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Abstract

Background: Different analytical approaches can influence the associations estimated in

observational studies. We assessed the variability of effect estimates reported within and

across observational studies evaluating the impact of alcohol on breast cancer.

Methods: We abstracted largest harmful, largest protective and smallest (closest to

the null value of 1.0) relative risk estimates in studies included in a recent alcohol–breast

cancer meta-analysis, and recorded how they differed based on five model specification

characteristics, including exposure definition, exposure contrast levels, study popula-

tions, adjustment covariates and/or model approaches. For each study, we approximated

vibration of effects by dividing the largest by the smallest effect estimate [i.e. ratio of

odds ratio (ROR)].

Results: Among 97 eligible studies, 85 (87.6%) reported both harmful and protective rela-

tive effect estimates for an alcohol–breast cancer relationship, which ranged from 1.1 to

17.9 and 0.0 to 1.0, respectively. The RORs comparing the largest and smallest estimates

in value ranged from 1.0 to 106.2, with a median of 3.0 [interquartile range (IQR) 2.0–5.2].

One-third (35, 36.1%) of the RORs were based on extreme effect estimates with at least

three different model specification characteristics; the vast majority (87, 89.7%) had dif-

ferent exposure definitions or contrast levels. Similar vibrations of effect were observed
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when only extreme estimates with differences based on study populations and/or adjust-

ment covariates were compared.

Conclusions: Most observational studies evaluating the impact of alcohol on breast can-

cer report relative effect estimates for the same associations that diverge by >2-fold.

Therefore, observational studies should estimate the vibration of effects to provide in-

sight regarding the stability of findings.

Key words: Alcohol consumption, breast cancer, vibration of effects, confounding

Introduction

Alcohol consumption, which has been associated with doz-

ens of acute and chronic diseases, is considered a leading

risk factor for global disease burden.1 Whereas the adverse

effects of heavy drinking are well documented,2,3 the im-

pact of low to moderate consumption is complicated, and

studies have suggested both protective and harmful

impacts on health, depending on the volume and pattern

of consumption.1 Due to the controversial relationship

between alcohol and health (especially when alcohol is

consumed at low levels), and the wide prevalence of alco-

hol consumption,4 research in this area is of great interest

for public health.1 However, research evidence often comes

from observational studies, which do not ensure causality

and have several innate study design limitations.

Observational studies are susceptible to confounding,

which can distort the relationship between an exposure

and outcome.5–7 Not all authors studying the same

exposure–outcome relationships will measure and/or con-

sider the same potential adjusting variables. Furthermore,

different model specification characteristics, including the

selection of exposure contrasts and reference groups, use

of variable transformations and/or the handling of outliers,

as well as population and outcome definitions, can have an

impact on the results observed in a study.8,9 For instance,

focusing on certain subgroups, like the relationships be-

tween alcohol consumption and risk of death in different

age groups, can lead to different conclusions.10 The pres-

ence of financial biases in some studies (e.g. those funded

by industry)11 or allegiance bias for specific theories (in-

cluding white hat bias12) may fuel the choice of analyses

and results that fit to some specific agenda.

The variability of effect estimates due to these alter-

native analytical approaches has been referred to as the ‘-

vibration of effects’ (VoE),9 and previous studies have

presented approaches to quantify vibration of effects, in-

cluding taking the ratio of the largest vs the smallest effect

on the same association with alternative analytical selec-

tions (i.e. vibration ratio).9,13 Ideally, raw data should be

used to generate the full distribution of effect estimates

that can be obtained within a study,13 but raw data are still

rarely available for observational studies.14,15 However,

publications reporting different effects on the same associ-

ation within the same paper can also be used to examine

the difference between the extremes of reported effect

estimates that have been obtained in the same study using

different analytical approaches. It is possible that many dif-

ferent analytical options are pursued and compared after

the data have been explored, but only a few are eventually

isolated and reported when a paper is published. Reported

findings may or may not suffer from selective reporting

bias. Meta-analyses traditionally try to identify, summarize

and compare effect estimates from studies with relatively

similar exposures, populations and adjustment variables,

Key Messages

• Different analytical approaches can influence the associations observed in observational studies.

• Three-quarters of the observational studies evaluating the impact of alcohol on breast cancer risk reported extreme

relative effect estimates for the same associations that diverged by over 2-fold.

• Approximately one-third of the extreme effect estimates reported in each study had at least three different main

model specification characteristics, including exposure definitions, exposure contrast levels, study populations, ad-

justment covariates and/or model approaches.

• To provide insight regarding stability and generalizability of findings, observational studies should approximate the

vibration of effects across a range of different analytical approaches.
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even if, in the absence of individual-level data, these analy-

ses may still differ across included studies. Vibration of

effects analyses based on reported extreme effect estimates

offer a partial view of the full vibration of effects that

would consider all possible analyses that could be done

with various datasets on the same questions.

Currently, little is known about how different model

specifications can influence the observed associations

between alcohol and health outcomes. One area where the

association has been particularly unclear is the relationship

between alcohol consumption and breast cancer risk. Some

studies have suggested a J-shaped association,16,17 indicating

that at low alcohol consumption levels, there is no associa-

tion or protective effects, but at higher levels, the risk

increases as the amount of alcohol consumption increases.

However, other studies have indicated null,18,19 weak20 or

monotonically increasing1 relationships. To evaluate the ex-

tent that effect estimates for the relationship between alcohol

and breast cancer can vary, we approximated the vibration

of effects for reported results by comparing the largest and

the smallest relative effect estimates reported in each study

across a large sample of published observational studies.

Methods

Data identification and eligibility

We identified all 102 observational studies on alcohol use

and breast cancer included in the 2016 Global Burden of

Disease, Injuries, and Risk Factors Study (GBD), which in-

cluded meta-analyses of alcohol use and 23 different health

outcomes.1 Considering that the GBD authors performed a

recent and comprehensive search of PubMed, the Global

Health Data Exchange and references of published meta-

analyses to identify cohort or case-control studies reporting

three common relative measures of risk (i.e. odds ratio,

hazard ratio and relative risk) on breast cancer and dose–

response amounts on alcohol consumption,1 we did not

perform a new, separate meta-analysis. Duplicates and

studies without relative effect estimates on broadly-defined

alcohol consumption and breast cancer were excluded.

Data extraction

One researcher (L.C.) screened the full text of all articles

and recorded the title, year of publication, journal name,

study design (i.e. case-control vs cohort study), cohort

name, study country, population subgroup, study period,

age range, sample size, number of breast cancer cases and

source of funding (i.e. governmental and/or other non-

profit organizations only, including industry or none

reported). We also determined the 2017 impact factor of

each publication’s journal in Journal Citation Reports. No

information was recorded for journals without a 2017 im-

pact factor. All uncertainties were discussed with the senior

author (J.D.W.).

For each study, we identified and extracted the largest

harmful, largest protective and smallest (closest to the null

value of 1.0) relative risk estimates corresponding to alco-

hol exposure and breast cancer related outcomes. For ex-

ample, if a study reported relative effect estimates of 1.1,

2.3, 0.99, 0.7, the largest harmful, largest protective and

smallest values would be 2.3, 0.7 and 0.99, respectively.

Reported relative risk estimates of broadly-defined alcohol

consumption and breast cancer were all considered eligible,

regardless of whether measures of precision, such as confi-

dence intervals or P-values, were provided. All relative risk

estimates were standardized to reflect a comparison of

higher alcohol exposure vs lower (or no) alcohol exposure.

For each estimate, we recorded the type of estimate (e.g.

odds ratio, relative risk or hazard ratio) and recorded: (i)

how alcohol exposure was defined (exposure definition), (ii)

how alcohol exposure was measured (exposure contrast lev-

els), (iii) which covariates were included in the multivariate

model (adjustment covariates), (iv) the study population

considered (subgroups), and (v) which model approach was

used. When reported, we also abstracted the corresponding

P-values and 95% confidence intervals. When extreme

estimates with the exact same magnitude were identified in

a study, we randomly selected one estimate.

Data analysis

Descriptive statistics were conducted to summarize the

characteristics of eligible studies, including study design,

study area and number of breast cancer cases.

Calculation of vibration ratio

All identified relative risks were assumed to be inter-

changeable, and thus metrics that were not odds ratios

were considered to be good approximations to the odds ra-

tio, which is a reasonable assumption because breast can-

cer incidence is relatively uncommon.21 To illustrate the

range of effect estimates reported in individual studies on

the association of alcohol and breast cancer, all extreme ef-

fect estimates were presented in a forest plot using the

‘ggplot2’ package in R (version 3.5.2; The R Project for

Statistical Computing), with the largest harmful, largest

protective and smallest (closest to the null value of 1.0) rel-

ative risk estimates from the same eligible studies in the

same row for direct comparison. Then, we estimated the

vibration ratio by the relative odds ratio [ratio of odds ra-

tios (RORs)], which is obtained by dividing the largest esti-

mate in value by the smallest estimate in value in each

study. When studies only reported harmful estimates, the

610 International Journal of Epidemiology, 2020, Vol. 49, No. 2



largest harmful estimate was divided by the smallest harmful

estimate closest to the null. For studies with only protective

estimates, we divided the smallest protective estimate closest

to the null by the largest protective estimate in magnitude.

The ROR represents how much reported relative risk esti-

mates for the same exposure–outcome relationship within a

study change based on different model specifications. The

forest plots for the RORs were created using the ‘forestplot’

package in R. For each ROR, we then recorded which of the

five main model specification differences there were between

the largest and the smallest estimates and recorded the num-

ber of RORs >1.2, 1.5, 2.4 and 10.0.

We visualized potential relationships between RORs

and certain study features using linear regression, and cal-

culated Pearson correlation coefficients for RORs with

continuous study characteristics (journal impact factor and

log-transformed number of breast cancer cases). Kruskal-

Wallis tests with a confidence level of 0.00522 were used to

assess the relationship between the RORs and study type,

metric type, study area and funding source type.

Sensitivity analysis

To evaluate the consistency of the observed vibration of

effects, analyses were repeated (i) excluding studies where

the extreme estimates differed based on exposure defini-

tion or contrast levels (pre-specified) and (ii) including only

studies where the extreme estimates only differed in expo-

sure definition or contrast levels (post hoc). As suggested

during peer review, we also calculated the 95% confidence

intervals for the RORs. Considering that the extreme effect

estimates were from the same study, we calculated the vari-

ance of each ROR assuming correlations of 0.5, 0.75 and

1.0. RORs were combined using the DerSimonian and

Laird procedure for random effects.

Results

Study characteristics

The GBD alcohol and breast cancer meta-analysis refer-

enced 102 studies, of which 1 was a duplicate and 4 did

not report any relative effect estimates for broadly-defined

alcohol consumption and breast cancer associations. The

97 eligible studies were published between 1984 and 2012,

in journals with a median impact factor of 4.55 (IQR

3.61–7.36) (Table 1, Supplementary Table S1, available

as Supplementary data at IJE online). There were 80 stud-

ies (82.5%) funded by governmental and/or other non-

profit organizations. Nearly two-thirds (59, 60.8%) were

Table 1. Summary of study characteristics

Case-control Cohort Total

Characteristic n (%) n (%) n (%)

Total studies 59 (60.8) 38 (39.2) 97 (100.0)

Publication year

<1990 11 (18.6) 2 (5.3) 13 (13.4)

1990–1999 21 (35.6) 9 (23.7) 30 (30.9)

2000–2009 19 (32.3) 20 (52.6) 39 (40.2)

�2010 8 (13.6) 7 (18.4) 15 (15.5)

Impact factor

�3 14 (23.7) 6 (15.8) 20 (20.6)

>3–5 19 (32.3) 15 (39.5) 34 (35.1)

>5–10 19 (32.3) 8 (21.1) 27 (27.8)

>10 7 (11.9) 9 (23.7) 16 (16.5)

Funding source

Governmental and/or other nonprofit organizations only 49 (83.1) 31 (81.6) 80 (82.5)

Including industry 2 (3.4) 2 (5.3) 4 (4.1)

None reported 8 (13.6) 5 (13.2) 13 (13.4)

Study area

North America 27 (45.8) 18 (47.4) 45 (46.4)

Europe 24 (40.7) 11 (28.9) 35 (36.1)

Asia 3 (5.1) 6 (15.8) 9 (9.3)

Other 5 (8.5) 3 (7.9) 8 (8.2)

Sample size

Median (IQR) 1943 (1107-3188) 55 387 (14 167–103 631) 4622 (1618–22 200)

Number of cases

Median (IQR) 859 (444-1571) 483 (248–1274) 740 (349–1508)
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case-control studies, with a median sample size of 1943

(IQR 1107–3188); 38 (39.2%) were cohort studies, with a

median sample size of 55 387 (IQR 14 167–103 631). The

vast majority of the studies were conducted in North

America (45, 46.4%) and Europe (35, 36.1%).

Distribution of extreme effect estimates

Of the 97 eligible studies, 85 (87.6%) reported both harm-

ful and protective relative risk estimates, 11 (11.3%)

reported only harmful estimates, and 1 (1.0%) reported only

protective estimates (Fig. 1; the figure with 95% confidence

intervals is provided in Supplementary Figure S1, available as

Supplementary data at IJE online). Among the 11 studies

reporting only harmful estimates, there was one study with

only one eligible effect estimate. Across all 97 studies, the

largest harmful and protective estimates ranged from 1.1 to

17.9 [median 2 (IQR 1.5–3.2)] and 0.0 to 1.0 [median 0.7

(IQR 0.5–0.8)], respectively. There were six (6 of 85, 7.1%)

studies where the largest harmful and protective estimates

were reported without a confidence interval or P-value. The

smallest (closest to the null value of 1.0) reported estimates

ranged from 0.8 to 1.4 [median 1.0 (IQR 1.0–1.0)].

Vibration of effects

The RORs, which were obtained by dividing the largest

and smallest effect estimates in value in each of the 97 eli-

gible studies, ranged from 1.0 to 106.2 (Fig. 2), with a me-

dian of 3.0 (IQR 2.0–5.2; see summary ROR and 95%

confidence interval in Supplementary Figure S2a–c, avail-

able as Supplementary data at IJE online). There were 94

(96.9%) RORs that were >1.2, 87 (89.7%) that were

>1.5, 65 (67.0%) that were >2.4, and 9 (9.3%) that were

>10.0. Among the 97 RORs, 35 (36.1%) were based on

extreme effect estimates with at least three different main

model specification characteristics (examples in Table 2).

Although the vast majority (87, 89.7%) of the extreme ef-

fect estimates reported in each study had different contrast

levels (e.g. <3, 3–7, 7þ drinks of liquor per week and

ex-drinkers vs <3, 3–7, 7þ drinks of beer per week and ex-

drinkers), there were 43 (44.3%) with different exposure

definitions, 46 (47.4%) with different population sub-

groups, 35 (36.1%) with different covariates and 1 (1.0%)

with a different model approach. Approximately one-third

(34, 35.1%) of RORs were based on extreme effect

estimates where the only differences were the exposure defi-

nition and/or contrast levels. One (1.0%) ROR was equal to

1.0 and had all the same model specifications because there

was only one eligible effect estimate reported in that study.

RORs were not associated with journal impact factor,

number of cases, study type, study area, measure type and

funding source (Fig. 3). However, among case-control

studies, the RORs decreased as impact factor and number

of breast cancer cases increased, and the corresponding

Pearson correlation coefficients were �0.199 (95% confi-

dence interval �0.439 to 0.067) and �0.089 (95% confi-

dence interval �0.338 to 0.171), respectively. For cohort

studies, there was no clear pattern of changes with impact

factor (�0.039, 95% confidence interval �0.359 to 0.288)

and with number of cases (0.151, 95% confidence interval

�0.178 to 0.449).

There were 34 studies (34 of 97, 35.1%) where the

RORs were based on extreme effect estimates that differed

only on exposure definition and/or exposure contrast, and

the median ROR was 2.00 (IQR 1.65–2.89,

Supplementary Fig. S3, available as Supplementary data at

IJE online). Among the 9 (9 of 97, 9.3%) RORs based on

extreme effect estimates with only different study popula-

tions and/or adjustment covariates, the median ROR was

3.69 (IQR 3.17–9.00) (Fig. 4).

Discussion

Our analysis found a wide vibration of effects within and

across 97 individual observational studies evaluating the

impact of alcohol consumption on breast cancer risk.

Nearly all studies reported both harmful and protective

relative risk estimates for broadly-defined alcohol con-

sumption and breast cancer associations, and nearly three-

quarters had extreme estimates that diverged more than

2-fold. Approximately one-third of the extreme effect

estimates reported in each study had at least three different

main model specification characteristics. Although the vast

majority of extreme effect estimates had different exposure

definitions or contrast levels, similar vibration of effects

were observed when only extreme effect estimates with dif-

ferences based on study populations and/or adjustment

covariates were compared. Vibration of effects were

smaller when only extreme effect estimates with differences

based on exposure definitions and/or exposure contrasts

were compared. These findings suggest that whereas cer-

tain analytical and modelling choices, reflecting different

types of alcohol and/or doses, can result in genuine differ-

ences, it is possible that many different analytical options,

with different results, are pursued and selectively reported.

Therefore, individual reported relative risk estimates from

observational studies should be interpreted with caution.

Within and across studies evaluating the impact of

alcohol on breast cancer, there are multiple factors that

can contribute to vibration of effects. In our evaluation, we

found that many extreme effect estimates had different

exposure definitions and contrast levels. Previous studies

have outlined difficulties in measuring alcohol
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Figure 1. Largest harmful, largest protective and smallest (closest to the null value of 1.0) relative risk estimates in the 97 observational studies evalu-

ating the effect of alcohol consumption on breast cancer risk.
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consumption (e.g. using different beverage types, grams

per day or units per week),25 selecting categories of

consumption and establishing reference groups.26 For in-

stance, some analyses may use a combined reference group

of ‘never drinker’ and ‘former drinker’. However, when

the ‘former drinker’ group includes ‘sick quitters’, who

may have stopped drinking due to poor health outcomes,

harmful outcomes can be observed in the reference

group.27 Other evaluations have suggested that the

J-shaped curve for alcohol consumption and health-related

outcomes disappears after accounting for ‘sick quitters’

bias.28,29 Although it can be expected that the highest lev-

els of alcohol consumption will lead to more harmful

health outcomes (e.g. larger effect estimates),1 other model

characteristics, such as choice of adjusting variables and

subgroups can alter observed estimates substantially, and

can contribute to both harmful or protective associations

within the same analyses.13,30,31

There are some potential limitations in our study. First,

with 97 eligible studies, our results may not be generaliz-

able to all observational studies evaluating the impact of

alcohol (let alone other postulated risk factors) on health

outcomes. The potential impact of vibration of effects

needs to be carefully considered and dissected in diverse

fields of observational epidemiology.32–34 Second, consid-

ering that our evaluation was based on studies identified

by a recent meta-analysis, we may have missed some

eligible studies. However, the GBD researchers carefully

searched two main databases as well as the references of

previously published meta-analysis, and it is unlikely that

additional articles would influence our overall findings.

Third, we focused on the extreme reported estimates, and

ideally raw data should be used to generate the full distri-

bution of effect estimates that can be obtained within a

study.13 If anything, our estimates are underestimates of

the potential vibration of effects that can be achieved, but

Figure 2. Scatter plot of ratio of odds ratios for the 97 observational studies evaluating the effect of alcohol consumption on breast cancer risk, with a

map of model specification differences. Black cells indicate observed differences.

614 International Journal of Epidemiology, 2020, Vol. 49, No. 2



they have the advantage that they represent real, published

analyses rather than possible, but unpublished analyses.

Fourth, considering our focus on extreme effect estimates,

we did not expect many of the same adjustment variables

to be considered across different analyses. Therefore, we

did not attempt to identify adjustment variables or analyse

patterns according to the variables examined. Lastly, some

vibration may reflect legitimate changes based on exposure

definitions and exposure contrast, but it is difficult to

disentangle genuine differences from study-level biases.

For instance, our findings were consistent after excluding

RORs that were more likely to represent genuine differen-

ces that could result from exposure definitions and

exposure contrasts, but RORs were smaller when only ex-

treme effect estimates with differences based on exposure

definitions and/or exposure contrasts were compared.

Further studies, using raw data, should evaluate the attrib-

uted vibration of each component in the analyses.

To provide insight regarding the stability of claimed as-

sociation and minimize selective reporting, authors should

clarify their selected model specifications, including expo-

sure definition, contrast levels, adjustment covariates and

population subgroups. In particular, directed acyclic

graphs (DAGs) could be used to discuss measured and

unmeasured confounders prior to conducting analyses.35

Observational studies should report the median and range

of relative risk estimates and P-values across a large num-

ber of sensitivity analyses. Presenting the pattern of the vi-

bration of effects when different assumptions are made can

offer a broad view of the impact of sensitivity analyses.

Furthermore, results from vibration of effects analyses can

be used to inform causal inference, such as disentangling

the relationships between various exposures definitions,

covariates and outcomes, and guiding Mendelian randomi-

zation and natural experiment studies.36

The large vibration of effects means that very different

results can be obtained based on what analytical and

modelling choices are made. The vibration is typically

much larger than the usual effect sizes of relative risks

reported in alcohol studies of breast cancer. This suggests

that the potential analytical noise is much greater than the

potential signals; it is often debated as to whether they are

null, protective or consistently harmful.1,37 Ideally, to con-

tain these inadvertent degrees of freedom in the analyses,

pre-registration with fully detailed specification of the

analyses should be considered.38,39 However, for most

epidemiological studies to-date, pre-registration is either

not done or done in spurious ways, e.g. studies are regis-

tered after they are completed, which obviously offers no

guarantee of any protection from these biases.40 There is

also debate about whether pre-registration for many obser-

vational studies is even feasible.41,42 Furthermore, whenT
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datasets are already collected and analyses can be done at

any time, it is difficult to ensure that the analyses have not

already been explored when a study is seemingly pre-

registered. Nevertheless, pre-registration of methods

should still be a legitimate option if done before data col-

lection and/or before any access to the collected data is

granted for analysis. The sharing of raw data used for anal-

yses will also increase transparency, thereby allowing

investigators to better understand the impact of using dif-

ferent exposure definitions.

Given that these practices are rarely if ever adopted to-

date in the field of alcohol and cancer risk assessment, one

has to be careful about making strong statements about the

validity of the published estimates of risk. In the presence

of very strong opinions and beliefs in the field of alcohol

exposure and cancer research, there is a risk that the litera-

ture may be shaped by the opinions of researchers,

reviewers and editors, picking the results of analyses that

fit best their preconceived theories. In that case, the pub-

lished, seemingly objective quantitative data may still

reflect mostly subjective expert opinions, and the synthesis

of data may really represent a form of expert vote-

counting instead of rigorous quantitative synthesis.

Therefore, observational studies should estimate the vibra-

tion of effects to provide insight regarding the stability of

findings.

Supplementary data

Supplementary data are available at IJE online.
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