by monitoring the dynamic change of BCM over time. As we mentioned above, 
52Mn is a relatively new radiometal used for immunoPET. Two interesting studies have 

elucidated that 52Mn alone serves as a sensitive tracer for measuring and quantifying BCM.
879,880 Clinical trials are warranted to confirm the unique application of 52Mn PET in 

quantifying and monitoring BCM.

8. IMMUNOPET IMAGING-GUIDED ADVANCED THERAPEUTICS

The landscape of theranostics has evolved over time. The management of thyroid diseases 

(e.g., differentiated thyroid cancer and hyperthyroidism) has been revolutionized since the 

use of theranostic radioiodine isotopes in the 1940s.881,882 With the identification of highly 

specific cancer antigens and the concomitant development of radiopharmaceuticals, PSMA-

targeted and somatostatin-derived theranostic agents have achieved remarkable success in 

diagnosing and treating advanced PCas and neuroendocrine tumors, respectively.883,884 This 

trend is expected to flourish with the discovery of newer molecular targets and synchronous 

advance in radiochemistry.885

ImmunoPET imaging can visualize the spatial heterogeneity of target expression and thus 

predict the responses of therapeutic antibodies, including the immune checkpoint inhibitors.
21,809,814 Besides selecting patients for antibody therapies, immunoPET imaging is a robust 

approach to select patients for antibody-based therapies, particularly RIT. Most of the 

aforementioned biomarkers can be leveraged to develop RIT agents. Traditional RIT has 

proven useful for treating radiosensitive tumors and disseminated hematologic malignancies.
886–888 However, it is less effective for radioresistant or bulky tumors. It is anticipated that 

innovative pRIT (e.g., agents produced via the Dock-and-Lock technology) may deliver a 

higher therapeutic dose to the tumor while reducing hematologic toxicity. Several exemplary 

targets with clinical theranostic evidence are discussed below.

B7-H3 (CD276) is an immunoregulatory glycoprotein that is also overexpressed in a broad 

spectrum of solid tumors.889 Preclinical studies have reported that immunoPET imaging was 

able to delineate CD276 expression on tumor cells and blood vessels.890,891 8H9 

(Omburtamab) is a murine mAb against B7-H3,892 and 131I-8H9 has been used to treat 

several types of solid tumors after intrathecal administration.893,894 A recent study 

elucidated that pretherapy immunoPET imaging with 124I-8H9 allowed for noninvasive 

estimation of the therapeutic index of 131I-8H9.895 Interestingly, 124I itself may serve as a 
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theranostic radioisotope due to the emission of high-energy positrons. To test the clinical 

feasibility, a phase I clinical trial was carried out to assess the theranostic value of 124I-8H9 

in patients with diffuse intrinsic pontine glioma.896 The results demonstrated that 124I-8H9 

was precisely delivered to the brainstem lesions after intratumoral infusion (Figure 31). 

Moreover, immunoPET/MR imaging following 124I-8H9 infusion quantitated the absorbed 

dose in the tumors and other organs. These clinical studies together demonstrate that 

intrathecal administration of 124I-8H9 and 131I-8H9 in tandem (or 124I-8H9 alone) may 

maximize the therapeutic outcome while limiting the systemic toxicity.

CEA is another biomarker extensively studied for cancer theranostics over the years. CEA-

directed pRIT was initially investigated in patients with primary colorectal cancer897 and 

then in patients with medullary thyroid cancer.319,320 However, the frequent hematological 

toxicity and immune responses of these first-generation approaches limited their broad 

applications. The IMP288 peptide allows facile radiolabeling with either therapeutic (such as 
177Lu, 90Y, and 213Bi) or diagnostic (such as 68Ga, 111In, and 86Y) radiometals, providing a 

perfect platform for designing theranostic agents. A preclinical study has shown the survival 

benefit of TF2/177Lu-IMP288 pRIT in colorectal cancer models.898 A follow-up clinical trial 

further reported that TF2/177Lu-IMP288 pRIT was feasible in patients with colorectal 

cancer, but the efficacy was limited because all the patients showed progressive disease eight 

weeks later.899,900 Use of 213Bi (T1/2 = 45.6 min) instead of 177Lu in this pretargeted system 

showed comparable therapeutic efficacy in colorectal cancer models, but the dosing schedule 

needs to be optimized to reduce nephrotoxicity before clinical translation.901 With further 

development of humanized antibodies,902 dual-modal imaging probes,903 and the pRIT 

system,904 CEA-targeted theranostic toolbox holds excellent prospects for improving the 

management of CEA-positive human malignancies.

As mentioned earlier (section 4.3.1), a recent clinical trial has demonstrated the clinical 

feasibility of CA19.9-targeted immunoPET in localizing PDAC.39 This study also indicated 

that 5B1 might deliver therapeutic doses to PDAC after labeled with beta emitters. A 

preclinical study explored the therapeutic benefit of CA19.9-directed pRIT, in which 5B1-

TCO was administered 72 h before the injection of 177Lu-DOTA-PEG7-Tz or 177Lu-CHX-A

′′-DTPA-PEG7 -Tz.905 The results demonstrated that the former combination showed a 

dose-dependent therapeutic response in PDAC models. Along with this preclinical evidence, 

an ongoing clinical trial (NCT03118349) is evaluating the safety and dosimetry of 177Lu-

CHX-A′′-DTPA-5B1 in patients with CA19.9-positive malignancies. 5B1 as a standalone 

monotherapy or in combination with chemotherapy is also under clinical investigation 

(NCT02672917). On the basis of the reported evidence and future clinical trial results, the 

5B1-based theranostic toolbox may hopefully improve the clinical management of CA19.9-

positive malignancies.

RIT is an established tool in the treatment of hematologic malignancies, such as NHL.906,907 

CD20 is a classical theranostic target since two radiolabeled murine mAbs (131I-

tositumomab, Bexxar; 90Y-ibritumomab tiuxetan, Zevalin) were approved for the treatment 

of B-cell NHL.908 Nonetheless, the clinical use of Bexxar and Zevalin is stagnant. Bexxar 

has not been commercially available since 2014 for multiple reasons (mainly due to the 

disappointing profits). In two recent studies, researchers reported the feasibility and 
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satisfactory treatment efficacy of 90Y-rituximab in patients with relapsed or refractory NHL.
909,910 Furthermore, several preclinical and clinical studies have reported the superior 

effectiveness of pRIT or RIT in treating lymphomas by targeting several targets, such as 

CD20,911,912 CD38,560 and CD45.913 CD33 is another alternative target for RIT of 

hematological malignancies914,915 and for immunoPET imaging.916 Continuous innovation 

of the pRIT systems and incorporation of immunoPET techniques may reinvigorate the 

enthusiasm for managing hematologic malignancies with nuclear medicine approaches. 

Readers are recommended to refer to an excellent review parsing RIT for more information.
167

9. IMMUNOPET IMAGING-GUIDED DRUG DEVELOPMENT

In the development of antibody- and antibody-based therapeutics, iterative approaches are 

needed, including the identification of antigens and screening and selection of optimal 

antibodies. Traditionally, several analytical and structural techniques (e.g., mass 

spectrometry, liquid chromatography, and electrophoresis) are used to assess the developed 

antibody therapeutics. Apart from these procedures, it is necessary to examine the 

pharmacodynamic properties and safety profiles of antibodies before clinical translation for 

human use.917 Complementary to their role as diagnostic methods in the clinic, molecular 

imaging approaches are increasingly being used for fundamental research and antibody drug 

development.918–920 Molecular imaging can assist antibody drug discovery (e.g., target 

selection and antibody optimization) as well as the clinical assessment of antibody drugs 

(e.g., distribution, clearance, safety profile, and therapeutic efficacy). As a result, the 

translation of promising antibody candidates can be accelerated from preclinical prototype to 

bedside reality.921,922

With the development and use of total-body PET scanners, immunoPET imaging will 

facilitate the thorough assessment of mAb pharmacokinetics up to 30 days at the preclinical 

stage.923–925 ImmunoPET imaging can reveal both dose-dependent and dose-independent 

uptake of mAb in normal organs and in tumors. This is particularly useful when the target 

antigen is expressed in tumors as well as normal tissues.926 While the dose-dependent 

uptake is largely mediated by relevant receptors expressed on the surface of tumor cells, the 

dose-independent uptake is mainly caused by osmosis and retention of mAb in the TME. 

ImmunoPET imaging will help estimate the therapeutic effect of antibody therapeutics in 

phase I dose-escalation studies and calculate the amount of unlabeled antibody required for 

preloading or coadministration,41,927 which will saturate target antigens in normal organs 

and maximize the binding of mAb to the target antigens in tumors.

In addition to mAbs, ADCs are among the most effective targeted cancer therapeutics. 

Third-generation ADCs with increased potency and stability are under clinical investigation.
928 During ADC development, cytotoxic drugs are linked to mAbs via bifunctional linkers. 

ImmunoPET imaging has shown its value in assessing the in vivo stability of novel linkers. 

This was exemplified by two recent studies where a novel platinum(II) linker was developed 

for ADC conjugates.929,930 More importantly, immunoPET imaging can characterize the 

effect of drug-to-antibody ratio on the overall blood retention and tumor-targeting efficacies 

of the developed ADCs (Figure 32).930–932 As another therapeutic alternative, RIT delivers 
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therapeutic radionuclides to the tumor site by taking advantage of antibody specificity.933 

ImmunoPET imaging permits dosimetry calculations for these therapies and further predicts 

dose-limiting organs prior to the RIT,934 optimizing the development and use of RIT agents.

ImmunoPET-guided drug development provides insightful information regarding the 

distribution and targeting potential of new antibody drugs or antibody-based therapeutics. 

However, it should not be ignored that radionuclides, chelators, and radiolabeling methods 

may alter the inferred pharmacokinetics of the conjugated antibody tracers.

10. FUTURE PERSPECTIVES AND CONCLUSIONS

As described in this review, immunoPET is an invaluable companion diagnostic tool actively 

changing the management of cancers and noncancerous diseases (Table 2). However, it must 

be noted that most of the immunoPET probes have only been assessed in preclinical stages 

or in small cohorts of patients. Further studies are needed to translate some of the promising 

immunoPET probes and to confirm the diagnostic value of the clinically used ones. The 

development of antibody therapeutics will continue to reshape the therapeutic landscape of 

human diseases, and more sophisticated immunoPET imaging strategies will be designed 

accordingly. By making the right diagnoses and optimizing subsequent therapeutic 

decisions, immunoPET will hopefully help clinicians refine clinical practice and realize truly 

personalized medicine. The ultimate purpose of designing and using immunoPET is to 

facilitate better management of patients and lessen the financial burden for them and society.
935,936

There are several concerns about the immunoPET technique. A fundamental question that 

needs to be addressed is under which settings immunoPET may be integrated into the 

clinical diagnostic toolbox. In our view, immunoPET is a companion diagnostic tool that 

should be used together with clinically approved or clinical-stage therapeutic regimens. An 

initial immunoPET imaging is preferred to be performed before the commencement of 

targeted antibody or small-molecule inhibitor treatment because it will provide pivotal 

information on the baseline expression level of the target. The unique information obtained 

at the baseline will further allow adequate restaging and evaluation of the disease. Repeated 

immunoPET imaging after the treatments will help evaluate the therapeutic response and 

also the change of the target, especially for patients with multiple biopsy-inaccessible tumor 

lesions. Several other concerns might be gradually resolved with the progress of the field. 

Specifically speaking, the development of GMP-compliant production and purification 

processes may spur the clinical use of this imaging technique while minimizing unnecessary 

radiation dose to the health care staff.937,938 ImmunoPET imaging with total-body PET 

scanners will further decrease radiation exposure without compromising the image quality.
939–941 Furthermore, advances in PET technology and reconstruction algorithms will lead to 

improved spatial and temporal resolution of immunoPET images.942 In most instances, 

immunoPET imaging is performed for patients with metastatic diseases. Consequently, 

another misgiving is the lack of histochemical confirmation of some of the tracer-avid 

lesions. However, the primary purpose of the initial immunoPET imaging is to stratify 

patients by mapping the expression of a specific biomarker. If the uptake or sizes of the 
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tracer-avid lesions decrease on post-treatment immunoPET images, it is rational to consider 

these lesions as histopathology-positive.

For developing antibody-based radiopharmaceuticals, we would like to emphasize the 

importance of multidisciplinary collaboration. Specifically, multiple approaches (e.g., 

genomic, serological, proteomic, biological, and bioinformatical approaches) should be 

leveraged to identify antigens highly or exclusively overexpressed on the surface of the 

tumor cells, tumor stromal cells, tumor vasculature endothelial cells, immune cells, or beta 

cells.943 While the abundance and specificity are key factors when selecting suitable 

imaging targets, the function and stability of the targets need also to be considered.944 Of the 

diverse targets that are currently being investigated in preclinical studies or in clinical trials, 

some are relatively specific for certain tumor types (for example, TROP-2 for breast cancer 

and PCa, and CD138 for MM). When using antibodies as targeting vectors, it is important to 

remember that different IgG types have varying circulation time,945 and the interactions 

between the Fc domain and FcγR/FcRn dynamically regulate the immunological functions 

of the developed antibody.946–948 For instance, tislelizumab (BGBA317) is a humanized 

IgG4 that binds to PD-1 but not to FcγRI.949 This improvement results in enhanced tumor 

growth inhibition when compared to BGB-A317/IgG4S228P, which has a high affinity to 

FcγR. Thus, Fc engineering could be used to introduce mutations that may abrogate the 

binding of IgG with FcγR. This strategy could also be exploited to increase the cellular 

accumulation of an antibody–antigen complex when targeting secreted antigens714 or to 

enhance the persistence of VHHs in circulation.950 In addition, strategies like 

deglycosylation of antibodies may further improve the immunoPET imaging quality.951,952 

A high-affinity antibody does not always guarantee high tumor uptake because other factors 

such as circulating antigens and tumor vasculature may affect the accessibility of the 

radiolabeled antibody. Aside from the singly targeted imaging probes, antibody-based 

heterodimers, or dual-targeting probes may have higher targeting efficacy and superior 

specificity than their monospecific peers.30,32,953 With the advent and evolvement of click 

chemistry,261 future studies may further harness this powerful method to synthesize modular 

immunoPET probes with improved in vivo performance. Furthermore, pretargeting 

strategies may also be harnessed to optimize the imaging quality.954,955

In the characterization of antibody-based diagnostic or theranostic probes, attention should 

be paid whether immunodeficient strains of animals are used in the imaging studies and how 

this may impact the imaging performance of the investigated probes. For example, a recent 

study reported that immunoPET radiotracers had inefficient tumor targeting and high off-

target binding to the spleen in the highly immunodeficient mouse strains.766 This was 

consistent with a previous study which reported that ADCs had limited antitumor activity in 

the ultra immunodeficient NSG mice.956 In this setting, the use of humanized mouse models 

or nonhuman primates is very necessary to assess the imaging performance of the 

immunoPET probes prior to pilot clinical investigations.957 In addition, antibodies cross-

reactive with human, nonhuman primate, and mouse antigens would be beneficial in 

preclinical immunoPET imaging studies.

Other than their use in immunoPET, antibodies are actively investigated as either 

monotherapy agents or antibody conjugates for effective cancer treatment. Antibodies can be 
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modified with therapeutic radionuclides and photosensitizers for RIT167 and PIT,958,959 

respectively, as novel treatment options. Two radiolabeled therapeutic anti-CD20 antibodies, 
131I-tositumomab and 90Y-ibritumomab tiuxetan, have been approved by the FDA for the 

treatment of B-cell lymphoma.531,960 To maximize the therapeutic index, pRIT strategies 

may be used. For detailed information on RIT, readers are recommended to refer to other 

excellent reviews.302,954,961 RTKs and oncogenic proteins are ideal candidates for RIT.
237,618,962 For instance, a recent study reported that pRIT with anti-HER2-DOTA-pRIT + 
177Lu-DOTA-Bn inhibited HER-2 positive breast cancers and substantially improved 

survival without inducing toxicity in normal tissues.963 Therefore, radiolabeled antibodies or 

antibody fragments targeting some of the selected makers discussed above may provide 

additional therapeutic options for cancer patients in the era of precision medicine.964,965 The 

use of pairs of β+ and β− emitting radionuclides (e.g., 86Y/90Y) is desirable as a promising 

theranostic platform for sequential imaging, dosimetry, and therapy. In addition to the 

traditional β-emitting therapeutic isotopes, accumulating evidence is supporting the clinical 

application of targeted alpha therapy, where mAbs or small molecules are labeled with 

therapeutic α-emitters. 225Ac (T1/2 = 10.0 d) and 213Bi are both attractive therapeutic α-

emitters, but the therapeutic index of 213Bilabeled agents was inferior to 225Ac-labeled 

agents.966,967 In translating these radiotherapeutics to the clinic, the safety profiles of the 

agents need to be carefully assessed. For therapeutic radionuclides without intrinsic imaging 

capabilities, immunoPET imaging may help estimate the pharmacokinetics of the 

therapeutic radiopharmaceuticals and evaluate the dose-limiting organs.

Optical fluorescence imaging using dye-labeled mAbs or sequential PET/NIR imaging with 

dual-labeled mAbs has the potential to improve cancer surgery outcomes.968–970 However, 

the payload of fluorophores needs to be carefully determined because the ratio of the 

fluorophore to mAb greatly affects both the pharmacokinetics and tumor-targeting efficiency 

of the developed probes.971,972 Besides, the emission of charged particles from 

radionuclides traveling through dielectric materials, such as in living subjects, results in the 

production of Cerenkov luminescence.973 Cerenkov luminescence has been validated 

effective for triggering photodynamic therapy.974,975 More interestingly, Cerenkov 

luminescence imaging (CLI) with optical imaging systems after the administration of 

radioactive tracers is an emerging imaging paradigm and can be exploited for image-guided 

surgery.976 While applications involving Cerenkov luminescence are still in their infancy, 

they hold great potential.977,978

While several advantages exist over other imaging modalities, the broad application of 

immunoPET may be restrained by a scarcity of radiometals and antibodies in less-developed 

countries. Therefore, immunoSPECT imaging may alternatively fill the gap. To this end, γ-

emitting radionuclides like 99mTc, 123I, and 111In may be used to develop immunoSPECT 

imaging probes.979 It should be noted that the high-energy γ emission from 131I makes it 

unfavorable for developing immunoSPECT probes. The use of novel radiolabeling methods 

may improve the stability, binding affinity, internalization, and intracellular track of the 

radioiodinated mAbs.980

In summary, the development of immunoPET imaging strategies has achieved great success 

in the past decade. With continuous improvement and clinical translation, immunoPET 
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imaging holds great promise in optimizing clinical management of human diseases, 

especially cancers.
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ABBREVIATIONS USED

ADCP antibody-dependent cellular phagocytosis

ADCC antibody-dependent cell-mediated cytotoxicity

ADC antibody–drug conjugate

AR androgen receptor

BBB blood–brain barrier

BiTE bispecific T-cell engager

BCM beta cell mass

CDC complement-dependent cytotoxicity

CB-TE2A 4,11-bis(carboxymethyl)-1,4,8,11-

tetraazabicyclo[6.6.2]hexadecane

CA19.9 carbohydrate antigen 19.9

CA-125 carbohydrate antigen 125

CEA carcinoembryonic antigen

CAIX carbonic anhydrase IXcc

RCC clear cell renal cell carcinoma

CSC cancer stem cell

CTLA-4 cytotoxic T lymphocyte antigen 4
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CLI Cerenkov luminescence imaging

CuAAC Cu(I)-catalyzed 1,3-dipolar cycloaddition between azides 

and alkynes

DSS dextran sulfate sodium

DLL3 delta-like 3

EDTA ethylenediaminetetraacetic acid

EGFR human epidermal growth factor receptor

FcγR Fcγ receptor

FcRn neonatal Fc receptor

18F-FDG 18F-fluorodeoxyglucose

GPI glucose-6-phosphate isomerase

GPA33 glycoprotein A33

HNSCC head and neck squamous cell carcinoma

HCAb heavy-chain-only antibody

HER2/ErbB2 human epidermal growth factor receptor 2

HER3/ErbB3 Human epidermal growth factor receptor 3

HGF hepatocyte growth factor

IHC immunohistochemistry

IGF-1R insulin-like growth factor-1 receptor

IBD inflammatory bowel disease

ImmunoPET immuno-positron emission tomography

LGR5 leucine-rich repeat-containing G-protein coupled receptor 5

mAb monoclonal antibody

MM multiple myeloma

MSLN membrane-bound surface glycoprotein mesothelin

NSCLC nonsmall-cell lung cancer

NHL non-Hodgkin’s lymphoma

NOTA 1,4,7-triazacyclononane-1,4,7-triacetic acid

NODAGA 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid
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PDGFR platelet-derived growth factor receptor

PD-L1 programmed death ligand-1

PET positron emission tomography

pRIT pretargeted radioimmunotherapy

PDAC pancreatic ductal adenocarcinoma

PSCA prostate stem cell antigen

PSA prostate-specific antigen

PD1 programmed death receptor 1

PIT photoimmunotherapy

PSMA prostate-specific membrane antigen

RCY radiochemical yield

RTKs receptor tyrosine kinases

RIT radioimmunotherapy

RA rheumatoid arthritis

SPECT single-photon emission computed tomography

sdAb single-domain antibody

scFv single-chain variable fragment

SPAAC strain-promoted azide–alkyne cycloaddition

SrtA sortase A

STEAP1 six-transmembrane epithelial antigen of prostate-1

TKIs tyrosine kinase inhibitors

TME tumor microenvironment

TGF-β transforming growth factor-β

TROP-2 trophoblast cell-surface antigen 2

TAG-72 tumor-associated glycoprotein-72

Treg regulatory T cells

VHH variable domain of the heavy chain of a HCAb

VEGF vascular endothelial-derived growth factor

VEGFR vascular endothelial-derived growth factor receptor
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Figure 1. 
Schematic of representative antibody and antibody fragments. (a) Conventional IgG is 

composed of two identical heavy chains and two identical light chains. While each heavy 

chain consists of three constant domains (i.e., CH1, CH2, and CH3) and a variable domain 

(VH), an IgG light chain has one constant domain (CL) and one variable domain (VL). (b) 

Heavy-chain-only antibody (HCAb) lacks the light chains and the typical CH1 domain. (c) 

The antigen-binding specificity of a HCAb is due to the single VHH domain. (d) Single-

chain variable fragment (scFv) is the smallest unit of the IgG molecule that retains antigen-

binding capacity. Using scFv as the building block, (e) diabody (dimers of scFv), and (f) 

minibody (dimers of scFv–CH3) can be constructed.

Wei et al. Page 111

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Chemical structures of chelators used in 89Zr-labeling of antibody vectors.
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Figure 3. 
Comparison DFO, DFO*, and DFOcyclo* in immunoPET imaging. (a) Chemical structure 

of DFOcyclo*-pPhe-NCS. (b) ImmunoPET imaging with 89Zr-DFO-trastuzumab (left), 
89Zr-DFOcyclo*-trastuzumab (middle), and 89Zr-DFO*-trastuzumab (right) in HER2+ 

SKOV-3 models. The results showed bone uptake in mice injected with 89Zr-DFO-

trastuzumab but not with 89Zr-DFOcyclo*-trastuzumab or 89Zr-DFO*-trastuzumab at 168 h 

after injection of the radiotracers. Reproduced with permission from ref 126. Copyright 

2019 Springer Berlin Heidelberg under [CC LICENSE] [http://creativecommons.org/

licenses/by/4.0/].
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Figure 4. 
Chemical structures of chelators used in 64Cu-labeling of antibody vectors.
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Figure 5. 
Chemical structures of chelators used in 86Y-labeling of antibody vectors.
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Figure 6. 
Chemical structures of prosthetic groups and chelators in 18F-labeling of antibody vectors.
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Figure 7. 
Chemical structures of chelators used in 68Ga-labeling of antibody vectors.
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Figure 8. 
Site-specific radiolabeling strategies. (a) The maleimide–cysteine reaction is among the most 

commonly used strategies for site-specific radiolabeling of antibody vectors. R = chelator of 

interest. (b) The strain-promoted azide–alkyne cycloaddition (SPAAC) reaction. R1 = 

antibody of interest, R2 = chelator of interest. (c) The inverse electron demand Diels–Alder 

(IEDDA) cycloaddition reaction. R1 = chelator of interest, R2 = antibody of interest. It is 

worth noting that radiolabeling via the click chemistry reaction goes both ways.
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Figure 9. 
Sortase-catalyzed site-specific labeling of antibody moieties. (a) For C-terminal labeling, the 

LPXTG motif is expressed at the C-terminus of the targeting vector (e.g., VHH and antibody 

fragment). (b) For N-terminal labeling, sortase recognition tag (i.e., LPXTG) is positioned at 

the C-terminus of the modification (e.g., chelator and dye) with the oligoglycine nucleophile 

inserted at the N-terminus of the targeting vector.
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Figure 10. 
Schematic of a chemoenzymatic methodology for site-specifically grafting cargoes (e.g., 

chelator) to the heavy-chain glycans of an antibody of interest. Reproduced with permission 

from ref 261. Copyright 2016 American Chemical Society.
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Figure 11. 
Chemical structures of DOTA-HSG and NOTA-HSG hapten peptides used in pretargeted 

immunoPET imaging.
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Figure 12. 
ImmunoPET imaging of EGFR expression using 124I-labeled residualizing radiotracer. (a–c) 
124I-IMP-R4-ch806 immuno-PET imaging clearly delineated EGFR-positive gliomas with 

negligible uptake in normal tissues. Reproduced with permission from ref 373. Copyright 

2010 SNMMI.
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Figure 13. 
ImmunoPET imaging of HER2 expression. (a) T1-weighed MR imaging of a 46-year-old 

woman showed brain metastases from breast cancer (red arrows). (b–d) 89Zr-Dfpertuzumab 

immunoPET/CT imaging of the same patient demonstrated varying uptake of the radiotracer 

in brain metastases (red arrows) and minimal uptake in the superior sagittal sinus (red 

arrowhead). Reproduced with permission from ref 396. Copyright 2018 SNMMI. (e) 

Chemical structure of [18F]AlF-NOTA-Tz-TCOGK-2Rs15d. (f) ImmunoPET/CT imaging of 

a human ovarian cancer xenograft at 2 and 3 h after injection of [18F]AlF-NOTA-Tz-

TCOGK-2Rs15d. Reproduced with permission from ref 416. Copyright 2018 American 

Chemical Society.

Wei et al. Page 123

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. 
ImmunoPET imaging of HER3 expression. (a) MSB0010853 is composed of two 

Nanobodies targeting two different epitopes of HER3 and an additional Nanobody targeting 

albumin. (b) 89Zr-MSB0010853 immunoPET imaging of HER3-positive mouse xenografts 

(H441 and FaDu) and HER3-negative mouse xenograft (Calu-1) demonstrated the ability of 

this imaging approach to reveal varying HER3 expression levels. Reproduced with 

permission from ref 465. Copyright 2017 SNMMI.
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Figure 15. 
ImmunoPET imaging of PDGFRa expression using 64Cu-NOTA-D13C6. While lower 

uptake of 64Cu-NOTA-D13C6 was seen in the PDGFRα-negative B-CPAP tumor (left 

flank), higher accumulation of the radiotracer was observed in the transfected PDGFRα-

positive B-CPAP tumor (right flank) at late time-points. Reproduced with permission from 

ref 512. Copyright 2018 Elsevier Inc.
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Figure 16. 
ImmunoPET imaging of non-Hodgkin’s lymphomas. (a) In a patient with circulating CD20+ 

lymphocytes, significant uptake of 89Zr-rituximab was observed in the spleen, which was 

blocked by preloading with unlabeled rituximab (250 mg/m2) prior to injection of 89Zr-

rituximab. The spleen is indicated with black arrows. (b) In the same patient, preloading 

reduced 89Zr-rituximab uptake in the involved lymph nodes (white arrows), but enhanced 

uptake of the radiotracer in the visceral lesions (blue arrows). Reproduced with permission 

from ref 536. Copyright 2015 Springer Berlin Heidelberg.
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Figure 17. 
ImmunoPET imaging of CD38 expression. (a) 89Zr-DFO-daratumumab immunoPET/CT 

imaging of a mouse bearing bilateral MM1.S tumors (T1 and T2). (b) 89Zr-DFO-

daratumumab immuno-PET/CT imaging of a mouse bearing a unilateral MM1.S tumor (T3) 

in the presence of unlabeled daratumumab as a blocking agent. (c) Representative 

bioluminescence imaging of the mice in the blocking group receiving an injection of cold 

daratumumab. The bioluminescent signal indicates the successful establishment of the tumor 

on the right flank of the mouse. Reproduced with permission from ref 550. Copyright 2018 

SNMMI. (d) 89Zr-DFO-daratumumab immunoPET imaging of lymphoma (Ramos tumor) at 

120 h after administration of the tracer. Reproduced with permission from ref 552. 

Copyright 2018 Springer Berlin Heidelberg.
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Figure 18. 
ImmunoPET probes targeting CD146 and CD105. (a) ImmunoPET and (b) near-infrared 

fluorescence (NIRF) imaging performed at different time-points after intravenous injection 

of 89Zr-Df-YY146-ZW800 demonstrated prominent and persistent uptake of the tracer in 

HepG2 tumors but not in the YY146 blocking group. H (heart), L (liver), and T (tumor). (c) 

Clear delineation of orthotopic HepG2 tumors by both PET and NIRF imaging was enabled 

through 89Zr-Df-YY146-ZW800, which further facilitated image-guided resection of the 

multiple tumors (red and yellow arrows). Reproduced with permission from ref 573. 

Copyright 2016 Ivyspring International Publisher. (d) Serial coronal immunoPET imaging 

using a tissue factor and CD105 dual-targeting 64Cu-NOTA-heterodimer at 3, 15, 24, and 30 

h postinjection of the tracer clearly detected the BxPC-3 tumor. (e) Coronal PET images of 

mice bearing an orthotopic BxPC-3 tumor at 3, 15, 24, and 30 h following injection of 64Cu-

NOTA-heterodimer. This imaging technique realized an easy diagnosis of the orthotopic 

BxPC-3 tumor with negligible radioactivity around the surrounding tissues. Reproduced 

with permission from ref 590. Copyright 2016 American Association for Cancer Research.

Wei et al. Page 128

Chem Rev. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19. 
Pretargeted immunoPET imaging of pancreatic cancer. 5B1-TCO was first administered to 

target CA19.9-expressing orthotopic Capan-2 xenograft followed by injection of 64Cu-

NOTAPEG7-Tz 3 days after the previous injection. (a) Coronal and (b) maximum-intensity 

projection (MIP) images demonstrated that this pretargeted imaging approach clearly 

delineated the Capan-2 tumor.(c) Immunohistochemistry (top left), autoradiography (bottom 

left), and fused PET/CT image (right) from the same mouse further showed precise 

colocalization of CA19.9-expressing tumor cells and 64Cu-NOTA-PEG7-Tz. Reproduced 

with permission from ref 600. Copyright 2016 SNMMI.
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Figure 20. 
ImmunoPET imaging of ovarian cancers with a bispecific radiotracer 89Zr-DFO-

REGN4018. (a) 89Zr-DFO-REGN4018 immunoPET/CT imaging of humanized tumor-

bearing mice showed the distribution of the tracer to the spleen (yellow arrow), lymph nodes 

(green arrow), and tumor (red arrow). (b) Blocking with a MUC16 parental antibody 

reduced the tumor uptake of 89Zr-DFO-REGN4018 without influencing the spleen and 

lymph node uptake. (c) Blocking with an anti-CD3 antibody substantially reduced the spleen 

and lymph node uptake of 89Zr-DFO-REGN4018 without influencing the tumor uptake. 

Reproduced with permission from ref 604. Copyright 2019 American Association for the 

Advancement of Science.
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Figure 21. 
ImmunoPET imaging of prostate cancers with the minibody-based 89Zr-IAB2M. (a) 99mTc-

MDP bone scan of a PCa patient showed multiple metastatic lesions in ribs, vertebrae, and 

left femur. (b) An 18F-FDG PET scanning showed the lesion in the left femur but failed to 

clearly detect the vertebral lesions. (c) 89Zr-IAB2M immunoPET imaging of the same 

patient detected more lesions than either conventional imaging modalities. Reproduced with 

permission from ref 633. Copyright 2016 SNMMI.
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Figure 22. 
Pretargeted immunoPET imaging of metastatic colorectal cancers. (a) In this approach, 

CEA- and HSG-targeting BsAb TF2 was given first to saturate the LS174T tumors, followed 

by administration of DOTA- and HSG-containing 68Ga-IMP288 16 h later. This imaging 

approach clearly delineated tumors, except for two small tumor lesions (T3 and T6). Bladder 

(BL) uptake indicates excellent excretion of the 68Ga-IMP288 through the urinary system. 

(b) 18FFDG PET/CT imaging of the same mouse showed less optimal image contrast due to 

uptake in the intestines. Reproduced with permission from ref 651. Copyright 2012 Springer 

Nature.
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Figure 23. 
ImmunoPET imaging of solid tumors using 89Zr-CEAIL2v. 89Zr-CEA-IL2v immunoPET 

imaging of a patient with CEA+ colorectal cancer at cycle 1, day 5 (left) showed uptake of 

the radiotracer in the bilateral hilar lymph nodes and the left dorsal lung metastasis (white 

arrows). The uptake in these malignant lesions and a nonpathological lymph node (red 

arrows) decreased after the fourth cycle of CEA-IL2v treatment (right). Notably, uptake in 

the liver (yellow arrows) increased and uptake in the spleens (orange arrows) decreased 

following the treatments. Reproduced with permission from ref 666. Copyright 2018 Impact 

Journals, LLC.
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Figure 24. 
ImmunoPET imaging of clear cell renal cell carcinoma (ccRCC) with 89Zr-girentuximab. (a) 

A patient with ccRCC who previously had undergone nephrectomy was subjected to a CT 

scan that showed neoplasms in the right kidney and the adjacent adrenal (white circle). (b) 
89Zr-girentuximab immunoPET/CT imaging of the same patient showed that both the 

lesions had an uptake of the tracer. Additional uptake in the proximal radius was seen 

(insert), which changed the management strategy of the patient from a futile radical 

nephrectomy to radiotherapy. Reproduced with permission from ref 674. Copyright 2018 

European Association of Urology.
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Figure 25. 
ImmunoPET imaging of cancer stem cell markers. (a) Chemical structure of a novel chelator 

L5-NCS. (b) 64Cu-L5-7F5 immunoPET imaging clearly detected PSCA-expressing PC3 

tumor 2 days after injection of the tracer. (c) In comparison, 64Cu-NODAGA-7F5 showed 

much lower tumor uptake and higher liver uptake. Reproduced with permission from ref 

158. Copyright 2018 American Chemical Society.
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Figure 26. 
Pretargeted immunoPET imaging of colorectal cancers. (a) Schematic of the imaging 

strategy, in which huA33-TCO was first administered to accumulate in the tumor followed 

by injection of 64Cu-Tz-SarAr 24 h later. (b) Coronal image and (c) fused PET/CT images 

24 h postinjection of the radioligand showed the effective delineation of the subcutaneous 

SW1222 xenografts. Reproduced with permission from ref 339. Copyright 2015 American 

Chemical Society.
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Figure 27. 
ImmunoPET imaging of immune checkpoints in nonsmall-cell lung cancer (NSCLC). (a) 
18F-FDG PET/CT scan of a patient with NSCLC showed lung tumors and mediastinal 

lymph node metastases with high glucose metabolism. (b) PD-1-specific 89Zr-Dfnivolumab 

immunoPET/CT imaging demonstrated heterogeneous uptake of the radiotracer within and 

between the tumor lesions. (c) Similarly, heterogeneous uptake of PD-L1-specific 18F-

BMS-986192, a 18F-labeled adnectin protein, was seen within and between the tumor 

lesions. Reproduced with permission from ref 809. Copyright 2018 Springer Nature.
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Figure 28. 
ImmunoPET imaging of programmed death-ligand 1 (PDL1) in brown adipose tissue (BAT). 

B3 is a single domain antibody specific for mouse PD-L1 and (a) 18F-B3 immunoPET/CT 

imaging of a 6-week-old wild-type C57BL/6 mouse showed deposition of the radiotracer in 

the BAT. (b) 18F-B3 immunoPET/CT imaging of an age-matched PD-L1 knockout mouse 

showed the absence of PD-L1 signal in the BAT, confirming the specificity of the developed 

radiotracer. Reproduced with permission from ref 830. Copyright 2017 Springer Nature.
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Figure 29. 
ImmunoPET imaging of rheumatoid arthritis (RA). (a) 89Zr-28H1 immunoPET/CT imaging 

of a mouse with collagen-II-induced arthritis 72 h after injection of the radiotracer. 
89Zr-28H1 accumulated in the inflamed joints with high contrast. (b) 18F-FDG PET/CT 

imaging also showed uptake in the inflamed joints but the uptake was lower than that of 
89Zr-28H1. Reproduced with permission from ref 849. Copyright 2015 SNMMI.
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Figure 30. 
ImmunoPET imaging of inflammatory bowel disease (IBD). (a) 89Zr-a-IL-1b, (b) 89Zr-α-

CD11b immunoPET imaging, and (c) conventional 18F-FDG PET imaging all detected 

dextran sulfate sodium (DSS)-induced colonic inflammations, which was indicated by 

uptake in the colons. Reproduced with permission from ref 857. Copyright 2019 SNMMI. 

(d) 89Zr-malDFO-GK1.5 cDb, an immunoPET probe targeting mouse CD4, was used to 

image IBD by capturing CD4+ T cells. Ex vivo 89Zr-malDFO-GK1.5 cDb immunoPET 

imaging showed increased radiotracer concentration in the DSS-treated colons, ceca, and 

mesenteric lymph nodes (MLNs).(e) Corresponding gross specimens obtained from the 

normal mice and from the colitic mice. Note that colons of the DSS-treated mice were 

shorter than that of the control mice. Reproduced with permission from ref 858. Copyright 

2018 SNMMI.
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Figure 31. 
Representative immunoPET/MR imaging of a patient with diffuse intrinsic pontine glioma 

after convection-enhanced delivery of 124I-8H9. The axial (upper sections) and sagittal 

(lower sections) fused PET/MR images showed predominant retention of 124I-8H9 in the 

brainstem. In this case, 124I-8H9 servers as a theranostic agent allowing for concurrent 

imaging, dosimetry, and therapy. Reproduced with permission from ref 896. Copyright 2018 

Elsevier Inc.
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Figure 32. 
ImmunoPET imaging guides antibody drug development. (a) Trastuzumab-Lx-AF is an 

antibody–drug conjugate developed by linking trastuzumab with auristatin F (AF) via the 

linker Lx. To evaluate the influence of drug-to-antibody ratios (DARs), 89Zr-DFO-

trastuzumab-Lx-AF immunoPET/CT imaging was carried out at 96 h postinjection of the 

radiotracer. The imaging results demonstrated the varying stabilities of the Lx-based ADCs. 

Importantly, a DAR of 2.6 did compromise the tumor targeting. (b) Biodistribution studies 

further confirmed the immunoPET imaging results (black bars, DAR of 0; red bars, DAR of 

2.6; blue bars, DAR of 5.2; *, P < 0.05). Reproduced with permission from ref 930. 

Copyright 2018 SNMMI.
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