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Abstract. In this paper, we propose DeepAlign, a novel approach to
multi-perspective process anomaly correction, based on recurrent neural
networks and bidirectional beam search. At the core of the DeepAlign
algorithm are two recurrent neural networks trained to predict the next
event. One is reading sequences of process executions from left to right,
while the other is reading the sequences from right to left. By combining
the predictive capabilities of both neural networks, we show that it is possi-
ble to calculate sequence alignments, which are used to detect and correct
anomalies. DeepAlign utilizes the case-level and event-level attributes to
closely model the decisions within a process. We evaluate the performance
of our approach on an elaborate data corpus of 252 realistic synthetic event
logs and compare it to three state-of-the-art conformance checking meth-
ods. DeepAlign produces better corrections than the rest of the field reach-
ing an overall F score of 0.9572 across all datasets, whereas the best com-
parable state-of-the-art method reaches 0.6411.

Keywords: Business process management + Anomaly detection - Deep
learning - Sequence alignments

1 Introduction

Process anomaly detection can be used to automatically detect deviations in
process execution data. This technique infers the process solely based on distri-
butions of the execution data, without relying on an abstract definition of the
process itself. While these approaches can accurately pinpoint an anomaly in
a process, they do not provide information about what should have been done
instead. Although, the knowledge about the occurrence of an anomaly is valu-
able, much more value lies in the knowledge of what was supposed to happen
and how to avoid this behavior in the future.

Process mining techniques are centered around the notion of a process model
that describes the correct behavior of a process. Conformance checking tech-
niques can be utilized to analyze process executions for their conformance with a
process model. This method has the benefit of not only detecting deviations from
the defined process but also of providing the closest conforming path through
the process, thereby correcting it.
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The correctness of the conformance checking result depends on the quality
of the process model. Furthermore, a correct execution of a process is not nec-
essarily defined by a correct order of process steps but can depend on a variety
of other parameters. For example, it might not be allowed that the same person
executes two consecutive process steps or a process might differ depending on
the country it is being executed in. All these possibilities have to be accounted
for both in the process model and the conformance checking algorithm to ensure
a correct result. If no process model is available, conformance checking cannot
be used and the creation of a good reference model is a time-consuming task.

An automatic process anomaly correction is therefore desirable, combin-
ing the autonomy of an anomaly detection algorithm with the descriptive
results from conformance checking. Against this background, we propose the
DeepAlign! algorithm, which combines these two benefits. It borrows from the
field of anomaly detection and employs two recurrent neural networks (RNN),
trained on the task of next event prediction, as an approximate process model
[18]. Inspired by the alignment concept from conformance checking, we show
that a bidirectional beam search [17] can be used to align a process execution
with the process model as approximated by the two RNNs.

DeepAlign can not only detect that process steps have been skipped, but it
can also predict which process steps should have been executed instead. Fur-
thermore, it does not rely on a reference model of the process, nor any prior
knowledge about it. It can be used to automatically detect anomalies and to
automatically correct them.

2 Background

Before we describe the DeepAlign algorithm, we must first introduce some con-
cepts from the field of process mining and deep learning.

2.1 Process Mining

Process mining is centered around the idea of human-readable representations
of processes called process models. Process models are widely used in business
process management as a tool for defining, documenting, and controlling business
processes inside companies.

During the execution of a digital business process, each process step is stored
in a database. This includes information on when the process step was executed
(timestamp), what process step was executed (activity), and to which business
case it belongs (case identifier). These three fundamental bits of event informa-
tion are the basis for every process mining algorithm and are usually combined
into a single data structure called event log.

A log consists of cases, each of which consists of events executed within a pro-
cess, and some attributes connected to the case (case attributes). Each event is
defined by an activity name and its attributes (e.g., a user who executed the event).

! Available on GitHub https://github.com/tnolle/deepalign.
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Definition 1. Case, Event, and Log. Let £ be the set of all events. A case is a
sequence of events ¢ € £, where £* is the set of all sequences over € Let C be
the set of all cases. An event log is a set of cases L C C.

Event logs can be used to automatically discover a process model. Discov-
ery algorithms analyze the event logs for process patterns and aim to produce
a human-readable process model that likely produced the event log. Multiple
discovery algorithms exist, such as the Heuristics Miner [20] and the Inductive
Visual Miner [9)].

2.2 Alignments

In process analytics, it is desirable to relate the behavior observed in an event log
to the behavior defined in a process model. This discipline is called conformance
checking. The goal of conformance checking is to find an alignment between an
event log and a reference process model. The reference model can be manually
designed or be discovered by a process discovery algorithm.

Definition 2. Alignment. An alignment [5] is a bidirectional mapping of an
event sequence oy from the event log to a possible execution sequence o, of the
process model. It is represented by a sequence of tuples (s;, sm) € (€2 x EZ)N\{(>
,>>)}, where > is an empty move and £ = £ U {>}. We say that a tuple
represents a synchronous move if s; € € and s, € £, a model move if s; = >
and sy, € €, and a log move if s; € £ and s, = >. An alignment is optimal if
the number of empty moves is minimal.

For o; = {(a,b,c,x,e) and o, = {a,b,¢,d, e), the two optimal alignments are

alble| x |>1e alblc|>|x |e
alble|>|d |e alblc| d [>|e

where the top row corresponds to o; and the bottom row corresponds to oy,
mapping moves in the log to moves in the model and vice versa.

2.3 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) have been designed to handle sequential data
such as sentences. An RNN is a special kind of neural network that makes use
of an internal state (memory) to retain information about already seen words in
a sentence. It is processing a sentence word for word, and with each new word,
it will approximate the probability distribution over all possible next words.
Neural networks can be efficiently trained using a gradient descent learning pro-
cedure, minimizing the error in the prediction by tuning its internal parameters
(weights). The error can be computed as the difference between the output of
the neural network and the desired output.

After the training procedure, the neural network can approximate the prob-
ability distribution over all possible next words, given an arbitrary length input
sequence. With slight alterations, RNNs can be applied to event logs, which we
will explain further in Sect. 3.
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2.4 Beam Search

In natural language processing, it is common to search for the best continuation
of a sentence under a given RNN model. To find the most probable continuation,
every possible combination of words has to be considered which, for a length of
L and a vocabulary size of V, amounts to V¥ possible combinations. Due to the
exponential growth of the search space, this problem is NP-hard.

Instead, a greedy approach can be taken, producing always the most likely
next word given a start of a sentence, based on probability under the RNN.
However, this approach does not yield good results because it approximates the
total probability of the sentence continuation based only on the probability of
the next word. A more probable sentence might be found when expanding the
search to the second most probable next word, or the third, and so on.

Beam search (BS) is a greedy algorithm that finds a trade-off between travers-
ing all possible combinations and only the most probable next word. For every
prediction, the BS algorithm expands only the K most probable sentence con-
tinuations (beams). In the next step, the best K probable continuations over all
K beams from the previous step are chosen, and so on. For K = 1, BS is equiv-
alent to the greedy 1-best approach explained above. BS has the advantage of
pruning the search space to feasible sizes, while still traversing a sufficient part
of the search space to produce a good approximation of the most likely sentence
continuation.

The BS algorithm is iteratively applied, inserting new words with each step,
until convergence, i.e., the end of a sentence is reached, indicated by the end of
sentence symbol.

2.5 Bidirectional Beam Search

The BS algorithm continues a sentence until a special end of sentence symbol
is predicted. However, if the sentence has a defined beginning and end, this
approach cannot be used because a unidirectional RNN only knows about the
beginning of the sentence and not the end. This has been demonstrated and
been addressed in [17] with a novel bidirectional beam search (BiBS) approach.
Instead of using a single unidirectional RNN, the authors propose to use two
separate unidirectional RNNs, one reading the input sentences forwards, and
one reading them backwards.

The problem that arises with a gap in the middle of a sentence is that the
probability of the resulting sentence, after the insertion of a new word, can-
not be computed by a single RNN without re-computation of the remainder of
the sentence. In BiBS, this probability is approximated by the product of the
probability of the beginning of the sentence (by the forward RNN), the end of
the sentence (by the backward RNN), and the joint probability of inserting the
new word (according to both RNNs). The original BS algorithm is extended to
expand the search space based on this joint probability, ensuring a proper fit
both for the beginning and the end of the sentence.



DeepAlign: Alignment-Based Process Anomaly Correction Using RNNs 323

DeepAlign
Event
Log RNN RNN

> [o]a o]

H\bHH

Fig. 1. The DeepAlign algorithm makes use of two next event prediction RNNs and an
extended bidirectional beam search (green) to produce alignments (Color figure online)

The BiBS algorithm is iteratively applied to the original sentence, updating
it with each step, until convergence, i.e., no insertions would yield a higher
probability in any of the K beams.

3 DeepAlign

In this section we describe the DeepAlign algorithm and all its components. An
overview of the algorithm is shown in Fig. 1. Two neural networks are trained to
predict the next event, one reading cases from left to right (forwards), the other
reading them from right to left (backwards). An extended BiBS is then used to
transform the input case to the most probable case under the two RNN models.
Lastly, an alignment is calculated based on the search history of the algorithm.

3.1 Next Event Prediction

Next event prediction aims to accurately model the decisions being made in a
process. These decisions are based on multiple parameters, such as the history of
a case, the attributes connected to past events, and the case level attributes. To
succeed, a machine learning model must take into account all of these parameters.

In this paper, we propose a new neural architecture for next event predic-
tion. It has been designed to model the sequence of activities (control-flow),
the attributes connected to these activities (event attributes), and the global
attributes connected to the case (case attributes). Figure 2 shows the architec-
ture in detail.

At the heart of the network is a Gated Recurrent Unit (GRU) [7], a type
of RNN. This GRU is iteratively fed an event, consisting of its activity and
its event attributes, and must predict the corresponding next event. Each cat-
egorical attribute is fed through an embedding layer to map the values into a
lower-dimensional embedding space. To include the case attributes, we make
use of the internal state of the GRU. Instead of initializing the state with zeros
(the default), we initialize it based on a representation of the case attributes.
All case attributes are transformed by a case attribute network, consisting of
two fully-connected layers (FC), to produce a real-valued representation of the
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Fig. 2. RNN architecture for an event log with two case attributes ( Topic and Decision)
and two event attributes (User and Day)

case attributes. In other words, we initialize the next event prediction with a
representation of the case attributes, thereby conditioning it to predict events
according to these case attributes. Finally, the GRU output is fed into separate
FC layers with Softmax activations to produce a probability distribution over
all possible attributes of the next event (i.e., the prediction of the next event).

We train the networks with a GRU size equal to two times the maximum
case length on mini-batches of size 100 for 50 epochs using the Adam optimizer
with standard parameters [8]. The first layer of the case attribute network has
an output size of the GRU size divided by 8 and the second layer output is equal
to the hidden state size of the GRU. These parameters were chosen following an
exhaustive grid search, however, we found that any reasonable setting generally
worked.

3.2 The DeepAlign Algorithm

In the context of processes, the sentences of words from above will become the
cases of events from the event log. By replacing the next word prediction RNNs
with next event prediction RNNs in the BiBS algorithm we can apply it to event
logs. Instead of only predicting the next word, the RNNs will predict the next
event, including the most likely event attributes.

Our goal is to utilize the two RNNs as the reference model for conformance
checking and produce an alignment between log and the RNNs. Alignments can
be interpreted as a sequence of skip (synchronous move), insertion (model move),
or deletion (log move) operations. The BiBS algorithm already covers the first
two operations, but not the last. To allow for deletions, we have to extend the
BiBS algorithm.

SUY -

Let RNN be the forward event prediction RNN and RNN be the backward
RNN. Let further RNN(h, ¢) be the probability of case ¢ under RNN, initialized
with the hidden state h.
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Fig. 3. The probability of a case ¢ = {(a, b, ¢, d, €) is computed by the average probability
of the case under both the forward and the backward RNN

Fig. 4. The probability of a case ¢ = (a,b,d, e) after the insertion of an event c after
b is computed by the joint probability (a,b) under the forward RNN, (d, e) under the
backward RNN, and the probabilities of continuing the case with ¢ under both RNNs

The probability of a case ¢ under the two RNNs can be computed by
1 /—— —_—
P(e) =3 (RNN (ho, ) + RNN (ho,c)> :

where hg is the output of the case attribute network. If no case attributes are
available, the initial state is set to zeros. An example is shown in Fig. 3.

For an insertion of an event e at time ¢ in a case ¢, the probability under the
two RNNs can be approximated by

— —_— =
]Dins(cv e,t) = RNN (h07 C[l:t]) -RNN ( by, 6)
[ e
RN (B egase) - RNN (ho, csiomy)

where T is the total case length, c[;. is the index notation to retrieve all events
— —
from ¢ until time t, and h, is the hidden state of RNN after reading cpy.y.

Similarly, Zt+1 is the hidden state of RNN after reading cj;11.7). An example is
shown in Fig. 4.

The probability of deleting n events at time ¢ in a case ¢ can be approximated
by

—
Paa(e,n,t) = RNN (o, cir.g) - RNN (R1, cain )
—— [— —
RNN (e, i) - RNN (o, e i)

An example is shown in Fig. 5.
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Fig. 5. The probability of a case ¢ = (a,b, ¢, z,y,d, e) after the deletion of z and y is
computed by the joint probability of {a, b, c) under the forward RNN, (d, e} under the
backward RNN, and the probabilities of continuing the case with d and ¢ under the
forward and backward RNN, respectively

Algorithm 1 shows the full DeepAlign process of aligning a case ¢ with the two
RNNs. The algorithm is initialized with an initial set of beams B = {c}, i.e.,
the original case. For each possible operation, the probabilities are computed
using the aforementioned equations, and the top-K beams are returned. For
simplicity, we assume that top-K always returns the updated cases according to
the operations with the highest probability. The number of events that can be
deleted in one step can be controlled with the parameter N. This is necessary
because successively deleting single events does not necessarily generate higher
probabilities than removing multiple events at once.

Algorithm 1: DeepAlign algorithm
Data: Given a set of beams B, maximum number of beams K, and a maximum
deletion size N
while not converged do
B =
for b € B do
B' = B'U P(b);
fort=1,...,T do
| B'=B U{Psa(byn,t) | nel,...,N}U{Pns(be,t)|ec&}
end

end

B = top-K (B')

end

Result: B, the top-K beams after convergence

Algorithm 1 does not yet return alignments, but the top-K updated cases. By
keeping a history of the top-K operations (skip, deletion, and insertion) in every
iteration, we can obtain the alignment directly from the history of operations.
A deletion corresponds to an empty move on the model, whereas an insertion
corresponds to an empty move in the log.

The top-K selection in Algorithm 1 will select the top K beams based on the
probability under the RNN models. In case of ties, we break the tie by choosing
the beam with fewer empty moves (insertions and deletions).
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Fig. 6. A simple paper submission process which is used as an example in the evaluation

4 Experiments

We evaluate the DeepAlign algorithm for the task of anomaly correction. Given
an event log consisting of normal and anomalous cases, an anomaly correction
algorithm is expected to align each case in the event log with a correct activity
sequence according to the process (without anomalies) that produced the event
log.

We use a simple paper submission process as a running example throughout
the remainder of this paper. The process model in Fig. 6 describes the creation
of a scientific paper. It includes the peer review process, which is executed by a
reviewer, whereas the paper is written by an author.

To evaluate the accuracy of the corrections, we generated six random pro-
cess models using PLG2 [6]. The models vary in complexity with respect to
the number of activities, breadth, and width. Additionally, we use a handmade
procurement process model called P2P as in [15].

To generate event attributes, we create a likelihood graph [4] from the process
models which includes probabilities for event attributes connected to each step
in the process. This method has been proposed in [14]. A likelihood graph for
the paper process from Fig. 6 is shown in Fig. 7.

For each process step, the probability of the resource executing it is shown
in yellow. Depending on the resource, the probabilities of the next process steps
are shown in blue. Note that there is a long-term dependency between the steps
Develop Hypothesis and Conduct Study, and, similarly, between Develop Method
and Fwvaluate. That is, Conduct Study never eventually follows Develop Method,
and, likewise, Fvaluate never eventually follows Develop Hypothesis.

We can generate event logs by using a random-walk through the likelihood
graph, complying with the transition probabilities, and generating activities and
attributes along the way. In addition to the event attributes, we also generate
case attributes, as well as, dependencies between the case attributes and the
output probabilities in the likelihood graph. For the paper process, we generate
two case attributes, Decision and Topic.

If the topic is Theory, this implies that Develop Hypothesis will occur in a
case, whereas if the topic is Engineering, it implies Develop Method will occur.
The decision can be Accept, Weak Accept, Borderline, Weak Reject, or Reject.
For simplicity, we define that there will only be a Minor Revision if the Decision
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Fig. 7. A likelihood graph with user attribute; 1.0 probabilities omitted for simplicity

is either Accept or Weak Accept. There will be no Minor Revision otherwise. We
have generated an event log that follows these rules that we use as an example
throughout the remainder of the paper. The paper process was not used in the
evaluation because of its simplicity.

For each of the 7 other process models, we generate 4 random event logs with
varying numbers of event and case attributes. Additionally, we introduce noise to
the event logs by randomly applying one of 7 anomalies to a fixed percentage of
the cases in the event log. We generate datasets for noise levels between 10% and
90% with a step size of 10% (9 in total). We gather a ground truth dataset for
the anomaly correction problem by retaining the original cases before alteration.
The 7 anomalies are defined as follows.

— Skip: A sequence of up to 2 necessary events has been skipped

— Insert: Up to 2 random activities have been inserted

— Rework: A sequence of up to 3 events has been executed a second time

— Farly: A sequence of up to 2 events has been executed too early, and hence
is skipped later in the case

— Late: A sequence of up to 2 events has been executed too late, and hence is
skipped earlier in the case

— Attribute: An incorrect attribute value has been set in up to 3 events

To analyze the impact of the case and event attributes, we evaluate four
different implementations of DeepAlign: one that does not use any attributes
(DeepAlign()), one that only uses case attributes (DeepAlignC), one that only
uses event attributes (DeepAlignE), and one that uses both (DeepAlignCE).

Additionally, we evaluate baseline approaches that first discover a process
model using a discovery algorithm and then calculate the alignments [1]. We
chose the Heuristics Miner [20] and the Inductive Miner [9] using the imple-
mentations of the PM4Py library [2]. For completeness, we also evaluate the
conformance checking algorithm using a perfect Reference Model, i.e., the one
used to generate the event logs.
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We run the DeepAlign algorithm for a maximum number of 10 iterations with
a beam size of K = 5 and a maximum deletion size of N = 3, and consider the
top-1 beam for the evaluation. The Inductive Miner and the Heuristics Miner are
used as implemented in PM4Py. For the Heuristics Miner, we use a dependency
threshold of 0.99, and for the Inductive Miner, we use a noise threshold of 0.2.

5 Evaluation

The overall results are shown in Table 1. For each dataset we run the algorithms
and evaluate the correction accuracy, that is, an alignment is regarded as correct
if the model sequence is exactly equal to the ground truth sequence. For correct
alignments, we calculate the optimality of the alignment (i.e., if the number of
empty moves is minimal). For incorrect alignments, we calculate the distance
from the ground truth sequence with Levenshtein’s algorithm. Accuracy is mea-
sured as the macro average Fy score of normal (F}¥) and anomalous (F;') cases
across all datasets and noise levels.

Table 1. Correction accuracy, average error for incorrect alignments (based on the
Levenshtein distance), and alignment optimality for correct alignments; best results
are shown in bold typeface

CF|CA|EA FN F{ F; | Error | Optimal
Reference Model | v | — | — | 0.9011| 0.9331 0.9171| 1.46 -
Heuristics Miner | v | — | — | 0.6678| 0.6144  0.6411| 3.33 -
Inductive Miner | v | — | — | 0.6007| 0.2438 | 0.4222| 2.18 -
DeepAlign() v | — | = 0.7950| 0.8111| 0.8030| 2.52| 99.8%
DeepAlignC v | v | — | 0.8918] 0.9290| 0.9104| 2.41| 99.9%
DeepAlignE v | — | v/ | 0.9261| 0.9582| 0.9421| 1.65| 86.9%
DeepAlignCE vV | V| / ]0.9442 0.9702  0.9572| 1.84| 86.6%

Interestingly, DeepAlignE, and DeepAlignCE both outperform the perfect
Reference Model approach. This is because the Reference Model does not con-
tain any information about the case and event attributes. The Heuristics Miner
yields much better results in the anomaly correction task than the Inductive
Miner, however, DeepAlign() outperforms both, without relying on case or event
attributes.

Reference Model, Heuristics Miner, and Inductive Miner all produce opti-
mal alignments because the alignment algorithm guarantees it. The DeepAlign
algorithm shows a significant drop in alignment optimality when including the
event attributes. The drop in optimality can be attributed to the fact that we
always predict the top-1 attribute value for inserted events in the DeepAlign
algorithm. Furthermore, it might be connected to the attribute level anomalies
that we introduced as part of the generation. The best results are achieved when
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Fig. 8. F} score for each algorithm per noise ratio (left) and per dataset (right); error
bars indicate variance across all runs

including both the case and the event attributes. Figure 8 shows the Fj score for
each algorithm per noise level and per dataset. DeepAlignCE always performs
better than the Reference Model, and significantly better than the two mining
approaches.

We want to finish the evaluation with examples from the paper dataset to
illustrate the results of the DeepAlign algorithm. This is the resulting alignment
for a case with a Skip anomaly,

Submit

Evaluate | Conclude

Review ‘ .

Problem

Identify Research | Develop Experiment | Evaluate | Conclude | Submit | Review
Problem | Related Method
‘Work

‘ Identify ‘ > ‘ > ‘ Experiment

this is the result for a case with a Late anomaly,

Identify > > Experiment|Research Develop Evaluate|Conclude|Submit|...
Problem Related Method
Work
Identify Research Develop Experiment|> > Evaluate|Conclude|Submit|...
Problem Related Method
‘Work

and this is the result for a case with an Insert anomaly.

Identify Research Random Develop Experiment|Evaluate|Conclude|Random Submit|...
Problem Related activity Method activity

‘Work 10 12
Identify Research > Develop Experiment Evaluate|Conclude|> Submit|...
Problem Related Method

‘Work

The DeepAlign method can also be utilized to generate sequences from noth-
ing, that is, to align the empty case with the most likely case according to the
model. Depending on the case attributes that are used to initialize the RNNs,
the results will be different.
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For Decision = Reject and Topic = Engineering the resulting sequence is
(Identify Problem, Research Related Work, Develop Method, Experiment, Eval-
uate, Conclude, Submit, Review, Final Decision ), whereas if we set Topic =
Theory the resulting sequence is (Identify Problem, Research Related Work,
Develop Hypothesis, Experiment, Conduct Study, Conclude, Submit, Review,
Final Decision ). The DeepAlign algorithm correctly generates a sequence includ-
ing the Develop Method and Develop Hypothesis activities according to the
setting of the Topic case attribute. It also does not generate the Minor Revi-
sion activity because the Decision is Reject. When setting Decision = Accept,
DeepAlign will generate the sequence including the Minor Revision branch. A
similar effect can be observed when altering the event attributes.

This demonstrates that the RNNs are indeed capable of learning the rules
behind the decisions in the paper process (cf. [18]). Although the paper dataset
contains unambiguous dependencies between the case attributes and the result-
ing correct sequences, the overall results on the randomly generated datasets
indicate that case and event attributes ought not to be neglected.

6 Related Work

Anomaly detection in business processes is frequently researched. Many approa-
ches exist that aim to detect anomalies in a noisy event log (i.e., an event log
that contains anomalous cases).

Bezerra et al. have proposed multiple approaches utilizing discovery algo-
rithms to mine a process model and then use conformance checking to infer
the anomalies [3]. Bohmer etal. proposed a technique based on an extended
likelihood graph that is utilizing event-level attributes to further enhance the
detection [4]. The approach from [4] requires a clean event log (i.e., no anoma-
lies in the log), but it has been shown that the same technique can be applied
to noisy logs as well [14]. Recently, Pauwels et al. presented an approach based
on Bayesian Networks [16]. Deep learning based approaches are presented in [13]
and [14]. However, none of these approaches can be utilized to correct an anoma-
lous case or to produce an alignment.

Since Bezerra et al. presented their approach based on discovery algorithms in
2013, Mannhardt et al. have proposed both a data-aware discovery algorithm [11]
and a data-aware conformance checking algorithm [12]. The conformance check-
ing algorithm relies on a configurable cost function for alignments that must be
manually defined to include the case and event attributes. Our approach does
not rely on a manual definition of the cost function, it traverses the search space
based on learned probabilities instead.

Although alignments represent the current state-of-the-art in conformance
checking [1], they often pose a significant challenge because they are com-
putationally expensive. Van Dongen etal. address this issue in [19], compro-
mising between computational complexity and quality of the alignments. Very
recently, Leemans et al. have presented a stochastic approach to conformance
checking [10], which can speed up the computation.
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All of these approaches either rely on a non-data-aware discovery technique,
require a manual effort to create a proper cost function, or they cannot generate
alignments. To the best of our knowledge, DeepAlign is the first fully autonomous
anomaly correction method.

7 Conclusion

We have demonstrated a novel approach to calculate alignments based on the
DeepAlign algorithm. When no reference model is available, two recurrent neural
networks can be used to approximate the underlying process based on execution
data, including case and event attributes. The empirical results obtained in the
experiments indicate that RNNs are indeed capable of modeling the behavior of
a process solely based on an event log event if it contains anomalous behavior.

To the best of our knowledge, this is the first time that deep learning has
been employed to calculate alignments in the field of process mining. Although
we evaluate DeepAlign in the context of anomaly correction, many other appli-
cations are conceivable. For example, instead of training on a log that contains
anomalies, a clean log could be used. Furthermore, a clean log can be obtained
from an existing reference model, and DeepAlign could be used to find align-
ments. In other words, it might be possible to convert a manually created process
model into a DeepAlign model. A discovery algorithm based on DeepAlign is
also imaginable since DeepAlign can also be utilized to generate sequences from
scratch. Depending on the case attributes the resulting predicted sequences will
be different. We think that this idea lends itself to further research.

We further believe that the DeepAlign algorithm could be employed to
reduce the memory consumption of an alignment algorithm since the search
space is efficiently pruned during the bidirectional beam search. However, on
the downside, DeepAlign does not guarantee optimal alignments. This weakness
can be addressed by employing an optimal alignment algorithm between the
input sequence and the corrected sequence, albeit at the expense of efficiency.

In summary, DeepAlign is a novel and flexible approach with great applica-
tion potential in many research areas within the field of process mining.
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