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Abstract

Stem cells are a powerful resource for many applications including regenerative medicine, patient-

specific disease modeling, and toxicology screening. However, eliciting the desired behavior from 

stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, 

remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have 

been developed to regulate stem cell fate by controlling microenvironmental parameters including 

matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell–

cell interactions. We survey techniques for modulating hydrogel properties and review the effects 

of microenvironmental parameters on maintaining stemness and controlling differentiation for a 

variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a 

spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of 

stem cells to complex, biomimetic systems for organotypic cell culture models.
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1. INTRODUCTION

Stem cell research has sparked a revolution in the biomedical sciences, in applications 

ranging from regenerative medicine approaches to the repair or replacement of damaged 

tissue to patient-specific disease modeling and drug toxicology screening platforms (Figure 

1). In all of these applications, maintaining control over the phenotype of the stem cells is 

paramount. Stem cells are characterized by their ability both to self-renew, generating more 

stem cells, and to differentiate into various mature cell types (Figure 1). The differentiation 

potential of these cells is dictated by the source of the cell. Embryonic stem cells (ESCs) are 
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considered to be pluripotent, as ESCs can differentiate into mature cells from all three germ 

lines: ectoderm, endoderm, and mesoderm (1). Over the past decade, the advent of induced 

pluripotent stem cells (iPSCs) produced from terminally differentiated, patient-derived cells 

has dramatically expanded access to pluripotent stem cells (PSCs) and has opened the door 

to a myriad of personalized medicine applications (1). Other stem cell types investigated for 

clinical applications are somatic stem cells, such as mesenchymal stem cells (MSCs), 

hematopoietic stem cells (HSCs), and neural stem cells (NSCs). These somatic stem cells 

are considered to be multipotent, giving rise to a more restricted range of differentiated 

progeny than PSCs. For instance, NSCs are generally capable of differentiation into the three 

main neural lineages: neurons, astrocytes, and oligodendrocytes (2).

In vivo, stem cells reside in specialized microenvironments known as the stem cell niche (3, 

4). The niche consists of both biophysical and biochemical factors that direct the fate of the 

resident stem cells. The stem cell niche is both dynamic and complex, with features on 

various time- and length scales that collectively affect stem cell phenotype (3, 4). Many of 

these cues are provided by the extracellular matrix (ECM). The biochemical composition, 

mechanical properties, and microstructure of the ECM are all known to modulate stem cell 

behavior, with optimal properties dependent on both the stem cell type of interest and the 

desired phenotypic output (Figure 2). In addition to matrix properties, cell–cell interactions 

dramatically affect the behavior of stem cells within the niche. Stem cells, their 

differentiated progeny, and other supporting cell types within the niche interact via secretion 

of soluble factors and direct cell–cell contact (Figure 2), modulating the biochemical 

signaling pathways that regulate maintenance of the stem cell pool and control 

differentiation into mature phenotypes (3, 4).

Engineering strategies to control stem cell fate can be grouped into two major categories: (a) 

strategies to maintain the stem cell phenotype, or “stemness,” and (b) strategies to 

differentiate the stem cells into desired mature cell types. Maintenance of stemness can be 

further subdivided into expansion of stem cells for clinical use and maintenance of stem 

cells in a quiescent state. Stem cell expansion is required in cases in which delivery of the 

naïve stem cell is required for therapeutic efficacy (e.g., HSC delivery to reconstitute a 

patient’s myeloid and lymphoid cells) or for further differentiation into a mature cell type 

that is nondividing (e.g., delivery of motor neurons derived from NSCs). Maintaining stem 

cell quiescence is required for long-term ex vivo culture of stem cells for disease models or 

drug screening. Using engineered niches to control stem cell differentiation is a popular 

strategy in the field of tissue engineering, with the goal of using the properties of scaffold 

materials to direct stem cells to mature into functional tissue constructs. In all of these cases, 

design principles learned from the native stem cell niche can be applied to elicit desired stem 

cell phenotypes.

This review focuses on the use of hydrogel biomaterials as engineered stem cell 

microenvironments. Hydrogels are water-swollen, cross-linked polymeric networks that can 

be composed of both naturally occurring and synthetic materials. The broad range of 

materials and processing techniques used to produce hydrogels affords tight control over 

many biophysical and biochemical properties including matrix mechanics, matrix 

degradability, cell-adhesive ligand presentation, microstructure, and costimulation with 
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soluble factors and other cell types (5, 6). We review strategies for modulating these 

microenvironmental cues and discuss how these factors affect stemness maintenance and 

differentiation of various PSCs and somatic stem cells. Finally, we discuss future directions 

in stem cell niche engineering to improve the efficiency and accuracy of in vitro models and 

to scale up stem cell production for clinical therapies.

2. ENGINEERING HYDROGEL PROPERTIES TO RECAPITULATE THE 

NICHE

The stem cell niche consists of a myriad of interacting components (Figure 2), which may 

include the ECM, other stem cells, differentiated progeny, and heterologous cell types (e.g., 

endothelial cells) (3, 4). These components provide biophysical and biochemical inputs that 

regulate stem cell functions such as self-renewal, quiescence, and differentiation (3, 4). This 

section reviews engineering approaches to control these various aspects of the stem cell 

microenvironment.

2.1. Extracellular Matrix Mechanics

The native ECM is a hydrated network of proteins and polysaccharides that anchors cells 

within their specific microenvironment. Cells are mechanically coupled to the ECM through 

transmembrane proteins known as integrins (7). These integrins bind specific cell-adhesive 

ligands presented by ECM proteins, connecting the ECM to the intracellular actin 

cytoskeleton (7). The mechanical properties of the ECM alter the ability of cells to generate 

tension, modulating cell spreading, nuclear shape, and intercellular signaling pathways. For 

detailed discussions of mechanisms of cellular mechanosensing, the reader is directed to 

several excellent reviews (8-10).

2.1.1. Stiffness.—In the simplest approach, ECM mechanics can be described by a time-

independent stiffness. For a cross-linked polymer network such as the ECM, stiffness is a 

metric of how easily a material deforms under an applied load. Stiffness is typically 

described by an elastic, or Young’s, modulus, which is defined as the ratio of the applied 

stress (i.e., force per area) to the strain (i.e., relative deformation) for small perturbations. 

Young’s moduli for mammalian tissues range from hundreds of pascals for nervous tissue 

(11) to tens of gigapascals for calcified bone (12). Despite this wide range of stiffnesses for 

native tissue, cells are commonly cultured on polystyrene plates, with an elastic modulus on 

the order of 1 GPa (13).

Initial attempts to elucidate the effects of matrix stiffness on stem cell fate utilized 

polyacrylamide hydrogels as two-dimensional (2D) cell culture platforms. Polyacrylamide 

gels are prepared by polymerizing acrylamide with a bisacrylamide cross-linker. Ideal elastic 

theory predicts that increasing the density of cross-links within the hydrogel will result in 

increased hydrogel stiffness. Accordingly, increasing the ratio of bisacrylamide to 

acrylamide, as well as increasing the total monomer content of the pregel solution, will 

increase the stiffness of the resultant hydrogels. This approach has been used to generate 

hydrogels with elastic moduli spanning a physiologically relevant range from tens of pascals 

to hundreds of kilopascals (14). To facilitate cell adhesion and mechanical coupling to the 
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substrate, polyacrylamide gels can be covalently modified with ECM proteins or integrin-

binding peptides (14, 15).

Whereas initial studies of stem cell mechanosensing were carried out on 2D substrates, the 

stem cell niche is a three-dimensional (3D) microenvironment. Polyacrylamide gels cannot 

be used for 3D cell encapsulation, as the monomer components are cytotoxic. More recent 

studies have utilized polymeric starting materials, such as poly(ethylene glycol) (PEG) (16), 

alginate (17), and hyaluronic acid (18), to prepare cell-encapsulating gels. These materials 

can be cross-linked with cell-compatible chemistries and are readily functionalized with 

cell-adhesive proteins and peptides. As with the 2D polyacrylamide gels, tuning the total 

polymer content or the network cross-link density permits stiffness modulation in these 3D 

systems. However, note that these strategies for modulating 3D stiffness often result in 

concomitant variation of other material properties, such as hydrogel mesh size and swelling, 

so carefully controlled experiments are necessary to disentangle the relative contributions of 

each of these properties to stem cell fate (19).

2.1.2. Viscoelasticity.—While the majority of stem cell mechanobiology studies to date 

have used elastic hydrogel systems that can be simply characterized by their Young’s 

modulus, natural ECM is not an ideal elastic solid. Rather, native tissues are viscoelastic, 

exhibiting time-dependent mechanical properties (20-22). Unlike purely elastic synthetic 

hydrogels, gels composed of reconstituted ECM proteins such as collagen (23) and fibrin 

(24) exhibit stress relaxation in response to a constant applied load. On a molecular level, the 

polymer chains that make up the network rear-range in response to the load to dissipate the 

applied force. Thus, in order to better recapitulate the mechanical properties of the native 

ECM, recent efforts have been directed toward designing hydrogels with tunable 

viscoelasticity (25).

Initial studies investigating the impact of matrix viscoelasticity on stem cell phenotype used 

2D polyacrylamide gels. By carefully controlling the ratio of acrylamide to bisacrylamide 

used to prepare the gels, Cameron et al. (26) synthesized substrates with approximately the 

same storage moduli (elasticity) but varied loss moduli (viscosity). Thus, while these gels 

have the same initial stiffness, their time-dependent dissipation of force will be different. 

More recently, other hydrogel systems have been employed to facilitate 3D mechanobiology 

studies of encapsulated cells. Physically cross-linked hydrogels, such as calcium cross-

linked alginate, are inherently viscoelastic due to the reversible nature of the cross-links 

(27). Chaudhuri et al. (28) developed a family of alginate hydrogels with independently 

tunable stiffness and stress relaxation rates. The concentration of calcium cross-linker was 

varied to tune the stiffness of gels, while decreasing the molecular weight of the alginate 

resulted in increased stress relaxation rates, due to decreased network connectivity and 

hence increased polymer chain mobility. Further increases in stress relaxation rate were 

achieved by coupling PEG spacers to low-molecular-weight alginate to further disrupt 

network architecture (28). Covalent cross-linking chemistries also have been developed 

recently to modulate hydrogel stress relaxation. McKinnon et al. (29) utilized reversible 

hydrazone linkages to prepare covalently cross-linked PEG hydrogels with tunable stress 

relaxation rates. Whereas aliphatic aldehydes form highly dynamic bonds with hydrazines in 

aqueous solution, aromatic aldehydes form much more stable bonds. Thus, hydrogels cross-

Madl and Heilshorn Page 4

Annu Rev Biomed Eng. Author manuscript; available in PMC 2020 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



linked with aliphatic aldehydes exhibit more rapid stress relaxation rates than gels cross-

linked with aromatic aldehydes (29).

2.2. Engineered Matrix Degradation

In addition to exhibiting time-dependent mechanical properties, the native ECM can also be 

dynamically remodeled by resident cells. Cell-secreted enzymes can degrade the ECM, 

permitting cell spreading and migration through the matrix. Several approaches have been 

employed in engineered hydrogel systems to mimic this dynamic matrix degradation for 3D 

cell culture. Initial approaches took advantage of the passive hydrolysis of ester cross-links 

to prepare PEG hydrogels that degraded over time (30, 31). Subsequent studies sought to 

incorporate enzymatic degradability into synthetic hydrogel systems to permit cell-mediated 

remodeling. Lutolf et al. (32) cross-linked PEG hydrogels with peptides susceptible to 

cleavage by matrix metalloproteinases (MMPs). In gels cross-linked with the MMP 

degradable peptide, cells were free to spread and migrate (32). Furthermore, by altering the 

amino acid sequence of the cross-linking peptide, the affinity of MMPs for the peptides 

could be varied, thereby altering the kinetics of hydrogel degradation (33). More recent 

studies have extended this control to localized, on-demand material degradation. Kloxin et 

al. (34) developed a photodegradable PEG hydrogel system that permitted hydrogel cleavage 

by exposure to 365-nm light. Highly selective spatial and temporal resolution of hydrogel 

degradation in this system was achieved using two-photon laser scanning microscopy (34). 

Similar to methods modulating 3D stiffness, altering material degradability will necessarily 

result in changes in several hydrogel properties, including mechanics, mesh size, and 

swelling (19). This observation emphasizes the importance of designing carefully controlled 

experiments to isolate the effects of matrix degradation on stem cell phenotype.

2.3. Cell-Adhesive Ligands

Specific cell–matrix adhesion is required for cell spreading, migration, and mechanosensing. 

Cells adhere to native ECM via cell surface receptors. In particular, a class of heterodimeric 

receptors known as integrins link the intracellular cytoskeleton to specific cell-adhesive 

ligands on ECM proteins (7). The tripeptide arginine–glycine–aspartic acid (RGD) is found 

in multiple ECM proteins and binds to several different integrin dimers (35). Accordingly, 

peptides containing the RGD motif have been incorporated into hydrogel systems to permit 

adhesion of various cell types (36). Increasing the concentration of RGD peptide increases 

the adhesivity of the substrate, resulting in increased cell spreading (36). Cell motility 

exhibits a biphasic response to RGD concentration, with too little RGD preventing adhesion 

and too much RGD inhibiting cell detachment for migration (36, 37). Whereas the initial 

studies investigating the role of RGD peptide presentation on cell spreading and migration 

made use of 2D surfaces, presentation of RGD, in addition to cell-mediated hydrogel 

degradation, facilitates cell spreading and migration in 3D materials (32).

The native ECM is a mixture of proteins and polysaccharides that interact with cells through 

various cell surface receptors. In addition to RGD, other cell-adhesive peptide sequences 

have been identified from native ECM components, including the laminin-derived ligands 

YIGSR and IKVAV and the collagen-derived ligands GFOGER and DGEA (38). These 

ligands bind distinct receptors from the integrins engaged by RGD and can activate different 
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intracellular signaling pathways. Although some studies have shown that these ligands can 

modulate stem cell behavior in isolation (39, 40), combinations of these other ligands with 

RGD are often necessary to elicit desired behaviors. Because the interactions among these 

ligands are difficult to predict and commonly nonlinear, combinatorial screens are often used 

to optimize ligand concentrations (41, 42).

In addition to concentration and identity, the nanoscale spacing of cell-adhesive ligands also 

regulates cell behavior. To form stable adhesions, integrin receptors must cluster together 

(36). Thus, when RGD is presented from a surface at a fixed global concentration, 

conditions with tighter local RGD packing permit greater adhesion (36). Local ligand 

density has been modulated by varying the number of ligands coupled per polymer chain, 

and global ligand concentration was controlled by blending in unmodified polymers. This 

strategy has been used with multiarm PEGs (43) and alginate hydrogels (44, 45) to study the 

effects of ligand clustering on cell migration, proliferation, and differentiation. Ligand 

clustering has also been identified as an important event in stem cell mechanosensing (17), 

with matrix properties such as stiffness (17), viscoelasticity (28), and degradation (46, 47) 

regulating ligand clustering and cytoskeletal tension generation. Additionally, hydrogels 

with mobile ligands have been developed to facilitate ligand clustering, wherein an RGD-

coupled cyclodextrin is threaded onto a polymer chain that is later incorporated into a 

hydrogel network (48, 49). Stem cells encapsulated within these hydrogels were able to 

cluster ligands and differentiate efficiently with mobile ligands, but not with static ligands 

(49).

Given the importance of numerous functions regulated by cell–matrix adhesion, strategies to 

pattern adhesive ligands in hydrogels have been developed to control cellular access to 

adhesive cues. Techniques for patterning ligands on 2D surfaces have recently been reviewed 

(50), so we focus on techniques for achieving ligand patterning within 3 D hydrogels. Most 

of these approaches make use of focused lasers to selectively induce chemical reactions at 

defined coordinates, thereby controlling pattern position in three dimensions. For instance, 

Luo & Shoichet (51) prepared agarose hydrogels containing photocaged thiols. Wherever 

the gels were irradiated with UV light, thiols were exposed that could react with maleimide-

modified RGD peptides. DeForest et al. (52) incorporated vinyl moieties into PEG hydrogels 

that allowed for patterning of thiol-containing RGD peptides via photoinitiated thiol–ene 

reactions. An alternative strategy has been to incorporate photocaged adhesive peptides into 

the gel that are initially inaccessible for cell binding (53, 54). In these systems, cells were 

able to adhere to the gel only in regions that had been exposed to UV light to uncage the 

adhesive peptides (54, 55).

The composition of the native ECM is dynamic, with matrix composition changing during 

development, aging, and disease progression. Thus, to recapitulate the time-dependent 

changes in adhesive ligand concentration and identity, various methods for dynamically 

controlling ligand presentation have been developed. Many of the photochemical approaches 

to hydrogel modification described above have been employed to temporally control ligand 

availability. Kloxin et al. (34) applied the same photoreactive group used for controlling 

hydrogel degradation to selectively release RGD peptides and decrease adhesivity after a 

defined culture interval. DeForest & Anseth (56, 57) combined this photodegradable 
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functionality with the photoactivated thiol–ene reactions described above to develop gels 

that permit dynamic addition and removal of bioactive components. DeForest & Tirrell (58) 

later expanded the chemical tool kit for photoreversible hydrogel functionalization with the 

light-activated oxime ligation reaction. Mosiewicz et al. (59) used photocaged enzymatic 

substrates to selectively permit enzymatic ligation of bioactive molecules only after exposure 

to light. Other strategies have exploited molecular self-assembly to temporally alter ligand 

presentation (60, 61). For example, Boekhoven et al. (60) used host–guest interactions to 

display RGD peptides from alginate surfaces. Surfaces initially presenting cell-adhesive 

RGD peptides could be rendered nonadhesive by addition of a control peptide possessing a 

stronger host–guest binding partner (60). Other self-assembly driven approaches have used 

complementary leucine zipper peptides (62) and complementary DNA strands (63, 64) to 

achieve dynamic control over ligand presentation dynamics.

2.4. Microstructure

Most of the seminal research describing the impact of niche properties such as matrix 

mechanics and cell-adhesive ligand presentation described above was conducted on planar 

2D surfaces. However, the native ECM is much more structurally complex. Most in vivo 

cellular microenvironments are 3D in nature, and scientists have recently begun to 

appreciate that biological processes observed on artificial 2D surfaces do not always 

translate to more biomimetic 3D contexts (19). Furthermore, the native ECM exhibits 

significant microscale heterogeneity. Many ECM components assemble into fibers that range 

in size from 0.1 μM to greater than 1 μM (65). Cells are capable of sensing changes in 

matrix topography, as cellular migration and protrusion elongation are increased along 

fibrous structures (66). Common strategies for generating biomimetic fibrous topographies 

include the use of electrospun fibers on the order of hundreds of nanometers to tens of 

micrometers (67) and self-assembly of proteins, peptides, or peptide amphiphiles to prepare 

nanofibrous gels (39, 68-72). Other research has focused on designing substrates with well-

defined engineered features, such as grooves, pits, and pillars (73, 74). While the majority of 

studies reporting the impact of topography on cellular behavior have been empirical, some 

mechanistic insights are beginning to emerge, pointing to changes in cell–matrix adhesions 

and cell–cell junctions (73, 75).

Due to limitations in material fabrication techniques, most studies of matrix topography have 

been confined to the surfaces of 2D substrates. However, macroporous hydrogel scaffolds 

represent a notable class of 3D materials with engineered topographical variation. Common 

techniques for producing macroporous hydrogels include microparticle templating, freeze 

drying, and gas foaming (76). Cross-linking of hydrogel microribbons (77) and assembly of 

microgels (78) have recently been introduced as alternative techniques to prepare 

macroporous hydrogels. The size scale of the pores dictates whether cells experience a 

pseudo-2D microenvironment with freedom to spread and migrate or a more confining 3D 

environment. Altering pore size is known to change how cells respond to implanted hydrogel 

materials (79). Changing 3D architecture also modifies the transport properties of the 

cellular microenvironments, providing an additional mechanism to modulate the stem cell 

microenvironment. For instance, the geometric arrangement of cells dictates local 

concentrations of signaling molecules, in turn modulating tissue morphogenesis (80).
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2.5. Cell–Cell Interactions

Beyond niche parameters directly controlled by the ECM, interactions among cells within 

the niche are crucial regulators of stem cell fate. Stem cells, their differentiated progeny, and 

heterologous cells communicate via secretion of soluble factors and direct cell–cell contact. 

Many studies have sought to optimize coculture of stem cells with other cell types to either 

maintain stem cells in a naïve state or trigger differentiation into desired lineages. These 

approaches have been reviewed in detail elsewhere (81, 82). In this section, we focus on 

engineering approaches to incorporate signals from niche cells into hydrogel systems.

Native ECM components contain binding motifs for many soluble signals such as growth 

factors. Several approaches to engineer desired bioactivity into artificial stem cell niches 

have been inspired by these natural interactions. Early studies revealed that growth factors 

tethered to solid substrates retained their bioactivity (83) and in some cases proved more 

efficacious than their soluble counterparts (84). The enhanced activity of tethered growth 

factors may be due to increased growth factor stability and sustained receptor activation by 

preventing cellular internalization and degradation. Recent efforts have been directed at 

incorporating dynamic mechanisms of growth factor tethering to temporally control 

presentation, including strategies employing supramolecular host–guest interactions (85) and 

enzymatic methods (86). To decrease costs associated with the use of full-length growth 

factors, small-peptide mimics capable of initiating growth factor signaling have been 

incorporated into several types of hydrogels (64, 87-89). Alternative methods for localizing 

cell-secreted factors have taken a more biomimetic approach, incorporating charged 

polysaccharides like heparan sulfate to sequester growth factors (90) or peptide sequences 

that bind and retain secreted ECM proteins (91). Conversely, growth factors have also been 

engineered to exhibit increased binding affinity to natural ECM components, increasing the 

potency of these factors through longer-lived interactions with the matrix (92). Many cellular 

processes, such as cell migration and tissue morphogenesis, are sensitive to gradients of 

soluble factors, rather than uniform presentation of the factors. In response, various 

engineering strategies, including microfluidic devices and spatial patterning of growth 

factor–sequestering molecules, have been employed to generate gradients in hydrogel 

systems (93).

Stem cells can also interact with other niche cells through direct cell–cell contact. Early 

efforts to recapitulate cell–cell contact in engineered systems used immunoglobulin Fc 

domains fused to the extracellular domain of E-cadherin to immobilize the cell adhesion 

molecules on a surface (94). More recently, HAVDI peptides that can engage N-cadherin 

were coupled to hyaluronic acid hydrogels (95, 96). Beyond cadherin-mediated contact, a 

peptide sequence mimicking the activity of neural cell adhesion molecule (NCAM) was 

incorporated into engineered elastin-like protein materials (97).

3. ENGINEERED MICROENVIRONMENTS TO PROMOTE STEMNESS

The previous section discusses engineering strategies for modulating various niche 

properties to control stem cell fate. Desired stem cell fate decisions can be grouped into one 

of two broad outcomes: maintenance of stemness or differentiation into mature lineages. 

This section reviews microenvironmental parameters to promote stemness maintenance in 
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various stem cell types. To maintain stemness, a stem cell must continue to express proteins 

characteristic of the stem cell state, undergo self-renewing proliferation, and retain the 

capacity to differentiate into appropriate mature cell types. Table 1 summarizes the niche 

factors known to regulate stemness maintenance for each cell type discussed below.

3.1. Stem Cell Expansion

Expanding large numbers of stem cells is the most common goal when designing a culture 

platform to maintain stemness. Both clinical studies transplanting large numbers of naïve 

stem cells and tissue engineering approaches to produce functional tissue constructs from 

stem cells in vitro require large quantities of cells. Ineffective means for scaling up 

production of high-quality stem cells remains a significant barrier to clinical translation (98), 

so developing scalable platforms for stem cell expansion may be transformational for the 

field.

3.1.1. Pluripotent stem cells.—PSCs are capable of differentiation into all three germ 

lineages and are therefore able to differentiate into any adult tissue type (1). PSCs consist of 

both ESCs derived from the inner cell mass of blastocyst-stage embryos and iPSCs derived 

from terminally differentiated cells induced to express pluripotency factors (1). Such cells 

were traditionally cultured on feeder layers of mouse embryonic fibroblasts or on 

reconstituted basement membrane derived from mouse sarcoma (i.e., Matrigel) (99). The 

presence of these xenogeneic components often led to poor batch-to-batch consistency and 

would preclude clinical use of stem cells cultured in this manner (99). Thus, engineering 

xeno-free systems for PSC expansion would expand the utility of these stem cells.

Removing the xenogeneic components has been a major goal of attempts to engineer the 

PSC microenvironment for stem cell expansion (99). In 2010, three separate research groups 

identified fully defined engineered matrix compositions that permitted feeder-free expansion 

of ESCs: recombinant laminin 511 (100), acrylate surfaces presenting RGD peptides (101), 

and synthetic poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium 

hydroxide] (PMEDSAH) grafted surfaces (102). Since these reports, various other naturally 

derived and synthetic materials have been developed to support the culture of 

undifferentiated PSCs (103). In addition to controlling surface biochemistry, biophysical 

interactions with the substrate must also be considered. For instance, increased ESC self-

renewal was observed on soft (E ~ 0.6 kPa) polyacrylamide gels compared with rigid plastic 

culture surfaces (104).

Although most research laboratory-scale culture of PSCs is conducted on 2D surfaces, 2D 

culture is less efficient in terms of space and energy requirements for industrial-scale 

production of PSCs. Transitioning to 3D hydrogel systems may facilitate industrial scale-up, 

as such culture systems would occupy considerably less space and require less energy to 

produce an equivalent number of cells than traditional 2D culture (105). To this end, 

hydrogels composed of hyaluronic acid (106), calcium cross-linked alginate (107), and 

thermoresponsive synthetic polymers (108) have been optimized to culture undifferentiated 

PSCs.
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3.1.2. Hematopoietic stem cells.—HSCs are somatic stem cells that reside in the 

bone marrow and are capable of differentiating into all myeloid and lymphoid cell types 

(109). HSCs are responsible for reconstituting patients’ immune systems following a bone 

marrow transplant (109). Ex vivo expansion of these cells has the potential to increase the 

supply of these donor-limited cells and to improve the engraftment probability of transplants 

by delivering a greater number of multipotent stem cells to the patient. Recently, progress 

has been made in identifying the proper combination of biochemical and biophysical signals 

to promote expansion of naïve HSCs. A potential role of matrix stiffness in modulating HSC 

stemness was identified when substrates coated with more compliant tropoelastin materials 

promoted increased stem cell expansion relative to controls (110). In 2017, Choi & Harley 

(111) demonstrated that HSCs were best maintained in an undifferentiated state when 

cultured on hydrogel substrates with elastic moduli of ~40 kPa. Furthermore, this study 

revealed an interplay between stiffness and matrix composition, as matrices with high 

fibronectin content were required to maintain naïve HSCs (111). A role for matrix 

composition in maintaining HSC expansion potential was also demonstrated by Prewitz et 

al. (112), who reported increased HSC proliferation on MSC-derived ECM. The importance 

of other cell-produced niche factors has been studied using hydrogel microwell platforms 

presenting covalently immobilized proteins. Lutolf et al. (113) revealed that exposure to N-

cadherin or Wnt3a increased HSC division or initiated HSC quiescence, respectively.

3.1.3. Mesenchymal stem cells.—Like HSCs, MSCs reside in the bone marrow (114). 

These cells are also known as bone marrow stromal cells (BMSCs) (114). MSC-like cells 

have additionally been isolated from adipose tissue (adipose-derived stem cells, or ASCs) 

(114). MSCs are functionally defined by the capacity to differentiate into bone, cartilage, 

and adipose tissue (115). Many of the studies on engineering MSC microenvironments have 

focused on controlling differentiation into bone or cartilage for orthopedic tissue engineering 

applications. This literature is reviewed in Section 4, below. Nevertheless, these tissue 

engineering applications commonly require expanding large numbers of MSCs prior to 

differentiation, so designing an engineered niche for stem cell expansion may facilitate the 

transition of MSC-based therapies to the clinic.

As discussed below, MSCs are known to bias their differentiation on the basis of the 

mechanical properties of their microenvironment (14, 17, 28). Yang et al. (116) further 

revealed that substrate stiffness modulates MSC stemness. The authors employed hydrogels 

that could be dynamically softened to investigate the temporal effects of matrix stiffness on 

MSC differentiation potential. MSCs cultured on stiff gels that were softened one day 

postseeding retained the ability to differentiate into both osteoblasts and adipocytes (116). In 

contrast, after one week on stiff gels, MSCs were committed to osteogenic differentiation, 

even after the gels were softened (116). A recent study by Li et al. (117) revealed that this 

mechanical memory was mediated by elevated transcription of miRNA-21 activated by 

culture on stiff substrates.

Additionally, matrix topography and biochemistry are known to alter MSC stemness. 

McMurray et al. (118) reported that nanopatterned substrates with uniform pit spacing 

maintained MSCs in an undifferentiated state, whereas more disordered substrates favored 

osteogenic differentiation. There is also evidence to suggest that binding of ECM 
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components and soluble factors to engineered hydrogel matrices can alter MSC stemness. 

Bai et al. (119) demonstrated that fouling of hydrogels could result in spontaneous 

differentiation of encapsulated MSCs. By preparing hydrogels composed entirely of 

zwitterionic carboxybetaine monomers, these authors prepared nonfouling gels that 

maintained MSC multipotency in the presence of soluble differentiation factors (119).

3.1.4. Intestinal stem cells.—Intestinal stem cells (ISCs) are located in the base of the 

crypt–villus architecture of the adult intestine (4). ISCs give rise to the terminally 

differentiated cell types that constitute the intestinal epithelium, including Paneth cells, 

goblet cells, enteroendocrine cells, and enterocytes (120). In culture, isolated ISCs are 

capable of forming organoids reminiscent of the native intestinal epithelium in morphology 

and cellular composition. These organoids may find utility in drug screening and tissue 

engineering applications (120).

The first reported cultures of intestinal organoids derived from single ISCs used cells 

cultured within Matrigel-based hydrogels (120). Although effective at initiating and 

maintaining ISC organoid culture, Matrigel is animal derived, suffers from batch-to-batch 

variability, and exhibits limited tuning of microenvironmental properties, making both basic 

biological studies and translation to clinical applications challenging. Recently, Gjorevski et 

al. (121) published a systematic study using PEG-based hydrogels to optimize synthetic 

matrices for ISC organoid culture. The authors demonstrated that ISC expansion is 

mechanosensitive, with optimal organoid formation efficiency in matrices with shear moduli 

of ~1.3 kPa (121). ISC organoids are also sensitive to time-dependent variation in matrix 

mechanics, as dynamic softening of the PEG gels via hydrolysis was required to maintain 

the differentiation potential of the ISCs (121). Finally, ISC growth was shown to depend on 

interactions with cell-adhesive ECM components. Optimal organoid formation was observed 

in gels containing laminin and laminin-derived peptides, but also exhibited a dose-dependent 

response to RGD ligands (121). Although ISC organoid culture is still a relatively new 

application of hydrogel systems, other studies culturing intestinal organoids derived from 

explanted tissue suggest that ISC organoids may be cultured in other modular hydrogel 

platforms, such as those using engineered elastin-like proteins (122).

3.2. Maintaining Stem Cell Quiescence

Beyond harnessing the self-renewal capacity of stem cells to produce large numbers of cells 

for therapeutic use, there are several motivations for maintaining stem cells in a quiescent, 

slowly dividing state. These may include basic biological studies of stem cell biology as well 

as therapeutic strategies that rely on ex vivo manipulation of the stem cells, such as 

introduction of exogenous genes. This section discusses how niche properties can be 

optimized to maintain quiescence in the context of skeletal muscle stem cells (MuSCs).

MuSCs, also known as satellite cells, are located between the plasma membrane of 

myofibers and the basal lamina surrounding these fibers (123). MuSCs are critical for the 

maintenance of skeletal muscle tissue. Thus, culturing MuSCs ex vivo may provide insight 

into how dysfunction in the stem cell pool can lead to muscle wasting, and MuSC 

transplantation may eventually serve as an effective therapy for such disorders. However, for 
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many years, MuSCs were unable to be cultured outside of their native niche, as plating the 

cells on standard tissue culture dishes rapidly led to a loss of stemness. Gilbert et al. (124) 

demonstrated that the relatively high stiffness of tissue culture plastic was largely 

responsible for this loss of stemness. MuSCs cultured on hydrogels with elastic moduli 

approximating the stiffness of native muscle tissue (~12 kPa) exhibited self-renewing 

divisions and did not differentiate, unlike cells cultured on plastic (124). Cosgrove et al. 

(125) later revealed that the regenerative capacity of aged MuSCs could be restored by 

culturing the aged cells on compliant hydrogels with simultaneous p38 kinase inhibition, 

suggesting a role for mechanotransduction pathways in aging-related MuSC dysfunction. 

Other properties of the niche also affect MuSC quiescence in vitro. Quarta et al. (126) 

developed an engineered muscle fiber niche with optimized stiffness, cell-adhesive proteins, 

and medium composition. MuSCs cultured in this engineered microenvironment retained the 

ability to engraft into muscle tissue in vivo following ex vivo manipulation (126).

4. ENGINEERED MICROENVIRONMENTS TO DIFFERENTIATE STEM 

CELLS

For many therapeutic and screening applications, pure populations of differentiated cells, 

rather than naïve stem cells, are required (127). Thus, in addition to expanding sufficient 

numbers of stem cells, protocols must be developed to guide the differentiation of the stem 

cells down a desired lineage. Many of the same microenvironmental properties that regulate 

stemness maintenance can bias stem cell differentiation. Table 1 summarizes the niche 

factors known to modulate stem cell differentiation for each cell type discussed below.

4.1. Pluripotent Stem Cells

Expansion of PSCs while maintaining stemness and preventing undesired differentiation is 

the first challenge of PSC culture (127). As discussed in the previous section, engineered 

hydrogels have been developed to maintain PSC stemness. The second challenge of PSC 

culture is controlling the differentiation of the cells into pure populations of mature cell 

types (127). High purity of differentiated cells is required for therapeutic applications, where 

the presence of undifferentiated PSCs may lead to tumor formation, and for in vitro assays, 

where contaminating cell populations may skew results. Much effort has been expended in 

engineering PSC microenvironments to direct differentiation. This section provides an 

overview of regulation of PSC differentiation by engineered niche cues. For more detailed 

discussions, the reader is referred to recent reviews on the topic (127, 128).

PSC differentiation is sensitive to matrix mechanics during both initial differentiation events 

and maturation into terminally differentiated cell lineages. Culturing ESCs on 

polydimethylsiloxane (PDMS) substrates with stiffness greater than 1 MPa increased 

expression of primitive mesodermal and endodermal genes (129). Interestingly, a recent 

study revealed a mechanism by which ESC culture on much more compliant hydrogels (E ~ 

0.4 kPa) resulted in enhanced cell–cell contact and accumulation of β-catenin that primed 

the cells for mesodermal differentiation (130). Terminal differentiation of PSCs into neurons 

is also modulated by substrate stiffness, with significantly enhanced neuronal specification 

on relatively compliant substrates (131, 132). In a 3D context, Zoldan et al. (133) reported 
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biased mesodermal differentiation for high-stiffness (E ~ 1.5–6 MPa) scaffolds, endodermal 

differentiation for intermediate-stiffness (E ~ 0.1–1 MPa) scaffolds, and ectodermal 

differentiation for low-stiffness (E < 0.1 MPa) scaffolds.

Topographical cues can also influence PSC fate decisions. ESCs cultured on smooth surfaces 

maintained an undifferentiated phenotype, whereas cells cultured on surfaces with nanoscale 

roughness underwent spontaneous differentiation (134). Neurogenic differentiation of ESCs 

was enhanced on surfaces with aligned nanoscale features, such as electrospun fibers (135) 

and grooved patterns (136). Substrates with regularly spaced nanopores increased the 

differentiation efficiency of iPSCs into pancreatic precursors (137).

Biochemical signals provided by the microenvironment are an additional parameter that can 

modulate PSC differentiation. Various studies have identified natural ECM components that 

can bias PSC fate decisions in 2D contexts and are reviewed by Dickinson et al. (138). In a 

3D hydrogel context, Dixon et al. (139) prepared hydrogels that could dynamically switch 

from facilitating stemness maintenance to favoring mesodermal specification by altering 

hydrogel composition from alginate to collagen. Dextran hydrogels with covalently tethered 

RGD peptides and microencapsulated vascular endothelial growth factor (VEGF) enhanced 

the vascular differentiation capacity of encapsulated ESCs (140).

4.2. Mesenchymal Stem Cells

MSCs are commonly investigated for orthopedic tissue engineering applications due to their 

capacity to differentiate into bone and cartilage (114, 115). As for PSCs, the effects of 

microenvironmental parameters on MSC differentiation have been widely studied. Here, we 

highlight the major advances and direct the reader to relevant reviews for more detailed 

information (25, 141).

MSC differentiation is sensitive to the mechanics of the surrounding matrix. In a seminal 

study, Engler et al. (14) demonstrated that MSCs exhibited biased differentiation according 

to the stiffness of the polyacrylamide substrates on which the MSCs were cultured. MSCs 

cultured on gels with elastic moduli similar to that of precalcified bone (E ~ 25–40 kPa) 

differentiated down an osteogenic lineage, whereas MSCs on gels with elastic moduli 

similar to that of skeletal muscle (E ~ 8–17 kPa) differentiated down a myogenic lineage 

(14). MSCs on the most compliant gels with elastic moduli similar to that of nervous tissue 

(E ~ 0.1–1 kPa) exhibited a neuron-like phenotype (14). Huebsch et al. (17) confirmed that 

matrix stiffness can direct MSC differentiation in more biomimetic 3D microenvironments. 

The authors found that clustering of RGD cell-adhesive peptides was optimized in alginate 

hydrogels with elastic moduli of ~20 kPa, resulting in enhanced osteogenic differentiation. 

MSCs cultured in more compliant gels favored adipogenic differentiation (17). A later study 

by Huebsch et al. (142) demonstrated that MSC-mediated bone formation in vivo was also 

sensitive to the stiffness of the hydrogel in which the MSCs were delivered, with optimal 

regeneration observed in ~60-kPa hydrogels.

MSC differentiation is additionally sensitive to the time-dependent mechanical properties of 

the matrix. The first studies of matrix viscoelasticity affecting MSC behavior utilized 

polyacrylamide hydrogels with fixed storage moduli (elasticity) but variable loss moduli 
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(viscosity) (26, 143). Substrates with increased loss moduli resulted in increased cell 

spreading and increased differentiation into myogenic, adipogenic, and osteogenic lineages 

(26). Increased myogenic differentiation on more viscoelastic gels was attributed to 

increased activation of Rac1 GTPase (143). Chaudhuri et al. (28) extended these studies to 

3D materials by using alginate hydrogels with independently variable stiffness and 

viscoelastic stress relaxation rates. The authors demonstrated that increasing the stress 

relaxation rate of the material substantially enhanced the osteogenic differentiation of 

embedded MSCs, but only in matrices with an appropriate stiffness (E ~ 17 kPa). Similar to 

studies in predominantly elastic alginate gels (17), the increased osteogenic differentiation in 

rapidly stress-relaxing materials was correlated with increased RGD ligand clustering. Gels 

with rapid stress relaxation rates enhanced MSC-mediated bone formation in vivo (144).

Matrix degradation also plays a role in the mechanosensitive differentiation of MSCs. When 

MSCs were encapsulated in nondegrading, covalently cross-linked hyaluronic acid 

hydrogels, adipogenic differentiation was favored, regardless of matrix stiffness (46). 

However, when the gels were rendered degradable by cell-secreted MMPs, substantial 

osteogenic differentiation was observed (46). Khetan et al. (46) demonstrated that hydrogel 

degradation was required for tension generation by encapsulated MSCs to mediate 

osteogenic differentiation. Matrix degradation likely promotes ligand clustering to facilitate 

tension generation, in agreement with studies of mechanosensititve MSC differentiation in 

alginate gels (17, 28, 47). Accordingly, MSC differentiation was enhanced in nondegradable 

PEG hydrogels that presented mobile RGD ligands that could be clustered without hydrogel 

degradation (49).

In addition to ligand clustering to mediate mechanotransduction, the identity of cell-adhesive 

ligands can modulate MSC differentiation. For instance, the collagen-mimetic ligands 

DGEA and GFOGER increase osteogenic (40, 145) and chondrogenic (146) differentiation. 

The laminin-derived IKVAV motif also enhances osteogenic and adipogenic differentiation 

when presented in combination with RGD peptides (147). Beyond cell-adhesive ligands, 

other matrix components are known to alter MSC differentiation. Cartilage is rich in 

polysaccharides, and incorporation of chondroitin sulfate, hyaluronic acid, and heparan 

sulfate alters chondrogenic differentiation (148).

Mimicking cell–cell interactions is an additional approach to controlling MSC 

differentiation in engineered microenvironments. Bone morphogenetic proteins (BMPs) are 

potent activators of osteogenic differentiation. Incorporating peptide mimics of BMP-2 on 

implant surfaces (149) and within hydrogels (88) enhanced mineralization by MSCs. BMP-

binding peptides that can sequester endogenous BMPs in hydrogel materials (150) may 

represent an alternative strategy to elicit osteogenic differentiation from MSCs. Direct cell–

cell contact can also modulate MSC differentiation. Hydrogels presenting N-cadherin-

mimicking HAVDI peptides altered the contractile state and mechanosensing of MSCs, in 

turn altering their mechanosensitive differentiation (95). Incorporation of HAVDI peptides 

into hyaluronic acid hydrogels also enhanced the chondrogenic differentiation of MSCs (96), 

likely through activation of β-catenin signaling (151).
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4.3. Neural Stem Cells

NSCs are located within the subventricular zone (SVZ) and subgranular zone (SGZ) in the 

adult brain (2). NSCs can differentiate into neurons, astrocytes, and oligodendrocytes (2). 

Differentiation of NSCs into neurons makes these stem cells particularly attractive for 

clinical applications. Mature neurons are nondividing, so NSCs can be initially expanded 

and then differentiated to generate therapeutically relevant numbers of neurons. This section 

provides an overview of how engineered niche factors influence NSC fate. For greater detail, 

the reader is directed to other recent reviews (152, 153).

As for MSCs, the differentiation of NSCs is mechanosensitive. Studies using 2D 

polyacrylamide gels with grafted RGD cell-adhesion peptides revealed that neuronal 

differentiation was increased on compliant gels with elastic moduli from tens to hundreds of 

pascals, whereas astrocytic differentiation dominated on stiffer gels (154). Others have 

confirmed that neuronal differentiation is enhanced on compliant gels (E < 1 kPa) but that 

oligodendrocyte differentiation is enhanced on stiffer (E ~ 7 kPa) substrates (155). The 

discrepancy in the particular glial lineage favored at higher stiffness may be due to 

derivation of NSCs from different regions of the brain (SGZ versus SVZ). Keung et al. (156) 

revealed that mechanosensitive NSC differentiation is mediated by increased activation of 

the GTPases RhoA and Cdc42. A recent study also implicated Yes-associated protein (YAP) 

and β-catenin signaling in mechanosensitive neurogenesis (157). Although initial NSC 

differentiation decisions are sensitive to substrate stiffness, specification of mature neuronal 

subtype is not mechanosensitive (158). Although few studies have considered the role of 

matrix stiffness in 3D systems (152), neurogenesis was enhanced in gels with lower cross-

link density (159) and lower polymer content (160), suggesting that neuronal differentiation 

is also favored within lower-stiffness 3D hydrogels.

Other biophysical parameters of the matrix also can influence NSC differentiation. 

Increasing the hydrolytic degradability of PEG hydrogels increased the expression of 

neurogenic markers by encapsulated NSCs (161). NSCs are sensitive to substrate 

topography, as culturing NSCs on aligned electrospun nanofibers resulted in enhanced 

neuronal differentiation (162).

In addition to biophysical niche signals, biochemical signals such as cell-adhesive ligands 

and growth factors can bias the differentiation of NSCs. Presenting high concentrations of 

the laminin-derived IKVAV ligand from nanofibrillar peptide gels enhanced the neuronal 

differentiation of NSCs (39), whereas RGD-containing peptides grafted to 2D 

polyacrylamide substrates supported better neuronal differentiation than IKVAV-containing 

peptides (15). More recently, combinatorial studies revealed that optimized concentrations of 

RGD, IKVAV, and YIGSR synergistically enhanced neuronal differentiation (42). 

Immobilizing platelet-derived growth factor AA (PDGF-AA) on agarose hydrogels 

enhanced the oligodendrocyte differentiation of NSCs (163).

5. FUTURE DIRECTIONS

Hydrogels are an attractive choice of material to serve as engineered stem cell niches due to 

the wide range of techniques that have been developed to modulate microenvironmental 
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cues. Such systems have led to a greater understanding of how individual niche properties 

contribute to maintenance of stemness or to induction of stem cell differentiation. Future 

studies can apply these systems to further advance the use of stem cells and their 

differentiated progeny in regenerative medicine, patient-specific disease modeling, and 

toxicology screening applications.

5.1. Improving Reproducibility

The introduction of iPSC technologies has the potential to realize the goals of personalized 

medicine with patient-specific drug screening, disease modeling, and stem cell–mediated 

tissue repair. However, the use of iPSCs in these applications still faces several challenges. 

iPSCs must be generated from patient-derived cells such as fibroblasts, but traditional 2D 

culture methods yield very low reprogramming efficiencies, ranging from 0.1% to 10% 

depending on the starting cell type (164). Recently, engineering approaches to altering 

microenvironmental cues have resulted in significant improvements in iPSC generation 

efficiency. Cells reprogrammed on soft hydrogels (165) or hydrogels with aligned 

micropatterns (166) exhibited more efficient reprogramming than traditional methods. 

Caiazzo et al. (167) performed combinatorial studies investigating the role of matrix 

stiffness, degradation, and biochemistry in reprogramming within 3D PEG hydrogels. 

Reprogramming was more rapid and more efficient in the engineered hydrogels when 

compared with traditional 2D culture (167). Nutrient transport within cultures has also been 

demonstrated to play a significant role in reprogramming efficiency (168).

A second challenge in applying iPSC technologies is reproducibly generating pure 

populations of differentiated cells. Many differentiation protocols use poorly defined 

reagents and procedures, such as Matrigel and hanging-drop embryoid body formation, that 

can result in highly variable outcomes. Significant progress already has been made toward 

replacing Matrigel in iPSC maintenance and differentiation, as discussed in Sections 3 and 

4, above. Techniques including microwell aggregation (169) and rotary suspension culture 

(170) have been employed to generate uniform-sized embryoid bodies with high 

differentiation potential. Other research groups have taken combined experimental and 

computational approaches to generating kinetic models of PSC differentiation to optimize 

cell culture conditions (171). Combining these disparate strategies may lead to significantly 

improved control of PSC differentiation.

5.2. Increasing Throughput and Sensitivity for Screening

The ability to derive essentially any mature cell type from stem cells provides an avenue to 

generate human-specific, and even patient-specific, platforms for drug screening and 

toxicology assays. The cellular microenvironment is known to alter how cells respond to 

external stimuli, so retaining the ability to modulate niche properties in parallel with drug or 

toxin treatment may provide results not easily recapitulated with traditional 2D culture 

techniques. High-throughput approaches will likely be required to adequately screen the 

large variable space for many of these studies. Microarray-based approaches have been 

developed to assess the effects of microenvironmental factors on stem cell behavior, 

including synthetic polymer coatings (172), ECM components (173) and cell–cell signaling 

factors (113, 174). The robot-assisted approaches used to generate these arrays have been 
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applied to generate both 2D (175) and 3D (176) hydrogels with tunable mechanics and 

biochemistry to probe combinatorial effects of niche parameters on stem cell fate. Le et al. 

(177) recently developed a platform to generate tunable hydrogel arrays without robotic 

assistance by modulating the wettability of the surface. We direct the reader to a recent 

review for additional discussion of high-throughput techniques to probe stem cell fate 

decisions (178).

Another consideration when designing platforms for drug and toxicity screening is the 

sensitivity of the assay for detecting cellular responses to the drug or toxin. The highly 

variable composition of natural hydrogels such as Matrigel can result in significant 

variability among samples within the same condition. This high variance means that large 

sample sizes are required to provide sufficient statistical power to confidently assess the 

effect of treatment. Nguyen et al. (179) demonstrated that synthetic hydrogel 

microenvironments can replace Matrigel in vascular toxicity screens. The synthetic 

hydrogels provided enhanced sensitivity and reproducibility compared with Matrigel when 

assessing vascular network responses to known toxins (179).

5.3. Scale-Up for Clinical Use

As discussed in Section 3, the translation of stem cell therapies to the clinic will require 

novel approaches to scale up stem cell expansion protocols. Engineered microenvironments 

have been demonstrated to promote stemness maintenance in various cell types, making 

these approaches attractive for future scale-up. Beyond maintaining stemness, such systems 

must also be amenable to industrial-scale processing and adhere to strict regulatory 

guidelines (105). Thus, hydrogel systems with complicated formulations or poorly defined 

components will likely not be useful for large-scale stem cell expansion (105). The 

identification of fully defined matrices for 2D expansion of PSCs was a significant 

advancement toward production of clinically useful cells (99). More recently, 

thermoresponsive 3D hydrogel platforms have been investigated for scaling up PSC 

production. Lei & Schaffer (108) developed a fully defined synthetic hydrogel that permits 

higher-density cell culture than traditional 2D methods and facile release of encapsulated 

cells, simplifying the processing steps necessary to expand and collect the cells. These 

studies suggest that a more minimalist approach to materials design is optimal to engineer 

niches for industrial-scale production of stem cells (Figure 3).

5.4. Increasing Complexity for Better In Vitro Models

Engineering in vitro models to study basic biology or patient-specific disease states often 

employs a variety of niche factors to achieve more native-like behavior. Thus, in contrast to 

designing simplified materials for industrial-scale stem cell production, in vitro modeling 

may necessitate new strategies to incorporate additional complexity into hydrogel 

microenvironments (Figure 3). Two complementary approaches to address this challenge can 

benefit from advances in hydrogel systems for stem cell culture.

One strategy to generate more biologically relevant in vitro models takes a bottom-up 

approach, using stem or progenitor cells to self-organize into small tissue structures that 

recapitulate some functions of native organs. These organoid models have been developed 
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for various human tissues, including intestine, kidney, brain, and retina (180). The protocols 

used to generate organoids require careful control of microenvironmental parameters such as 

soluble growth factors and Matrigel-based ECM (180). Several recent studies have 

demonstrated the utility of engineered microenvironments to generate various types of 

organoids. Fully defined hydrogels with tunable mechanics, degradation, and ligand 

presentation facilitated the maintenance of intestinal organoids (121). Microfibrillar 

templates enhanced the cortical development of brain organoids through geometric control 

over embryoid body formation (181). Generation of amnion-like tissue constructs required 

control over both stiffness and dimensionality (2D versus 3D culture protocols) (182).

A second strategy to generate more biologically relevant in vitro models employs a top-

down approach, using additive manufacturing techniques to produce artificial tissue 

constructs. 3D bioprinting permits geometric control over larger length scales than self-

organizing organoid approaches, enabling the introduction of perfusable vascular-like 

networks (183, 184). Thus, 3D bioprinting may yield larger tissue constructs that are not 

limited by nutrient diffusion. Many research groups are actively developing hydrogel 

formulations that maintain cell viability and enforce spatial cell arrangement throughout the 

printing process, while retaining control over microenvironmental cues that regulate stem 

cell phenotype (183, 184).

6. CONCLUSION

Stem cell fate is dictated by a complex interplay of biophysical and biochemical factors 

present in the native stem cell niche. Drawing inspiration from native stem cell 

microenvironments has led to engineering strategies to maintain stemness and direct 

differentiation ex vivo. Hydrogel materials afford control over critical regulators of stem cell 

fate, including matrix mechanics and biochemistry, microscale structure, and cell–cell 

interactions. Due to this level of control, engineered hydrogel niches have the potential to 

improve reproducibility and increase throughput for stem cell culture, facilitate production 

of stem cells for clinical use, and generate biomimetic tissue constructs.
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Figure 1. 
Stem cell phenotypes and applications. Engineered hydrogels recapitulating aspects of the 

native stem cell niche can facilitate maintenance of stem cell quiescence, promote stem cell 

expansion, and direct stem cell differentiation. The stem cells and their differentiated 

progeny may be used for regenerative medicine applications, in vitro disease models, and 

toxicology screening.
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Figure 2. 
Niche interactions known to modulate stem cell phenotype.
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Figure 3. 
The spectrum of required simplicity/complexity for engineered hydrogel niches designed for 

future stem cell applications.
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Table 1

Engineering niche properties to modulate stem cell phenotype

Stem cell phenotype Stem cell type Engineered niche factor(s) Reference(s)

Stemness maintenance: expansion Pluripotent stem cells Matrix stiffness 104

Matrix composition 100, 101, 103

Hematopoietic stem cells Matrix stiffness 110, 111

Matrix composition 111, 112

Cell–cell factors 113

Mesenchymal stem cells Matrix stiffness 116, 117

Matrix composition 119

Microstructure 118

Intestinal stem cells Matrix stiffness, degradability, composition 121

Stemness maintenance: quiescence Muscle stem cells Matrix stiffness 124-126

Microstructure, soluble factors 126

Differentiation Pluripotent stem cells Matrix stiffness 129-133

Matrix composition 138-140

Microstructure 134-137

Mesenchymal stem cells Matrix stiffness 14, 17, 142

Matrix viscoelasticity 26, 28, 143, 144

Matrix degradability 46

Cell-adhesive ligands 40, 49, 145, 146

Matrix composition 148

Cell-secreted factors 88, 149

Cell–cell contact 95, 96, 151

Neural stem cells Matrix stiffness 154-160

Matrix degradation 161

Microstructure 162

Cell-adhesive ligands 15, 39, 42

Cell-secreted factors 163
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