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ABSTRACT
Background: Conventional analytic approaches for studying diet
patterns assume no dietary synergy, which can lead to bias if
incorrectly modeled. Machine learning algorithms can overcome
these limitations.
Objectives: We estimated associations between fruit and vegetable
intake relative to total energy intake and adverse pregnancy outcomes
using targeted maximum likelihood estimation (TMLE) paired
with the ensemble machine learning algorithm Super Learner, and
compared these with results generated from multivariable logistic
regression.
Methods: We used data from 7572 women in the Nulliparous
Pregnancy Outcomes Study: monitoring mothers-to-be. Usual daily
periconceptional intake of total fruits and total vegetables was
estimated from an FFQ. We calculated the marginal risk of preterm
birth, small-for-gestational-age (SGA) birth, gestational diabetes,
and pre-eclampsia according to density of fruits and vegetables
(cups/1000 kcal) ≥80th percentile compared with <80th percentile
using multivariable logistic regression and Super Learner with
TMLE. Models were adjusted for confounders, including other
Healthy Eating Index-2010 components.
Results: Using logistic regression, higher fruit and high vegetable
densities were associated with 1.1% and 1.4% reductions in pre-
eclampsia risk compared with lower densities, respectively. They
were not associated with the 3 other outcomes. Using Super Learner
with TMLE, high fruit and vegetable densities were associated with
fewer cases of preterm birth (–4.0; 95% CI: −4.9, −3.0 and −3.7;
95% CI: −5.0, −2.3), SGA (−1.7; 95% CI: −2.9, −0.51 and −3.8;
95% CI: −5.0, −2.5), and pre-eclampsia (−3.2; 95% CI: −4.2, −2.2
and −4.0; 95% CI: −5.2, −2.7) per 100 births, respectively, and high
vegetable densities were associated with a 0.9% increase in risk of
gestational diabetes.

Conclusions: The differences in results between Super Learner with
TMLE and logistic regression suggest that dietary synergy, which
is accounted for in machine learning, may play a role in pregnancy
outcomes. This innovative methodology for analyzing dietary data
has the potential to advance the study of diet patterns. Am J Clin
Nutr 2020;111:1235–1243.
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Introduction
In 2016, over half a million US deaths were attributable to

poor dietary patterns (1), emphasizing the need for science-
based nutrition recommendations to optimize health. The Dietary
Guidelines for Americans, which provides dietary advice for
health promotion and disease prevention (2), has received
substantial criticism (3–6). Some of the criticism stems from
the relative scarcity of evidence available from whole-diet
interventions to inform the recommendations (7). Whole-diet in-
terventions, such as the Dietary Approaches to Stop Hypertension
trial (8, 9), rigorously test a dietary pattern in its totality, which is
the conceptually relevant exposure of interest (10). In the absence
of trials, the guidelines rely on the larger body of observational
studies examining disease risk associated with dietary patterns
captured using self-reported intake.

However, evaluating a complex, multidimensional exposure
such as dietary patterns, which constitute consumption of an array
of foods and beverages in different amounts and combinations,
is difficult. One major challenge is how to account for synergy
in dietary patterns (11). Laboratory research shows that eating
certain foods in combination has synergistic health effects. For
example, a combination of 5 different berries has antioxidant
effects greater than the sum of the effects of the individual berries
(12). Similar synergy occurs with a combination of broccoli and
tomatoes on tumor growth (13). Synergy may be particularly
likely when foods are combined across food groups (e.g., legumes
and fruit) (14). Antagonistic effects have also been observed (14).
Despite these elegant laboratory data, nutritional epidemiology
lags behind in accounting for synergy.

The most commonly used methods for the analyses of self-
reported dietary data implicitly assume no synergy. Dietary
variables are often constructed as diet index scores, factor scores
(from factor or principal component analysis), or clusters (from
cluster analysis) (15–17). Although these constructs attempt
to account for multidimensionality with a focus on dietary
patterns rather than specific foods or nutrients, they rely entirely
on investigator background knowledge to correctly identify
relevant interactions among dietary components a priori. In other
words, investigators must manually code all relevant interactions
between dietary variables or between a dietary variable and a
covariate before running the model (18–20). Yet, knowledge
of such interactions is almost never available. Furthermore,
ignoring or misspecifying these interactions can lead to biased
effect estimates (18–20). Parametric regression also imposes
strict assumptions about the nature of variables’ relations to one
another. These assumptions lead to bias if incorrectly specified,
and yet are not typically subject to further investigation.

Machine learning methods can overcome these limitations.
They can more optimally handle synergy among dietary com-
ponents using automated data-adaptive strategies that discover
key interactions among variables (19, 21, 22). Machine learning
algorithms can also better account for a number of other specifica-
tions and assumptions by more flexibly modeling the interrelation
among dietary components (23). However, machine learning has
only recently been explored in nutritional epidemiology (24–31).

Our objective was to demonstrate the application of machine
learning in examining associations between dietary intake and
pregnancy outcomes—an area with a limited evidence base (32,
33). Specifically, we estimated associations between total fruit
and vegetable intake relative to energy intake, accounting for
other dietary components considered part of a multidimensional
dietary pattern, and 4 adverse pregnancy outcomes [preterm birth,
small-for-gestational-age (SGA) birth, gestational diabetes, and
pre-eclampsia]. Associations were examined using targeted max-
imum likelihood estimation (TMLE) paired with an ensemble
machine learning algorithm, and compared with results generated
from multivariable logistic regression.

Methods
We used data from the Nulliparous Pregnancy Outcomes

Study: monitoring mothers-to-be (nuMoM2b), a large prospec-
tive US pregnancy cohort that has been described in detail
previously (34). Briefly, from 2010 to 2013, nuMoM2b enrolled
10,038 women from 8 medical centers across the United
States if they had a viable singleton pregnancy, were at 6–13
completed weeks of gestation, and had no previous pregnancy
that lasted ≥20 weeks of gestation. At enrollment (6−13
completed weeks of gestation), women completed an FFQ
querying usual periconceptional dietary intake. Trained and
credentialed study personnel conducted detailed interviews to
ascertain data on demographics, medical history, and behaviors,
and abstracted data from ultrasound reports conducted by
certified sonographers. At least 30 d after delivery, a trained
certified chart abstractor recorded final birth outcomes, medical
history, and delivery diagnoses and complications. A common
protocol and manual of operations was used for all aspects of
the study at all sites. Each site’s local institutional review board
approved the study and all women gave written informed consent.
Our analytic sample included 7995 women who delivered at ≥20
weeks of gestation and had complete dietary and birth outcome
data (Supplemental Figure 1).

Usual dietary intake in the 3 mo before conception was
assessed at 6–13 weeks of gestation using a self-administered
modified Block 2005 FFQ, which was available in English and
Spanish. The instrument assesses 59 nutrients from ∼120 food
and beverage items. The FFQ’s food list was developed from
the NHANES 1999–2002 dietary recall data, and the nutrient
database was developed from the USDA Food and Nutrient
Database for Dietary Studies (35). Food groups were derived
from the MyPyramid Equivalents Database, version 2.0 (36). The
questionnaire uses a series of “adjustment” questions to improve
the estimation of fat and carbohydrate intake. Portion size is
asked for each food, and pictures of portion sizes were given to
participants to enhance accuracy. The instrument has been shown
to have acceptable validity relative to other self-report assessment
tools in many pregnant samples (37–42). The questionnaire was
modified to reflect a 3-mo period. Study personnel checked all
pages of the FFQ for completeness. Questionnaires were sent
to Block Dietary Data Systems (Berkeley, CA) for scanning
and nutrient analysis using software developed at the National
Cancer Institute (43).

The 2 main exposures of interest in our analysis were total
fruits and total vegetables, defined as densities as per the
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construction of the Healthy Eating Index-2010 (44). Healthy
Eating Index-2010 scores and components were calculated by
Block Dietary Data Systems using files that disaggregated
foods into their component parts. Specifically, usual daily
intakes of fruits and vegetables were expressed relative to
energy as cups per 1000 kcal. Other Healthy Eating Index-
2010 components, including whole grains, dairy products, total
protein foods, seafood and plant proteins, fatty acids, refined
grains, sodium, and “empty” calories, were considered as part
of a multidimensional dietary pattern, and were included in the
models as confounders (44). Percentage of empty calories was
calculated by summing the energy provided by added sugars,
solid fats, and excess alcohol intake (alcohol intake > 13
g/1000 kcal) and dividing by the total daily energy intake (44).

Gestational age was determined by applying the algorithm
defined by the nuMoM2b investigators (34). Preterm birth was
defined as delivery of a liveborn or stillborn infant between
20 + 0 and 36 + 6 weeks of gestation. Newborns were classified
as being SGA if their birth weight was <10th percentile for
gestational age at delivery (45, 46).

Gestational diabetes was defined as 1 of the following glucose
tolerance testing (GTT) criteria: 1) 3-h 100-g GTT with 2 values
from the following: fasting ≥95 mg/dL, 1-h ≥180 mg/dL, 2-h
≥155 mg/dL, or 3-h ≥140 mg/dL; 2) 2-h 75-g GTT with 1 value
from the following: fasting ≥92 mg/dL, 1-h ≥180 mg/dL, or 2-h
≥153 mg/dL; or 3) 50-g GTT with a 1-h value ≥200 mg/dL if no
fasting 3-h or 2-h GTT was performed (47). GTT was performed
as part of routine clinical care.

Detailed definitions of pregnancy hypertensive disorders used
in the nuMoM2b cohort have been published (47). Briefly, pre-
eclampsia was the following symptoms occurring at ≥20 weeks
of gestation through 14 d: gestational hypertension (≥140 mm Hg
systolic or ≥90 mm Hg diastolic blood pressure on 2 occasions
≥6 h apart or 1 occasion with subsequent antihypertensive
therapy, excluding blood pressures recorded during the second
stage of labor) and proteinuria (≥300 mg/24-h collection or
protein:creatinine ratio ≥ 0.3 or dipstick ≥ 2), thrombocytopenia
(platelet count < 100,000/mm3), or pulmonary edema. Pre-
eclampsia included superimposed pre-eclampsia or eclampsia,
regardless of the timing of onset. Cases that presented atypically
and were difficult to classify according to study criteria were ad-
judicated by review of clinical data by the principal investigators
and final classification was reached by their consensus judgment.

At enrollment, women self-reported their highest level of
education, which was categorized as high school or less (less
than high school, or high school graduate or equivalent),
some college (some college credit, but no degree, or asso-
ciate/technical degree), college graduate (bachelor’s degree), or
graduate degree (master’s, doctorate, or professional degree).
Self-reported race/ethnicity was classified as non-Hispanic white,
non-Hispanic black, Hispanic, or other. Other information self-
reported at the first visit included marital status, smoking before
pregnancy, and medical insurance. At the initial visit, women had
their weight measured using an electronic or balance scale while
wearing only light clothes and no shoes, and height measured
using a stadiometer or measuring tape. Early pregnancy BMI was
calculated as self-reported weight divided by measured height
squared (kg/m2). We classified women as underweight (<18.5),
normal weight (18.5−24.9), or affected by overweight (25−29.9)
or obesity (≥30) (48).

Statistical analysis

We contrasted the marginally adjusted risks of each adverse
outcome that would be observed under 2 different dietary
exposure scenarios. For example, what would the risk be if
all women consumed vegetables at ≥80th percentile of total
vegetable consumption, compared with <80th percentile? Our
exposures were total fruits and total vegetables, relative to energy
intake. We categorized total fruits and total vegetables as ≥80th
percentile or <80th percentile of the sample’s distribution of
each food group. We chose this cutoff because it corresponds
to the highest quintile, which is often the primary exposure
in nutritional epidemiology. Each exposure association was
adjusted for several other Healthy Eating Index-2010 components
conceptualized as part of a multidimensional dietary pattern,
as aforementioned. Furthermore, all contrasts were adjusted
for a set of confounders identified via directed acyclic graphs
(49, 50), including maternal race/ethnicity, age, smoking, ed-
ucation, prepregnancy BMI, marital status, and insurance. We
performed a sensitivity analysis by limiting the sample to women
whose energy intake was from the 5th to the 95th percentiles of
the distribution.

We estimated associations of fruit and vegetable density
with adverse pregnancy outcomes using multivariable logistic
regression and machine learning with automated data-adaptive
strategies (Super Learner) via TMLE. Logistic regression re-
quires correctly identifying and coding all relevant interactions
between the exposure of interest and all other covariates
included in the model (18–20). We did not include interaction
terms because we had no prior knowledge of dietary synergy
on pregnancy outcomes. For both approaches, we quantified
exposure effects by calculating the absolute differences in risk.
We multiplied risk differences (RDs) and their corresponding CIs
by 100 to estimate the number of excess (or prevented) cases of
the adverse outcome.

We included in our ensemble learner a prespecified library
of algorithms with tuning parameters. This library included 1)
random forests with minimum node size 500 and 2500 trees, and
2, 3, and 4 predictor variables selected at random for each split
(ranger), and sampling with and without replacement; 2) extreme
gradient boosting (xgboost) with maximum tree depth of 4, 5, or
6 and shrinkage parameters of 0.01, 0.001, or 0.0001; 3) Lasso
and elastic-net regularized generalized linear models (glmnet)
with elastic net mixing parameter α = 0.0 (ridge penalty), 0.2,
0.4, 0.6, 0.8, or 1.0 (Lasso penalty); 4) k-nearest-neighbors with
5, 10, and 50 nearest neighbors (kernelKNN); 5) classification
and regression trees with default tuning parameters (rpart); 6)
generalized linear models (glm); and 7) simple mean. To reduce
the potential for overfitting, each ensemble learner was fit using
10-fold cross-validation. We calculated the weights and the cross-
validated mean squared errors for all algorithms in each Super
Learner. We chose 10-fold cross-validation because increasing
the number of folds would have led to excessive computing
time.

Any machine learning algorithm used to quantify exposure
effects may be subject to problems induced by the “curse of
dimensionality” (51, 52). These problems include biased effect
estimation and poor CI coverage. To address these problems, we
implemented our machine learning algorithms using TMLE, a
doubly robust, maximum likelihood–based method for parameter



1238 Bodnar et al.

TABLE 1 Characteristics of 7572 deliveries in the Nulliparous Pregnancy
Outcomes Study: monitoring mothers-to-be

n (%)

Maternal age, y
<25 2443 (32)
25−34 4394 (58)
≥35 735 (10)

Maternal race/ethnicity
Non-Hispanic white 4852 (64)
Non-Hispanic black 821 (11)
Hispanic 1227 (16)
Other 672 (9)

Maternal education
High school or less 1313 (17)
Some college 1358 (18)
College graduate 3006 (40)
Graduate degree 1895 (25)

Prepregnancy BMI
Underweight 296 (4)
Normal weight 4280 (56)
Overweight 1638 (22)
Obese 1358 (18)

Smoking status
Nonsmoker 6322 (83)
Smoker 1250 (17)

Marital status
Not married 2713 (36)
Married 4859 (64)

Insurance at delivery
Private 5748 (76)
Public 1824 (24)

estimation. This doubly robust property ensures that parameter
estimates generated by TMLE will be unbiased if ≥1 of the
exposure or outcome mechanisms is consistently estimated
(53). We and others have previously shown that doubly robust
estimators like TMLE are less susceptible to the problems that
result from the curse of dimensionality (52, 54, 55).

All analyses were conducted with R this version 3.6.1 and
Stata version 14. The R code for the logistic regression and Super
Learner with TMLE is provided in the Supplemental Material.

Results
Most women in the analytic sample were 25–34 y old, non-

Hispanic white, college-educated, normal weight, nonsmokers,
married, and had private health insurance (Table 1). Preterm
birth, pre-eclampsia, gestational diabetes, and SGA birth oc-
curred in 8.0%, 8.4%, 4.8%, and 11% of the cohort, respectively.

Approximately 7% of women reported usual intake ≥80th
percentile of both fruits (≥1.2 cups/1000 kcal) and vegetables
(≥1.3 cups/1000 kcal), whereas 13% had ≥80th-percentile
intakes of fruit only and 13% had ≥80th-percentile intakes
of vegetables only. Women with high intakes of either fruits
or vegetables relative to energy intake were more likely than
their counterparts to be older, college educated, normal weight,
nonsmokers, married, non-Hispanic white (among those with
high vegetables only), and to have private health insurance (Table
2). Those with usual intakes ≥80th percentile for fruit had
higher mean intakes of vegetables, seafood and plant proteins,
and beneficial fatty acids, and lower mean intakes of refined

grains and empty calories than women who consumed less fruit.
Women with intakes ≥80th percentile of vegetables had higher
mean intakes of fruit, seafood and plant proteins, beneficial fatty
acids, and sodium, and lower intakes of refined grains and empty
calories than those who reported lower vegetable intake. There
were no important differences in intake of dairy, total protein
foods, or whole grains by categories of fruit or vegetable intake.

The unadjusted incidence of each adverse pregnancy outcome
was higher among women who consumed <80th percentile of
total fruits and total vegetables than among women consuming
≥80th percentile (Table 3).

After adjustment for maternal age, race/ethnicity, education,
marital status, insurance, prepregnancy BMI, smoking, and
dietary components, associations between the density of total
fruits and total vegetables within the diet and preterm birth,
SGA birth, and gestational diabetes were null when modeled
using logistic regression (Figure 1, Table 4). In contrast, Super
Learner with TMLE produced stronger and more precise effect
estimates for preterm birth and SGA. For instance, compared with
women who reported consuming <80th percentile of total fruit,
women reporting dietary patterns with higher fruit density had 4
fewer preterm births for every 100 women in the sample (RD:
−4.0; 95% CI: −4.9, −3.0) using Super Learner with TMLE.
The results from logistic regression differed by nearly an order
of magnitude (RD: −0.67; 95% CI: −2.4, 1.0). Pre-eclampsia
risk was lower among women who reported high fruit and high
vegetable intakes than among their counterparts based on both
modeling techniques. However, the estimates from Super Learner
with TMLE were stronger and more precise (Figure 1).

For all Super Learners, there was no single algorithm that
provided the best fit of the data (Supplemental Tables 1 and 2).
This highlights the importance of an ensemble machine learning
approach. For example, for the Super Learner estimation of the
outcome mechanism for the relation between fruit density and
preterm birth, generalized linear models accounted for ∼41% of
the fit and extreme gradient boosting accounted for 33%, whereas
the remainder was accounted for by random forests and k-nearest
neighbors.

These results did not meaningfully differ when we limited the
sample to women with usual energy intake from the 5th to the
95th percentiles of the distribution (data not shown).

Discussion
Although policy makers recognized the importance of dietary

synergy when developing the Dietary Guidelines for Americans
(2), the vast majority of nutritional epidemiology has not
accounted for synergy. Thus, it is not surprising that our results
relating fruit and vegetable density with 4 adverse pregnancy
outcomes led to markedly different conclusions depending
on the analytic approach. We observed predominantly null
associations generated from logistic regression models, whereas
Super Learner with TMLE produced effect estimates with
less variation that suggested protective associations for diets
high in fruits and vegetables relative to energy on risk of
preterm birth, SGA birth, and pre-eclampsia. The higher risk of
gestational diabetes with high vegetable intake could be driven
by certain subgroups of vegetables (e.g., potatoes and French
fries) and warrants further exploration. Although weak or null
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TABLE 2 Characteristics of 7572 deliveries in the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be according to usual daily fruit and
vegetable densities relative to energy intake in the periconceptional period1

Total fruit density Total vegetable density

<80th percentile
(<1.2 cups/1000 kcal)

(n = 6058)

≥80th percentile
(≥1.2 cups/1000 kcal)

(n = 1514)

<80th percentile
(<1.2 cups/1000 kcal)

(n = 6058)

≥80th percentile
(≥1.2 cups/1000 kcal)

(n = 1514)

Maternal age, y
<25 34 26 37 13
25−34 57 63 55 72
≥35 9 11 8 15

Maternal race/ethnicity
Non-Hispanic white 64 65 61 77
Non-Hispanic black 12 9 13 3
Hispanic 16 18 18 11
Other 9 9 9 9

Maternal education
High school or less 19 11 20 6
Some college 19 15 20 10
College graduate 39 43 39 43
Graduate degree 24 30 21 41

Prepregnancy BMI
Underweight 4 4 4 3
Normal weight 55 62 55 62
Overweight 22 19 22 22
Obese 19 15 19 13

Smoking status
Nonsmoker 82 91 82 89
Smoker 18 9 18 11

Marital status
Not married 38 27 41 17
Married 62 73 59 83

Insurance at delivery
Private 75 81 72 90
Public 25 19 28 10

Total fruit, cups/1000 kcal 0.63 ± 0.30 1.7 ± 0.44 0.77 ± 0.50 1.1 ± 0.58
Total vegetables, cups/1000 kcal 0.88 ± 0.48 1.2 ± 0.63 0.73 ± 0.27 1.8 ± 0.51
Dairy, cups/1000 kcal 0.88 ± 0.47 0.88 ± 0.50 0.89 ± 0.49 0.82 ± 0.41
Total protein foods, oz/1000 kcal 2.4 ± 0.76 2.2 ± 0.80 2.4 ± 0.74 2.5 ± 0.85
Seafood and plant proteins, oz/1000 kcal 0.83 ± 0.57 0.97 ± 0.64 0.79 ± 0.54 1.2 ± 0.70
Fatty acids2 1.4 ± 1.1 1.7 ± 1.13 1.4 ± 1.2 1.7 ± 0.90
Refined grains, oz/1000 kcal 2.3 ± 0.73 1.9 ± 0.64 2.3 ± 0.73 1.9 ± 0.67
Whole grains, oz/1000 kcal 0.62 ± 0.44 0.68 ± 0.44 0.62 ± 0.44 0.68 ± 0.43
Sodium, g/1000 kcal 1.6 ± 0.26 1.5 ± 0.26 1.6 ± 0.24 1.8 ± 0.25
Empty calories, % of energy 33 ± 8.6 27 ± 6.7 33 ± 8.4 26 ± 6.1

1Values are means ± SDs or percentages. One cup is equivalent to 237 mL; 1 oz is equivalent to 30 mL.
2Ratio of PUFAs and MUFAs to SFAs.

associations in nutritional epidemiology are often attributed to
measurement errors (56), other factors, including misspecifying
the underlying relations among dietary components and how each
plays a role in affecting pregnancy outcomes, likely also play
a role.

We are aware of only 1 other nutrition study to compare
parametric approaches with machine learning. Researchers
compared linear regression with k-nearest neighbor algorithm
and random-forest decision tree in their ability to accurately
classify cardiometabolic risk based on dietary data (27). They
found that machine learning approaches correctly classified
38% of individuals compared with 6% with linear regression.
We previously compared the relative performance of Bayesian

additive regression trees, generalized boosted models, or random
forests to parametric regression models and demonstrated a much
higher predictive accuracy with machine learning methods than
with regression, as well as important differences in the strength
of associations (57).

Machine learning has become popular in many scientific
fields plagued by problems with high-dimensional data. It is
only beginning to be explored in nutrition, but several elegant
studies demonstrate the tremendous potential of this approach
(24–31). For example, investigators used a machine learning
algorithm to combine data on dietary intake, biomarkers,
anthropometrics, physical activity, and gut microbiota to accu-
rately predict personalized postprandial glycemic response (29).
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TABLE 3 Incidence of adverse pregnancy outcomes by dietary variables in the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be
according to usual intake of fruit and vegetables in the periconceptional period1

Dietary exposure
Population at

risk, n
Preterm birth
cases, n (%)

Small-for-gestational-age
birth cases, n (%)

Gestational diabetes
cases, n (%)

Pre-eclampsia
cases, n (%)

Total fruit density
<80th percentile 6058 468 (7.7) 702 (11.6) 295 (4.9) 530 (8.8)
≥80th percentile 1514 93 (6.1) 165 (10.9) 67 (4.4) 106 (7.0)

Total vegetable density
<80th percentile 6058 460 (7.7) 708 (11.8) 292 (4.9) 539 (9.0)
≥80th percentile 1514 101 (6.4) 159 (10.1) 70 (4.4) 97 (6.2)

1The 80th percentiles are 1.2 cups fruit/1000 kcal and 1.3 cups vegetables/1000 kcal. One cup is equivalent to 237 mL.

Personalized nutrition (customized nutrition advice to optimize
individual health) was also explored in a study integrating the
Healthy Eating Index, folate metabolic genes, and other risk
factors in an ensemble machine learning procedure to predict
colorectal cancer (30). The same research team used machine
learning to evaluate predictors of the Healthy Eating Index and
glycemic index (31).

Although important and groundbreaking, previous machine
learning work in nutritional epidemiology has focused on risk

prediction or classification (i.e., using a set of variables to
predict the outcome well). Our research extends the field to
demonstrate an approach for effect estimation (i.e., estimating
the effects of an exposure on the distribution of disease, while
controlling for other variables), which is of the greatest interest in
developing national dietary guidance. Machine learning methods
may be subject to biased effect estimation and poor CI coverage
(51, 52). However, our implementation of Super Learner using
TMLE avoids this problem with doubly robust techniques,

Pre-eclampsia

Pre-eclampsia

≥80th <80th

≥80th <80th

FIGURE 1 Associations between fruit and vegetable density and risk of adverse pregnancy outcomes in the Nulliparous Pregnancy Outcomes Study:
monitoring mothers-to-be (n = 7252). (A) Adjusted differences in risk (95% CIs) of preterm birth, SGA birth, gestational diabetes, and pre-eclampsia between
total fruit intake relative to energy ≥80th percentile (≥1.2 cups/1000 kcal) (n = 1514) compared with <80th percentile (n = 6058) and (B) total vegetable intake
relative to energy ≥80th percentile (≥1.3 cups/1000 kcal) (n = 1514) compared with <80th percentile (n = 6058). Point estimates in black were generated
from multivariable logistic regression. Point estimates in gray were generated from Super Learner with targeted maximum likelihood estimation. All models
were adjusted for maternal age, race/ethnicity, education, marital status, smoking status, prepregnancy BMI, insurance, and usual dietary intake of whole grains,
dairy products, total protein foods, seafood and plant proteins, fatty acids, refined grains, sodium, and “empty” calories. SGA, small-for-gestational-age.
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TABLE 4 Association between fruit and vegetable density and risk of adverse pregnancy outcomes in the Nulliparous Pregnancy Outcomes Study:
monitoring mothers-to-be1

Multivariable logistic regression
Super Learner with targeted

maximum likelihood estimation
Dietary exposure Adjusted2 number of excess cases (95% CI) Adjusted2 number of excess cases (95% CI)

Preterm birth
Total fruit density

<80th percentile Referent Referent
≥80th percentile − 0.67 (−2.4, 1.0) − 4.0 (−4.9, −3.0)

Total vegetable density
<80th percentile Referent Referent
≥80th percentile 0.34 (−1.6, 2.3) − 3.7 (−5.0, −2.3)

Small-for-gestational age birth
Total fruit density

<80th percentile Referent Referent
≥80th percentile − 0.50 (−2.5, 1.5) − 1.7 (−2.9, −0.51)

Total vegetable density
<80th percentile Referent Referent
≥80th percentile 0.31 (−2.0, 2.6) − 3.8 (−5.0, −2.5)

Gestational diabetes
Total fruit density

<80th percentile Referent Referent
≥80th percentile 0.42 (−1.1, 1.9) − 0.26 (−1.1, 0.53)

Total vegetable density
<80th percentile Referent Referent
≥80th percentile − 0.23 (−1.7, 1.2) 0.90 (−0.23, 2.0)

Pre-eclampsia
Total fruit density

<80th percentile Referent Referent
≥80th percentile − 1.1 (−2.9, 0.60) − 3.2 (−4.2, −2.2)

Total vegetable density
<80th percentile Referent Referent
≥80th percentile − 1.4 (−3.3, 0.46) − 4.0 (−5.2, −2.7)

1n = 7252. The 80th percentiles are 1.2 cups fruit/1000 kcal and 1.3 cups vegetables/1000 kcal. One cup is equivalent to 237 mL.
2Adjusted for maternal age, race/ethnicity, education, marital status, smoking status, prepregnancy BMI, insurance, and usual dietary intake of whole

grains, dairy products, total protein foods, seafood and plant proteins, fatty acids, refined grains, sodium, and percentage of total calories that are “empty”
calories.

allowing us to quantify the targeted associations of interest.
A downside to our approach is the reliance on a dichotomous
primary exposure (58). We chose to dichotomize total fruits
and total vegetables at the 80th percentile of their respective
distributions because this corresponds to the cutoff for the upper
quintile, often of interest in nutritional epidemiology. Future
research should explore other cutoffs as well as the use of
continuous measures of dietary intake.

Our work was limited by the use of data from an FFQ, which
are affected by systematic measurement error to a greater extent
than other self-report methods such as 24-h recalls (59, 60).
Our adjustment for energy intake helps to attenuate the potential
for bias (61). We restricted our analysis to fruit and vegetable
food groups, but of greater interest is a more comprehensive
evaluation of foods in the exploration of the global role of dietary
patterns on health outcomes. The nuMoM2b study enrolled a
racially/ethnically diverse sample from 8 US centers, but we
sacrificed some generalizability in using this group because it
included only nulliparous women.

Our results show that Super Learner implemented with TMLE
can be used with dietary data to generate compelling interpretable
results that account for dietary synergy. The complex interactive
effects in the diet and the multidimensional nature of dietary

information make nutrition data ideally suited for machine
learning applications. This innovative methodology for statistical
analysis of dietary data has the potential to advance the field
of nutritional epidemiology, enhancing the evidence base for
recommendations that embrace the whole diet.
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