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Abstract

Asymmetric miktoarm star polymers comprising an unequal number of chemically-distinct blocks 

connected at a common junction produce unique material properties, yet existing synthetic 

strategies are beleaguered by complicated reaction schemes that are restricted in both monomer 

scope and yield. Here, we introduce a new synthetic approach coined “μSTAR” — Miktoarm 

Synthesis by Termination After Ring-opening metathesis polymerization — that circumvents these 

traditional synthetic limitations by constructing the block–block junction in a scalable, one-pot 

process involving (1) grafting-through polymerization of a macromonomer followed by (2) in-situ 
enyne-mediated termination to install a single mikto-arm with exceptional efficiency. This 

modular μSTAR platform cleanly generates ABn and A(BA′)n miktoarm star polymers with 

unprecedented versatility in the selection of A and B chemistries as demonstrated using many 

common polymer building blocks: poly(siloxane), poly(acrylate), poly(methacrylate), poly(ether), 

poly(ester), and poly(styrene). The average number of B or BA′ arms (n) is easily controlled by 

the molar equivalents of macromonomer relative to Grubbs catalyst in the initial ring-opening 

metathesis polymerization step. While these materials are characterized by dispersity in n that 

arises from polymerization statistics, they self-assemble into mesophases that are identical to those 

predicted for precise miktoarm stars as evidenced by small-angle X-ray scattering experiments and 

self-consistent field theory simulations. In summary, the μSTAR technique provides a significant 
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boost in design flexibility and synthetic simplicity while retaining the salient phase behavior of 

precise miktoarm star materials.
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Introduction

Block copolymers (BCPs) are important in a variety of emerging and established 

applications due to their self-assembly into well-ordered structures on the nanometer length 

scale.1 The phase behavior of linear BCPs with two chemically-distinct blocks arrayed in 

simple sequences (AB, ABA, …) is now well-understood from both experiments2–4 and 

theory5–8 to depend on the Flory–Huggins interaction parameter (χ), volumetric degree of 

polymerization (N), block volume fractions (fi, i = A, B), and conformational asymmetry 

(ε). These molecular design parameters dictate the self-assembly of two-component BCPs 

into a handful of classical phases4 (body-centered cubic spheres, hexagonally close-packed 

cylinders, a gyroid network, lamellae) and more exotic sphere packings9–11 (e.g., σ, C14, 

C15, and A15). While the utility of many such mesophases is indisputable, linear chain 

connectivity imposes structure–property constraints that are not always desirable. For 

example, the number of known morphologies remains small,12 domain periodicities are 

fairly restricted (typically within a range circa 5–100 nm),13,14 and the coupling between 

volume fraction (f) and morphology favors the majority block on the convex side of curved 

block–block interfaces.5,15 These (and other) limitations have motivated the search for new 

molecular design tools that broaden the utility of BCP self-assembly in contemporary 

applications.

An exciting opportunity that expands the confines of traditional polymer phase behavior16 

lies in the controlled synthesis of BCPs with branched architectures.17,18 The introduction of 

branching imparts useful thermodynamic,19 photonic,20,21 and mechanical22 properties that 

are otherwise inaccessible with linear analogues. One archetypal example is miktoarm star 

polymers,23–32 which are defined33 as two or more chemically-distinct blocks connected to a 

common junction (e.g., AmBn, m + n > 2). The miktoarm star architecture is known or 

predicted to stabilize new phases,9,15,34 reduce domain spacing,35 and manipulate 

melt25,26,36,37 or solution38–40 properties, making them attractive for applications such as 

lithography and drug delivery. A further subset of miktoarm star polymers that accentuates 

the role of architecture in self-assembly involves asymmetry in arm number (m ≠ n); here, 
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we focus on the limit m = 1, e.g., ABn. As result of arm asymmetry, bulk phase boundaries 

are significantly deflected towards larger values of the A-block volume fraction (fA).5,15 

This effect has been beautifully exploited by Lynd41 and Shi42 to design new thermoplastic 

elastomers (A(BA′)n) that are stronger, stiffer, and tougher than commercial ABA linear 

triblock copolymers.

Despite the importance of miktoarm star polymers in contemporary polymer science, their 

synthesis still remains a major challenge. The standard approach to generate precise 

connectivity at a common junction uses some combination of “grafting-from” and “grafting-

to” multi-step reaction schemes.43 The need for orthogonal reactivity, high yields, and 

designer core molecules requires tedious synthetic routes that often include time-consuming 

coupling, polymerization, (de)protection, and purification steps such as fractional 

precipitation and high performance liquid chromatography.36,44,45 For example, the 

materials studied by Shi and coworkers42 necessitated reaction times in excess of 30 days to 

push coupling to high conversion and still required purification via fractionation.45–47 

Moreover, changing the number of arms is non-trivial since a new core starting material 

must be selected each time.

Motivated by the difficulty of traditional miktoarm star polymer syntheses, we recently 

exploited the versatility, speed, and efficiency of Grubbs-type ring-opening metathesis 

polymerization (ROMP)48–57 to synthesize miktoarm star polymers via the grafting-through 

copolymerization of two different macromonomers at low backbone degrees of 

polymerization (NBB).58 This type of statistical copolymerization is remarkably well 

controlled and the short backbone behaves physically like the core of a star polymer at NBB 

≲ 12 as evidenced by experiments and theory. However, simple copolymerization trades 

molecular precision for synthetic versatility since the reaction stoichiometry can only control 

the average number of arms and molecular composition. As a result, bulk phase behavior is 

dominated by dispersity effects that counteract phase boundary deflection, even in the case 

of nominally asymmetric architectures. Copolymerization therefore cannot generate the 

unique phase behavior that distinguishes asymmetric miktoarm stars from traditional block 

copolymers.

Here, we introduce a new synthetic method termed μSTAR (Table 1, top) — Miktoarm 

Synthesis by Termination After Ring-opening metathesis polymerization — that efficiently 

generates asymmetric miktoarm star polymers using ruthenium-catalyzed macromonomer 

polymerization (B → Bn) followed by in-situ enyne-mediated termination59 to install the 

single A arm (Bn → ABn). μSTAR sits at an optimal synthetic intersection, combining the 

versatility and speed of a macromonomer approach using ROMP with the precision of a 

highly efficient coupling step. Using a handful of macromonomers and macroterminators as 

building blocks, a diverse library of miktoarm stars can be easily prepared with different 

numbers of arms and block chemistries. We highlight this modularity by synthesizing ABn 

and A(BA′)n miktoarm star polymers comprising six different permutations of A and B 

block chemistry selected from poly(siloxane), poly(acrylate), poly(methacrylate), 

poly(ether), poly(ester), and poly(styrene). The average number of B arms (n) is easily 

controlled by the equivalents of Grubbs catalyst to macromonomer in the initial 

polymerization step. Importantly, the phase behavior of these polymers with disperse n 
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exhibits significant phase boundary deflection, in agreement with self-consistent field theory 

(SCFT) simulations performed on precise (monodisperse n) analogues. A major implication 

of this finding is that the dispersity in n produced by μSTAR is advantageous from the 

perspective of significantly simplifying the synthesis of miktoarm star polymers while 

retaining the characteristic phase behavior that produces interesting bulk properties. The 

speed, efficiency, and broad scope of μSTAR establishes a compelling new synthetic 

platform for asymmetric miktoarm star polymers and supports the notion that low dispersity 

is not always better in block copolymer self-assembly.60,61

Results

Synthesis

Two types of simple linear precursors are needed in the μSTAR process to create miktoarm 

polymers: a macromonomer with a single polymerizable end-group and a macroterminator 

that will irreversibly couple exactly once to the active chain ends. We focus on using 

Grubbs-type ring-opening metathesis polymerization (ROMP) to construct the junction due 

to its well-established functional group tolerance, fast reaction rates, and high yields.62 

Norbornene was therefore selected as the polymerizable group on the macromonomer 

because it undergoes efficient ROMP;63 both homopolymer (B) and diblocks (BA′) will be 

discussed with norbornene installed on the B terminus. For the macroterminator, we exploit 

enyne-mediated termination chemistry recently developed by Gutekunst and coworkers59 to 

perform macromolecular coupling of living metathesis polymers.64,65 While enyne 

macroterminators were previously shown to efficiently prepare diblocks, the sterics involved 

in coupling to the core of a star polymer present a unique challenge.66 Nevertheless, the high 

reactivity of enynes makes them suitable for macromolecular couplings that would otherwise 

not be possible with traditional ROMP termination methods employing substituted vinyl 

ethers or symmetrical cis-olefins.67–71 The generic end-groups used in μSTAR are illustrated 

in Table 1 (top).

Macromonomers with different B chemistry were synthesized by polymerization from 

functional norbornene initiators or coupling reactions between a norbornene acid and 

commercially available monotelechelic polymers. In summary, six different macromonomers 

were synthesized that span various classes of polymer chemistry: poly(lactide) (PLA), 

poly(dimethylsiloxane) (PDMS), poly(4-methylcaprolactone–block–lactide) (PMCL-PLA), 

poly(styrene) (PS), poly(2-trifluoroethyl acrylate) (PTFEA), and poly(methyl methacrylate) 

(PMMA). Similarly, six macroterminators (A) were prepared by coupling to or directly 

growing from the enyne terminator molecule. PDMS, PLA, poly(ethylene oxide) (PEO), 

poly(n-butyl acrylate) (PnBA), and poly(tert-butyl acrylate) (PtBA) were chosen as the A 

block (see Supporting Information). The methyl ester enyne small molecule can be prepared 

in four high yielding steps and is further derivatized into the terminator of choice by one or 

two additional reactions.59 Table 1 (bottom) summarizes these materials; full 

characterization details are provided in the Supporting Information (Tables S1–S2, Figure 

S1).

The efficacy of μSTAR at synthesizing asymmetric miktoarm star polymers is evident in 

Figure 1, which summarizes size-exclusion chromatograms (SECs) of the macromonomers 
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(dashed lines), macroterminators (dashed lines), and resultant miktoarm star polymers (solid 

lines) for the combinations described in Table 1. The general process involves two steps that 

occur in one pot. (1) Polymerization of the macromonomer creates a short bottlebrush (NBB 

< 12) with star-like physical properties58 (vide infra); after complete conversion, an aliquot 

of the poly(macromonomer) is extracted. (2) In situ termination by the addition of 

macroterminator efficiently couples a single A arm to the living star polymer, resulting in 

ABn or A(BA′)n chain connectivity. SEC traces of the poly(macromonomers) are omitted 

from Figure 1 for clarity but can be found in Figures S2–S10. Note that with the exception 

of Figure 1f, n = 4 was targeted in this initial set of examples. Kinetic experiments 

performed with a model 5 kDa PLA macroterminator indicate the coupling process is 

finished in about 2 hours at room temperature (Figure S11). After termination, the increase 

in poly(macromonomer) absolute molecular weight as measured with multi-angle light 

scattering (MALS) is consistent with the macroterminator size (Table S3–S4). A single 

precipitation into methanol, diethyl ether, or hexanes is sufficient to isolate the final 

miktoarm star polymers, which have low molar mass dispersities (Ð < 1.2, Table S4) and 

monomodal SEC traces (Figure 1). 1H nuclear magnetic resonance (NMR) measurements 

further confirmed the stoichiometric coupling of macroterminator and poly(macromonomer) 

(Figure S12–S22) and were also used to calculate compositions as tabulated in Table S4. 

Diffusion-ordered spectroscopy (DOSY) analysis revealed that these miktoarm star 

polymers lack homopolymer contamination within measurement error (Tables S5–S6, Figure 

S23–S24)72 as attempts to determine the percent of homopolymer contamination with multi-

component fits yielded inconsistent results and non-physical diffusion coefficients, which is 

evidence of data overfitting.73

Another advantage of μSTAR is the ability to easily vary the average number of B or BA′ 
arms by changing the equivalents of macromonomer to Grubbs initiator. A series of four 

A(BA′)n asymmetric miktoarm star polymers (A = PLA, BA′ = PMCL–block–PLA) with n 
= 3, 5, 7, or 9 arms was prepared simultaneously in separate reaction vessels using the same 

macromonomer and macroterminator precursors (Figure 2). SEC traces smoothly decrease 

in elution time as n increases, and absolute molecular weight measurements are consistent 

with increasing the average number of poly(macromonomer) arms across the range n = 3 – 9 

(Table S3). This ability to easily vary the number of arms stands in stark contrast to all 

previous synthetic strategies where a different initiator or core must be synthesized 

whenever the number of arms is varied.29,45,74 These materials also highlight the tolerance 

of μSTAR chemistry to high molecular weights; for n = 9, a 54 kDa poly(macromonomer) 

cleanly couples to a 24 kDa PLA macroterminator using only 1.1 equivalents of the latter.

Self-Assembly

A key question that remains is whether asymmetric miktoarm star polymers synthesized via 

μSTAR (with dispersity in n) self-assemble as predicted by theory for precise analogues. We 

have opted to study in detail the phase behavior of the (PLA-PMCL)n-PLA samples 

described in Figures 1 and 2 since the addition of a short A′ block flanking B is predicted to 

further accentuate the phase boundary deflections that are characteristic of asymmetric ABn 

miktoarm star polymers.41 Figure 3a reports synchrotron small angle X-ray scattering 

(SAXS) patterns collected at room temperature after annealing (PLA-PMCL)n-PLA with a 
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varying number of PLA-PMCL diblock arms (n = 3 – 9) at 140 °C for 18 hours. Note that 

the volume fraction of PLA (fPLA) changes with n such that these samples span fPLA = 0.58 

– 0.71. The SAXS traces for n = 3 (fPLA = 0.71), n = 5 (fPLA = 0.68), and n = 7 (fPLA = 

0.62) can be cleanly indexed as indicated by triangles that demarcate the expected location 

of scattering reflections for lamellar (LAM), gyroid (GYR), and hexagonally close-packed 

cylinders (HEX), respectively. The n = 9 material shows broader peaks that are less well-

defined, but their intensity maxima roughly coincide with those expected for a spherical 

form factor and Percus–Yevick structure factor75 (Figure S25); we tentatively ascribe this 

morphology as disordered spheres that possibly fail to order on a well-defined lattice due to 

kinetic limitations. Collectively, these data are consistent with a remarkable deflection of 

order–order phase boundaries towards larger fA relative to linear AB diblock or ABA 

triblock copolymers. For example, the HEX–GYR transition occurs near fA = 0.3 with linear 

diblocks versus in the vicinity of fA = 0.62 – 0.68 that we measure for (PLA-PMCL)n-PLA 

mikto polymers. We are confident that the PLA block resides in the interior of the cylinders 

since GYR (fPLA = 0.68) and LAM (fPLA = 0.71) occur at even larger volume fractions. 

Perhaps stronger direct proof is the HEX sample exhibits recoverable elasticity in cyclic 

tensile tests, the details of which will be described in a forthcoming report. These 

experimental data relating morphology and volume fraction are in agreement with SCFT 

simulations performed on A(BA′)n asymmetric miktoarm star polymers using the literature-

reported76 value of χPLA–PMCL and the degrees of polymerization measured experimentally 

for A = PLA and BA′ = PMCL-PLA (Figure 3b, see Supporting Information for details). We 

conclude that asymmetric miktoarm star polymers synthesized via μSTAR — which 

necessarily have dispersity in n — can self-assemble into structures that mimic precise 

molecular analogues.

Discussion

Historically, anionic polymerization has been the workhorse synthetic technique used to 

construct miktoarm star polymers, including ABn
32,66,77–79 and A(BA′)n

42,45 asymmetric 

variants. While effective, rigorous purification requirements, a limited monomer scope, 

sequence constraints, sluggish coupling kinetics47 (that can take months to reach full 

conversion), and the need for additional purification by fractional precipitation32,45,78 are 

inconvenient from both practical and design perspectives. μSTAR overcomes all of these 

challenges, assuming that dispersity in n can be tolerated, by exploiting the well-established 

functional group compatibility and speed of ROMP. We note that a conceptually similar 

approach has been attempted with anionic polymerization in the past, namely the grafting-

through polymerization of a polystyrene (polyisoprene) macromonomer to construct the Bn 

core, either preceded or followed by the polymerization of polyisoprene (polystyrene) to 

grow a single A block.80 The result was rather broad and multimodal SEC traces, 

particularly for the poly(macromonomers). Despite improvement after repeated fractional 

precipitation, even a further optimized anionic methodology would lack the versatility of a 

ROMP-based approach.

The examples in Figures 1 and 2 were selected to accentuate different types of chemistry 

that are of contemporary importance and challenging to link together using traditional 

miktoarm star syntheses. For example, PLAn-PDMS (Figure 1a) and PDMSn-PLA (Figure 
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1b) may be useful as lithographic materials with higher resolution than linear analogues due 

to architecture effects while maintaining good etch contrast.13,19,35,37,81,82 In the field of 

electrochemical energy storage, miktoarm star polymers containing PEO blocks are of 

interest as safe battery electrolytes, yet their reported synthesis is involved.36 We have 

demonstrated that PSn-PEO miktoarm stars are straightforward to synthesize with μSTAR 

(Figure 1c). μSTAR also provides access to amphiphilic miktoarm star polymers, e.g., by 

combining a PMMA macromonomer and PtBA terminator (Figure 1d) followed by acid-

catalyzed deprotection of the tert-butyl ester to poly(acrylic acid) (PAA). The sulfonamide–

pyrroline linkage created during termination is robust enough withstand a concentrated 

solution of trifluoroacetic acid and yield the partially charged PMMAn-PAA star polymer 

(Figure S26–S29). Figure 1e further showcases a combination of acrylates (PTFEA4-PnBA) 

that would be especially difficult to access via a core-first approach since both monomers 

undergo polymerization with the same type of radical initiator; the incorporation of semi-

fluorinated acrylates may also create opportunities in surface coatings and other advanced 

materials.83–86

As introduced earlier, the A(BA′)n architecture presents exciting opportunities for next-

generation thermoplastic elastomers.42 To date, this concept has only been explored using A, 

A′ = poly(styrene) (PS) and B = poly(isoprene) (PI) blocks synthesized by anionic 

polymerization and silyl chloride coupling.45 Inspired by the work of Hillmyer,76 here we 

have shown that renewable types of glassy (PLA) and rubbery (PMCL) polyesters can form 

A(BAʹ)n miktoarm stars with n = 3 – 9 using μSTAR (Figure 1f), which are inaccessible via 

the established anionic route. The phase behavior of (PLA-PMCL)n-PLA asymmetric 

miktoarm star polymers synthesized with μSTAR is consistent with past experimental 

reports on precise (PS-PI)3-PS42 and theory that anticipate significant deflection of order–

order transitions towards larger volume fractions due to molecular architecture. We have not 

observed this effect in any simple ROMP copolymerizations involving A and B 

macromonomers,58 even at unequal feed compositions, which suggests that efficient 

termination chemistry (or some other method of installing a single A arm) is key to 

unlocking the unique self-assembly of asymmetric miktoarm star polymers. This result 

bolsters our previous finding that short bottlebrushes actually behave like miktoarm star 

polymers despite the inherent dispersity in n.58 Note that SCFT simulations reveal a large 

sensitivity to the relative lengths of A and A′ blocks as parameterized by τ = NA/(NA+NA′) 

(Figure S30). Although our experimental calculation of τ is based on molar masses 

measured by NMR (τ = 0.896) and MALS (τ = 0.925) that are within reasonable 

experimental uncertainty, SCFT simulations match the data in Figure 3a best with an 

intermediate τ = 0.91 shown in Figure 3b. SCFT also accurately captures the temperature-

dependent phase behavior of these materials. By measuring the order–disorder transition 

temperature (TODT) with variable temperature SAXS (Figure S31) and calculating χ(TODT) 

from the relationship reported by Watts,76 (χN)ODT was compared to SCFT predictions. 

Incredibly, for n = 3, the theoretical and experimental values differ by less than 1% (Figure 

S32). As n increases, the deviation grows, but it never exceeds 12%.

We hasten to note that not all miktoarm star samples produced with μSTAR show scattering 

reflections that are as well-resolved as those in Figure 3. This may be the result of 

thermodynamic or kinetic factors that are influenced by architecture, dispersity, high 
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molecular weight, or a combination thereof. For example, with n = 9 and fA = 0.58 (Figure 

3a), the thermodynamically stable phase might be A15,15,87 which is likely kinetically 

inaccessible above a certain threshold molecular weight.88 Another possibility is a complex 

free energy landscape; Grason and coworkers have previously argued that kinetic trapping 

could cause a similar glassy intermediate phase in AB2 miktoarm stars due to the near 

degeneracy of BCC and A15.15 Thus, it is not surprising that complex sphere phase 

formation is suppressed.10,88 Nevertheless, we find it remarkable that μSTAR can produce 

clean self-assembly given the dispersity in n.

Figure 4 illustrates the key differences in molecular composition and self-assembly that 

result from various miktoarm star synthesis techniques. Simple ROMP copolymerization 

with either a blocky or statistical sequence at low NBB generates composition and arm-

number dispersity that together tend to favor a flat block–block interface (Figure 4a).58 At 

the same overall composition (i.e., fA = 0.5), asymmetric miktoarm star polymers with a 

precise number of arms (for example, AB3) bias interfacial curvature toward the A block 

(Figure 4b).15,26 Samples synthesized using μSTAR sit somewhere in between — exactly 

one A arm and a distribution of B arms still results in self-assembly that favors interfacial 

curvature, the magnitude of which is evidently similar to precise analogues with the average 

μSTAR composition (Figure 4c). One benefit of incorporating such dispersity lies in relaxing 

the synthetic burden without drastically impacting self-assembly.

Conclusion

In summary, we have introduced a new synthetic technique termed μSTAR that generates 

ABn and A(BA′)n asymmetric miktoarm star polymers using grafting-through 

polymerization and efficient enyne-mediated polymer–polymer coupling chemistry. This 

modular approach is compatible with a wide variety of polymer chemistries and can 

accommodate high molecular weight arms. The average number of B or BA′ arms (n) is 

easily varied by the ratio of Grubbs catalyst to macromonomer in the initial polymerization 

step. Miktoarm star polymers made via μSTAR exhibit large deflections in the block 

copolymer phase diagram (relative to linear analogues) unlike stars produced by statistical 

grafting-through copolymerization. Despite the dispersity in n, experimental phase behavior 

matches SCFT calculations performed with precise molecular connectivity. μSTAR 

significantly simplifies the synthesis of asymmetric miktoarm star polymers when dispersity 

in arm number can be tolerated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Size-exclusion chromatograms (normalized differential refractive index signal, dRI) of the 

miktoarm star polymers (solid black lines) listed in Table 1. Macromonomers and 

macroterminators are depicted with dashed lines. See the Supporting Information (Figure 

S2–S10) for traces of the poly(macromonomers), which were omitted here for clarity. In (d), 

the macroterminator trace represents poly(tert-butyl acrylate) before deprotection, while the 

final miktoarm star curve comprises poly(acrylic acid) after deprotection. Also note that the 

small bump near 14 min is small molecule elution. In (e), the PTFEA macromonomer and 

PTFEA4-PnBA samples have negative dn/dc values in THF; the dRI data were multiplied by 

−1 for the purpose of consistent presentation.
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Figure 2. 
μSTAR can easily vary the average number of arms n in an asymmetric miktoarm star 

polymer. (a) Chemical structure of (PLA-PMCL)n-PLA with n = 3 – 9. (b) Normalized 

differential refractive index signal from SEC analysis of the isolated miktoarm star 

polymers. See Table S4 for a summary of molecular weights and dispersities.

Levi et al. Page 15

Macromolecules. Author manuscript; available in PMC 2021 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The phase behavior of (PLA-PMCL)n-PLA miktoarm star polymers containing dispersity in 

n is consistent with simulations of precise analogues. (a) Small-angle X-ray scattering data 

with triangles demarcating the expected location of Bragg reflections for lamellar (LAM, n 

= 3), gyroid (GYR, n = 5), and hexagonally close-packed cylinder (HEX, n = 7) 

morphologies. (b) SCFT simulations at τ ≡ NA/(NA + NA′) = 0.91 relating morphology, 

PLA volume fraction (fPLA), and the number of PMCL-PLA (BA′) diblock arms (n) at χN 

= 36, which corresponds to the segregation strength at 298 K.76 Superposed symbols 

represent the four experimental samples from part (a).

Levi et al. Page 16

Macromolecules. Author manuscript; available in PMC 2021 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Illustration of molecular composition and self-assembly resulting from different miktoarm 

star synthesis techniques. (a) Simple ROMP copolymerization of two macromonomers 

generates dispersity in composition and the number of A and B arms, which promotes flat 

block–block interfaces.58 (b) Asymmetric miktoarm stars (e.g., AB3) created by a precise 

synthesis favor interfacial curvature toward the A block.15 (c) μSTAR produces miktoarm 

stars with a distribution of B arms and exactly one A arm, resulting in interfacial curvature 

that is equivalent to precise analogues comprising the average molecular composition.
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Table 1.

(top) Generic μSTAR synthesis of miktoarm star polymers using norbornene-functionalized macromonomers 

and enyne macroterminators. (bottom) Macromonomers, macroterminators, and miktoarm star polymers 

synthesized in this work.
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