®

Check for
updates

Online Reinforcement Learning
for Self-adaptive Information Systems

Alexander Palm®)@®, Andreas Metzger®, and Klaus Pohl
paluno — The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Essen, Germany
{alexander.palm,andreas.metzger,klaus.pohl}@paluno.uni-due.de

Abstract. A self-adaptive information system is capable of maintaining
its quality requirements in the presence of dynamic environment changes.
To develop a self-adaptive information system, information system engi-
neers have to create self-adaptation logic that encodes when and how the
system should adapt itself. However, developing self-adaptation logic may
be difficult due to design time uncertainty; e.g., anticipating all potential
environment changes at design time is in most cases infeasible. Online
reinforcement learning (RL) addresses design time uncertainty by learn-
ing the effectiveness of adaptation actions through interactions with the
system’s environment at run time, thereby automating the development
of self-adaptation logic. Existing online RL approaches for self-adaptive
information systems exhibit two shortcomings that limit the degree of
automation: they require manually fine-tuning the exploration rate and
may require manually quantizing environment states to foster scalability.
We introduce an approach to automate the aforementioned manual activ-
ities by employing policy-based RL as a fundamentally different type of
RL. We demonstrate the feasibility and applicability of our approach
using two self-adaptive information system exemplars.

Keywords: Self-adaptation - Reinforcement learning - Information
system engineering

1 Introduction

The concept of self-adaptation facilitates developing information systems that
are capable of maintaining their quality requirements even if the systems’ envi-
ronment changes dynamically [3,25]. Self-adaptation thereby helps developing
systems that can operate in a resilient way at run time. To this end, a self-
adaptive information system can modify its own structure, parameters and
behavior at run time based on its perception of the environment, of itself and of
its requirements. An example is a self-adaptive online store that must maintain
its performance requirements under changing workloads. Faced with a sudden
increase in workload, the online store may adapt itself by deactivating optional
system features to use less resources; e.g., it may deactivate its resource-intensive
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recommendation engine [17]. Another example is a predictive business process
monitoring system that generates alarms for triggering proactive process adap-
tations [12,21]. If a violation of a process performance objective is predicted, the
system may trigger an adaptation of the running process to use more or different
resources to speed up the execution of the remaining process steps.

To develop a self-adaptive information system, information system engineers
have to develop self-adaptation logic that encodes when and how the system
should adapt itself. Information system engineers, for instance, may specify
event-condition-action rules that define which adaptation action is executed
in response to a given environment change. Developing self-adaptation logic
requires an intricate understanding of the information system and its environ-
ment, and how adaptations impact on system quality [7,8]. Among other con-
cerns, it requires anticipating the potential environment changes the system may
encounter at run time to define how the system should adapt itself in response
to these environment changes. However, anticipating all potential environment
changes at design time is in most cases infeasible due to design time uncer-
tainty [8,24]. In addition, while the principle effects of an adaptation on the sys-
tem may be known, accurately anticipating the effect of a concrete adaptation
is difficult; e.g., due to simplifying assumptions made during design time [8,15].

One emerging way to address design time uncertainty is to employ online
reinforcement learning (RL) [1,2,4,10,19,22,31,32,35]. RL can learn the effec-
tiveness of adaptation actions through interactions with the system’s environ-
ment. This means that instead of information system engineers having to man-
ually develop the self-adaptation logic, the system automatically learns the self-
adaptation logic via machine learning at run time. The information system engi-
neer expresses the learning problem in a declarative fashion, in terms of the
learning goals the system should achieve. In the online store example, they may
express maintaining system performance as a learning goal. Online RL thereby
automates the manual engineering task of developing the self-adaptation logic.

Existing online RL approaches for self-adaptive information systems exhibit
two shortcomings that limit the degree of automation that may be achieved.
First, to facilitate convergence of learning, information system engineers have
to manually fine-tune the rate of exploration versus exploitation, i.e., how often
adaptation actions are selected that were not selected before. Second, most exist-
ing approaches use a lookup table to represent the learned knowledge, which
requires information system engineers to manually quantize environment states
to facilitate scalability if the environment has a high number of states. These
two manual activities may be expensive and potentially unreliable [15] and may
require information not available at design time due to design time uncertainty.

Our main idea is to automate the aforementioned manual activities by
employing policy-based RL as a fundamentally different type of RL [23,29]. In
simple terms, policy-based RL represents the learned knowledge as a an artificial
neural network [29]. Our approach conceptually, formally and technically inte-
grates policy-based RL into a well-known self-adaptive system reference model.
Our approach thereby facilitates online RL for self-adaptive information systems
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without having to (1) manually quantize environment states and (2) manually
fine-tune the exploration rate. We demonstrate the feasibility and applicability
of our policy-based approach using two information system exemplars: a self-
adaptive web application and a predictive process monitoring system.

In the remainder of the paper, we provide a more detailed problem description
in Sect. 2, introduce our approach in Sect. 3, present our experimental evaluation
in Sect. 4, discuss limitations in Sect. 5, and analyze related work in Sect. 6.

2 Problem Statement

As motivated above, RL helps to effectively automate the engineering of an
information system’s self-adaptation logic. In general, RL learns the effectiveness
of an agent’s actions through the agent’s interactions with its environment [28].
At time step t the agent executes an action a; in environment state s;. As a result,
the environment transitions to s,y at time step ¢t + 1 and the agent receives a
reward ryy1 for executing the action. The goal of RL is to optimize cumulative
rewards. When RL is used for self-adaptive information systems, “action” means
the concrete adaptation action (such modifying the structure, parameters or
behavior of the system), “agent” takes the role of the self-adaptation logic, and
“environment” includes the information system to be adapted at run time.
Existing approaches that use RL for building self-adaptive information sys-
tems utilize some variant of value-based RL (see Sect. 6). Value-based RL is a
model-free RL technique that employs a so called value function for representing
the learned knowledge. The value function gives the expected cumulative reward
when performing a particular action in a given state [28]. A concrete action may
be selected by choosing the action that has the highest value in a given state.
Typical variants of value-based RL are Q-Learning and SARSA [28], which differ
in how they update the value function. Existing RL approaches for self-adaptive
information systems use two different ways to represent the value function:

Value Function as Lookup Table. Most existing approaches store the value
function in a lookup table (see Sect. 6). Even though such tabular solution tech-
niques are straightforward to implement and well understood [31], they exhibit
two key shortcomings. First, due to the discrete nature of the lookup table, tabu-
lar solution techniques are limited to discrete state and action spaces and cannot
cope with continuous state and action spaces. Specifically, this means that envi-
ronment states have to be enumerable and cannot be represented by continuous
(e.g., real-valued) variables [22,31]. Second, the size of the lookup table directly
depends on the number of environment states that have to be stored, and thus
the size increases exponentially with the number of state variables. As a result,
tabular solution techniques suffer from poor scalability, because the learning
process has to collect data for all entries of the table to learn effectively [22,31].

A common way to address these limitations is to quantize continuous envi-
ronment states by defining a sufficiently small number of discrete environment
states [28]. Such quantization is a manual activity performed by information
system engineers, and thus may be expensive and potentially unreliable. The
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environment states may be quantized too coarse-grained to reflect reality, or
they may be quantized too fine-grained, which may lead to poor scalability due
to a too large size of the lookup table. Also, the extent of the state space (i.e., set
of all states) may be unknown due to design time uncertainty, and thus defin-
ing lower and upper bounds of discrete states may not be possible. To know
the extent of the state space would mean that developers at design time can
anticipate all potential environment changes the system may encounter at run
time.

Value Function Approximation. An alternative approach to avoid quanti-
zation of the state space is to approximate the value function; e.g., using lin-
ear or non-linear techniques (such as artificial neural networks). This allows
coping with large state spaces by generalizing over unseen states [28]. Despite
such function approximation, value-based RL in general faces the exploration-
exploitation dilemma [28]. To optimize rewards, actions should be selected that
have shown to be effective (aka. exploitation). However, to discover such actions
in the first place, actions that were not selected before should be selected (aka.
exploration). One typical solution to the exploration-exploitation dilemma is the
e-greedy mechanism. During learning, the e-greedy mechanism randomly chooses
an action with probability e. The challenge for an information system engineer is
to fine-tune the balance between exploitation and exploration in order to ensure
convergence of the learning process [28]. As an example, the information sys-
tem engineer may implement a mechanism that decreases ¢ over time, thereby
reducing the amount of exploration in order to facilitate convergence. However,
for online learning this poses the challenge of when and how to increase € again
in order to capture non-stationary environments, i.e., environments in which the
results of adaptation actions change over time [28].

Summarizing, the degree of automation of existing approaches is limited.
Information system engineers have to perform manual activities that may require
effort or may be difficult to perform due to design time uncertainty.

3 Policy-Based Online Reinforcement Learning Approach

Self-adaptive System Reference Model
as Basis. Our approach enhances the
MAPE-K model, a well-known reference
model for self-adaptive systems [14,16,18].
As shown in Fig. 1 this model suggests con-
ceptually structuring a self-adaptive system Execute
into two main elements: system logic and T |
self-adaptation logic. The self-adaptation ___-_
logic is further structured into four main stem Logi
conceptual activities that leverage a com-
mon knowledge base. The knowledge base
includes information about the managed Fig.1. MAPE-K reference model [16]
system and its environment (e.g., encoded

Self-Adaptation Logic

Analyze Plan

Knowledge
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in the form of models at run time), as well as adaptation goals (requirements)
and adaptation strategies or rules. The four activities are concerned with moni-
toring the system logic and the system’s environment via sensors, analyzing the
monitoring data to determine the need for an adaptation, planning adaptation
actions, and ezecuting these adaptation actions via actuators, thereby modifying
the system logic at run time.

Policy-Based Reinforcement Learning Foundations. The fundamental
idea behind policy-based RL is to directly use and optimize a parametrized
stochastic action selection policy [23,29]. The action selection policy maps states
to a probability distribution over the action space (i.e., set of possible actions).
This means that actions are selected by sampling from this probability distribu-
tion. A learning cycle consists of a predefined number of n time steps. At the end
of each learning cycle, the trajectory of n actions, states and rewards are used
for a policy update. During a policy update, the policy parameters are perturbed
based on the rewards received, such that the resulting probability distribution
is shifted towards a direction which increases the likelihood of selecting actions
which led to a higher cumulative reward.

Conceptual Overview of Approach. Figure2 depicts the conceptual archi-
tecture of our approach, showing how the elements of policy-based RL are inte-
grated into the MAPE-K loop. The dark-gray area indicates where the action
selection of RL takes the place of the analyze and plan activities of MAPE-K.
The learned stochastic policy takes the role of the self-adaptive system’s knowl-
edge base.

Self-Adaptation Logic

Ttaq a,
Policy Update
Spaq (Gradient Descent)

Y

Stochastic Policy
/ (Avrtificial Neural Network) \

]
St Action Selection a
(Sampling)
Monitor Execute
1 |
[ soreon |

System Logic

Fig. 2. Conceptual architecture of policy-based approach

At run time the policy is used by the self-adaptation logic to select (via
sampling) an adaptation action a; based on the current state s; determined by
the monitoring activity. Action selection determines whether there is a need for
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an adaptation (given the current state) and plans (i.e., selects) the respective
adaptation action to execute. A policy update utilizes the trajectory of actions
ag, states sy+1, and rewards .11 to update the policy. In our approach, policy
updates are performed via so-called policy gradient methods [28,29], because the
policy is represented as an artificial neural network. In our architecture, rewards
are computed by the monitoring activity, as this activity has access to all sensor
information collected from the system and its environment.

Formalization of Approach. As mentioned above, the learning problem is
stated in a declarative fashion. Typically, it can be formalized as a Markov
decision process MDP = (S, A, T, R), with

— S being the state space composed of a set of environment and system states
s € S observable by monitoring via the system logic’s sensors (e.g., system
workload and performance of the system),

— A being the action space with a set of possible adaptation actions a € A, i.e.,
possible ways the system may be adapted using the system logic’s actuators
(e.g., turning off or on different system features),

- T:S5%xAxS — [0,1] being the transition probability among states with
T(st,at, St4+1) = Pr(sit1]st, ar), which gives the probability that adaptation
action a; in state s; will lead to a state s;41, and

— R: S — IR, being a reward function which specifies the numerical reward the
system receives in state s;. The reward function expresses the learning goal
to achieve, which in our case expresses maintaining the quality requirements
of the system (e.g., performance should not fall below a given threshold).

Policy-based reinforcement learning finds a solution to the MDP in the form
of a parametrized stochastic policy mp : S x A — [0, 1], giving the probability
of taking adaptation action a in state s, i.e., mg(s,a) = Pr(als). The policy’s
parameters (weights of the artificial neural network) are given as a vector € IR?.

Regarding design time uncertainty, we assume that we know A, S, and R,
but do not know T'. More precisely, even if we do not know the exact states and
thus state space S, we know the state variables. As an example, even if we do not
know exact workloads of a web application (and maybe not even the maximum
workload), we can express a state variable workload w € INT. We assume that
we do not know T due to design time uncertainty about how adaptation impacts
on system quality. As an example, we may not have an exact understanding of
how different configurations of the system perform under different workloads.

Proof-of-Concept Implementation To select a concrete policy-based RL
algorithm for the implementation of our approach, we took into account two
main considerations. First, as we assume we do not know the transition function
T, we need to use a model-free variant of policy-based RL. Second, to facili-
tate online learning, we need an algorithm that continuously updates the policy
without waiting for a final outcome, i.e., without waiting for reaching a terminal
state. Actor-critic algorithms are a model-free variant of policy-based RL algo-
rithms that use bootstrapping (i.e., knowledge is updated continuously without
waiting for a final outcome). We use proximal policy optimization (PPO [26]) as
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a state-of-the-art actor-critic algorithm. PPO is rather robust for what concerns
hyper-parameter settings. Thereby, we avoid extensive hyper-parameter tuning
compared to other actor-critic algorithms. In addition, PPO avoids too large
policy updates by using a so called clipping function. A too large policy update
may mean that RL misses the global optimum and remains stuck in a local
optimum. To represent the actor and critic models of PPO, we used multi-layer
perceptrons with two hidden layers of 64 neurons each (neurons in the input and
output layers depended on the respective number of action and state variables).

4 Experimental Evaluation

To demonstrate the feasibility and applicability of our approach, the scope of
our experiments is to analyze whether the system is able to learn and improve
its self-adaptation logic at run time. We did not perform a comparative analysis
with existing value-based approaches at this stage, because such comparison
would be beyond the scope of the current paper. Such comparison would require
the careful variation and analysis of a range of parameters for the value-based
approach, including the setting of different exploration rates, as well as different
levels and forms of quantization of the state space. In particular, one has to
be careful not to perform unfair comparisons. As an example, the comparison
may be strongly influenced by the chosen quantization (see Sect.2). A too fine-
grained quantization may mean the value-based approach exhibits extremely
slow convergence. A too coarse-grained quantization may mean the value-based
approach will not be able to distinguish between different states and thereby will
not be able to optimize cumulative rewards.

4.1 Self-adaptive Web Application

Subject System. We use the auction web application Brownout-RUBiS as
a subject system [17]. When a user requests a specific item, the application’s
recommendation engine provides a list of recommended items based on past
auctions. Due to the resource needs of the recommendation engine, Brownout-
RUBIS has to balance two quality requirements: maximizing the user experi-
ence by providing many recommendations, while minimizing the user-perceived
latency. Therefore, the recommendation engine can be adapted by setting a so-
called dimmer value § € [0, 1], which represents the per-request probability that
the recommendation engine is activated. The dimmer value thus impacts on both
quality requirements: A high rate of recommendations increases user experience,
but at the same time also increases resource needs and thus may increase latency.

MDP of Subject System. We express the learning problem as input for our
approach as shown in Table 1. We define the reward function r; € R such that
learning may find a good balance between low latency and high recommendation
rates. We define the reward function such that a greater r; is better and aim
at mazimizing the cumulative reward. We assume that user satisfaction will
decrease for latencies higher than Aj.x and thus penalize latencies above Apax-
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Table 1. MDP of self-adaptive web application

State s: = (ut, o, Ae) | us € INT: monitored number of user requests
az € [0,1]: monitored recommendation ratio
A € RT: monitored latency
Action a; € A A=14€]0,1]: adapt the dimmer value
Reward 7 = o - f(A¢) | oz € [0,1]: monitored recommendation ratio
A € RT: monitored latency
Fw): utility function, f(A:) = 1if Ay < Amax; =
0if At > 2 Amax;
= —X¢/Amax + 2 else (= linearly decreasing
reward)

Experimental Setup. We deployed Brownout-RUBIS on a virtual machine
with 64 GB RAM running Ubuntu 16.04.5. We used httpmon [17] as workload
generator deployed on a separate virtual machine to generate different kinds
of workloads. We synthesized workloads using different, representative work-
load patterns from the literature [19]: stable (constant number of requests),
off /on (reflecting periodic batch processing), and cyclic (workload increases and
decreases in periods). We also replayed an excerpt of a real-world workload
trace [20].

We used ca. 4,600 learning cycles for each kind of workload, as this was
a sufficiently high number to observe convergence. Each learning cycle used
monitoring data from 128 consecutive time steps (the default setting of the PPO
algorithm we use in our implementation, see Sect.3). We set Apax = 20 ms as
latency threshold, because it is low enough to require a dimmer value below 1.

Experimental Results. Figure 3 shows the results for each kind of workload.
The diagrams show the state, action and reward at each learning cycle averaged
over the observations of 128 time steps.

Constant Off/on

1 400 0.8 400
9 1 350 0.7 1 350
j 4 300 0.6 4 300
1 s
: 250

4 200
j " 1 150
2
1

Requests
Requests

1 100 0.2 o 4 100
50 0.1 [ 1 50

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Learning Cycle Learning Cycle

Cyclic Real-world

400
1 350
300

250 Z
1 200
150 2
4100
1 50

0 1000 2000 3000 4000
Learning Cycle Learning Cycle

Fig. 3. Learning behavior for self-adaptive web application; blue = workload, black
= latency; green = dimmer value; red = reward (Color figure online)
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Fig. 4. Learning behavior in non-stationary environment; blue = workload, black =
latency; = dimmer value; red = reward (Color figure online)

The results show how our approach enables the system to adapt itself. The
system automatically adapts the dimmer value depending on the workload,
thereby optimizing the balance between latency and user experience (as visi-
ble in the increase of cumulative rewards). While at the beginning of the learn-
ing process, the adaptation of the dimmer value shows a high variance for all
workload patterns, after some time the variance of adaptation actions becomes
visibly lower. For the constant workload, the reward converges towards a value
of around 0.47 after ca. 1,950 learning cycles and stabilizes at a dimmer value
around 0.5, which leads to the highest recommendation ratio without violat-
ing the latency threshold. For the off/on workload, the reward increases over
time for the off as well as the on workload settings. From the second iteration
onwards, convergence can be observed. When comparing learning for the off and
on periods separately, one can observe that learning is able to reuse knowledge
about similar workloads over time. The cyclic workload, similar to the off/on
workload, indicates how learning may generalize from already acquired knowl-
edge. The overall observations are very much comparable to those of the off/on
workload, except that the average reward increases and decreases more slowly,
because the workload changes more smoothly. For the real-world workload,
our approach is able to learn from previously experienced states and is able to
keep the reward roughly at the same level by adjusting the dimmer value even
though the workload changes over time. Especially if a similar workload reoccurs,
our approach is able to quickly determine an effective adaptation action.

Figure 4 shows how our approach automatically captures non-stationary envi-
ronments. After learning cycle 1562 (“Drift 1”), we reduced the virtual machine
compute resources by half. This means that for the same dimmer value the
system experiences a higher latency, because less compute resources are avail-
able. Our approach learns to decrease the dimmer value such that the latency
threshold is not violated. After learning cycle 3125 (“Drift 2”), we increased
the resources by 1.5. Again, the dimmer values are set accordingly. Note that
our approach is able to capture this non-stationarity without explicitly mon-
itoring the changes in compute resources and without explicitly changing the
exploration rate.
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4.2 Self-adaptive Process Monitoring System

Subject System. We use a predictive process monitoring system introduced in
our earlier work [21]. The system uses neural network ensembles to predict pro-
cess outcomes. In addition, the system computes so called reliability estimates,
which give the probability that predictions are accurate. Only when the reliabil-
ity is above a given threshold, the system issues an alarm in order to trigger a
proactive process adaptation. Thereby the system aims to find a good trade-off
between prediction accuracy and prediction earliness (later predictions are more
accurate, but leave less time for adaptations). Experimental results show that
lower thresholds may lead to higher savings in process costs, whilst posing the
risk that such savings may not be achieved in all situations. Higher thresholds
may capture more situations but can lead to lower savings. However, a good
threshold is not known a priori. One solution is to determine the threshold using
a sub-set of the training data [30]. Here, we use online RL as an alternative to
learn when to trigger an alarm based on the predictions and their reliability.

MDP of Subject System. We express the learning problem as shown in
Table 2. For defining r; € R, we penalize the system for late predictions (thereby
incentivizing earliness) as well as for high process execution costs (following the
cost model from [30]). Like above, we aim at mazimizing the cumulative reward,
and thus express the reward function such that a greater r; is better.

Table 2. MDP of self-adaptive process monitoring system

State s = (7, pt) m¢ € [0,1]:  relative prefix-length (smaller values mean
earlier in the process)

ot € R: predicted numeric process outcome

pt € [0,1]: prediction reliability

Action a; € A A ={1,0}: 1= trigger alarm; 0 = do not trigger alarm
Reward rs = —(et + ¢¢) | er = 1.5:  Penalization of late predictions
c € IN: Process execution costs
= 100 if false negative prediction (contractual
penalty)

= 50 if true positive prediction (adapt. costs)
= 100 if false positive prediction (adapt. +
compensation costs)

Experimental Setup. We use the implementation of the predictive process
monitoring system presented in [21]. We selected the BPIC 2017 data set!,
because the process instances covered by the data set are sufficiently long to
observe the effect of earliness. Also, the data set has a sufficient number of pro-
cess instances and predictions to allow us to observe convergence of learning.

! https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.
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Experimental Results. Figure5 shows the results by depicting how the rate
of adaptations, earliness (in terms of relative prefix-length when an adaptation
was made), process execution costs, and overall rewards evolve. Other than in
the web application case, we do not show the development of the state variables,
because the state variables do not change smoothly over time, but may be quite
different between each consecutive time step.

0 500 1000 1500 2000 2500 2867
Learning Cycles

Fig. 5. Learning behavior for self-adaptive process monitoring system; = rate
of adaptations; blue = earliness; black = costs/100; red = overall reward/100 (Color
figure online)

Like for the self-adaptive web application, the results show how our approach
enables the system to adapt itself. It can be seen that the approach indeed is
able to learn when to adapt in order to maximize rewards. The reward begins to
increase after around 1,100 learning cycles and converges to a value of around
—60 after 2,000 cycles. Also, the results show how the system learns the trade-
off between accuracy and earliness. Up to learning cycle 250, the system always
adapts as early as possible. However, this entails high costs due to low prediction
accuracy at the beginning of process execution. Then, between learning cycles
250 and 1,250 the system learns that a very low rate of adaptations may lead to
low costs. However, this does not help increase rewards, because many adapta-
tions happen rather late (earliness around 0.5 on average). After learning cycle
1,250 the system starts learning that earlier predictions deliver higher rewards
and thereby finds a trade-off between accuracy and earliness.

5 Discussion

5.1 Threats to Validity

Internal Validity. To observe whether policy-based RL in principle has the
expected effect, we used a multi-layer perceptron as a simple neural network to
represent the policy. In order not to trade the problem of finding a good quanti-
zation of the state space and a suitable setting of the exploration rate in value-
based RL for hyper-parameter tuning in policy-based RL, we used only default
hyper-parameter settings. Also, we repeated each of the experiments multiple
times in order to assess potential random effects due to the stochastic nature of
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the neural networks. Even though there were some differences in the speed of
convergence, the learning behavior was consistent across these repetitions.

External Validity. We used two different kinds of self-adaptive information
systems in our experiments. For the web application, we used state-of-the-art
computer infrastructure and different workloads (both synthetic and real) to get
realistic measurements. For the business process monitoring system, we used a
large, public real-world data set. The learning problems for both systems differ
in terms of the action variable (continuous vs. discrete). Still, both problems
only consider a single action variable. For discrete action variables, this is due to
the current limitations of our approach for what concerns the size of the action
space (see below). For continuous action variables, our approach in principle is
applicable to more than one action variable, because the used PPO algorithm
can cope with that. We plan further experiments to confirm this.

5.2 Limitations

Handling Large Discrete Adaptation Spaces. The policy-based RL algo-
rithms we use can handle a large action space during online learning, provided
the action space is continuous. However, these algorithms do not naturally gener-
alize over a set of non-continuous, i.e., discrete, actions and thus cannot extend to
previously unseen actions [9]. Typically, self-adaptive information systems have
large discrete action spaces, such as feature-oriented or architecture-based self-
adaptive systems. As an example, take a system that offers ten optional system
features that may be dynamically activated and deactivated in any combination.
Its adaptation space thus contains 2'© = 1024 adaptation actions. These 1024
adaptation actions cannot be represented as a continuous variable. For such self-
adaptive systems with large discrete action spaces, our approach currently is not
applicable. One solution may be to embed the discrete actions in a continuous
space and use nearest-neighbor search to find the closest discrete actions [9].

Convergence of Reinforcement Learning. Performance of machine learning
depends, to a large degree, on the amount of data available for learning. When
used for self-adaptive systems, RL may require quite many learning cycles until
the learning process converges [22]. In our experiments, learning for both subject
systems required around 2,000 learning cycles (with data from 256,000 time
steps) to converge. Until RL has converged, the system most likely executes
inefficient adaptations, because not enough observations have yet been made.
Inefficient adaptations may lead to negative effects, because they are executed
in the live system [11]. To speed up convergence, one may aim to find good
initial estimates for the learned knowledge [10,28,34] or perform offline learning
via simulations of the system [31]. Still, online RL may not be applicable for
systems that operate in an environment where the effects of the “trial-and-error”
nature of RL may not be tolerable; e.g., if adaptation actions may harm the
environment or if an adversary in the environment may maliciously manipulate
input data.
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6 Related Work

Existing approaches that use RL for online learning in self-adaptive information
systems resort to value-based RL. We structure the discussion into how they
represent the value function (also see Sect. 2).

Value Function as Lookup Table. Amoui et al. use SARSA to learn effective
adaptation actions for a self-adaptive web application [1]. They radically quantize
environment states by defining only two values for each of the state variables. To
this end, thresholds defined by domain experts are employed. Huang et al. employ
Q-Learning for the dynamic optimization of resource allocation in operational
business processes [13]. In addition to optimizing the resource allocation for a
single process instance, they propose an optimization across process instances
by considering the global resource costs when updating the value table. Dutreilh
et al. employ Q-Learning for autonomic cloud resource management [10]. They
assume upper bounds for the state variables can be given; e.g., based on exper-
imental observation. Bu et al. employ Q-Learning for the self-configuration of
cloud virtual machines and applications [5]. To facilitate scalability, they define
three discrete states, representing high, medium and low ranges of the respective
state variable. Arabnejad et al. apply fuzzy Q-Learning and SARSA for cloud
auto-scaling [2]. Environment states are quantized and thereby limited to small
sets of states expressed in fuzzy logic. The benefit of fuzzy logic is that many
states can be represented by only a few fuzzy states. However, their approach still
requires identifying “discrete” fuzzy elements in the fuzzy set based on which RL
operates. Caporuscio et al. propose using value-based RL for multi-agent service
assembly [6]. The agents share state monitoring information and use Q-Learning
with a tabular representation of the value function. Zhao et al. use Q-Learning
in combination with case-based reasoning to generate and update adaptation
rules [35]. They quantize continuous environment states using equidistant points.
Wang et al. use multi-agent Q-Learning for adaptive service compositions [32].
They assume that the environment can be represented by a finite, discrete set of
states. In contrast to the above approaches, our policy-based approach does not
require discrete states or manual quantization, but it can directly handle large
and continuous environments.

Value Function Approximation. Tesauro et al. [31] use Q-Learning with non-
linear function approximation for autonomic cloud resource allocation. They use
a neural network (multi-layer perceptron) for approximating the value function.
They suggest using softmax or e-greedy as exploration mechanism and observe
that — for their specific subject system —, they can learn good policies without
requiring exploration. Yet, they do not analyze whether this observation may
generalize to other kinds of systems. Xu et al. use Q-Learning together with
function approximation (via artificial neural networks) for autonomic cloud man-
agement [34]. Moustafa and Zhang use Q-Learning with linear function approxi-
mation (via linear regression) for QoS-aware web service composition [22]. Wang
et al. use Q-Learning with function approximation via deep neural networks
(recurrent neural networks) for adaptive service composition [33]. Silvander
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propose using Q-Learning with function approximation via a deep neural network
(DQN) for the optimization of business processes [27]. All these approaches use
e-greedy as exploration mechanism, requiring fine-tuning of the exploration rate.
In contrast, our approach does not require explicitly controlling the exploration
rate, but exploration is done automatically via probabilistic action selection.

7 Conclusion

We introduced and experimentally evaluated an online reinforcement learning
approach to facilitate engineering of self-adaptive information systems. Our app-
roach contributes to information system engineering by increasing the degree of
automation. Concretely, our approach does neither require manually quantiz-
ing environment states nor manually having to determine suitable exploration
parameters for the reinforcement learning algorithm to work. As future work, we
will extend our approach to handle large discrete action spaces in order to cap-
ture additional types of self-adaptive systems. We will also investigate whether
deep learning models facilitate better representation of the learned knowledge.
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