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ABSTRACT
Background: With the rising rates of obesity and associated
metabolic disorders, there is a growing need for effective long-
term weight-loss strategies, coupled with an understanding of how
they interface with human physiology. Interest is growing in the
potential role of gut microbes as they pertain to responses to different
weight-loss diets; however, the ways that diet, the gut microbiota,
and long-term weight loss influence one another is not well
understood.
Objectives: Our primary objective was to determine if baseline
microbiota composition or diversity was associated with weight-
loss success. A secondary objective was to track the longitudinal
associations of changes to lower-carbohydrate or lower-fat diets and
concomitant weight loss with the composition and diversity of the
gut microbiota.
Methods: We used 16S ribosomal RNA gene amplicon sequencing
to profile microbiota composition over a 12-mo period in 49
participants as part of a larger randomized dietary intervention study
of participants consuming either a healthy low-carbohydrate or a
healthy low-fat diet.
Results: While baseline microbiota composition was not predictive
of weight loss, each diet resulted in substantial changes in the
microbiota 3-mo after the start of the intervention; some of these
changes were diet specific (14 taxonomic changes specific to the
healthy low-carbohydrate diet, 12 taxonomic changes specific to
the healthy low-fat diet) and others tracked with weight loss (7
taxonomic changes in both diets). After these initial shifts, the
microbiota returned near its original baseline state for the remainder
of the intervention, despite participants maintaining their diet and
weight loss for the entire study.
Conclusions: These results suggest a resilience to perturbation of
the microbiota’s starting profile. When considering the established
contribution of obesity-associated microbiotas to weight gain in
animal models, microbiota resilience may need to be overcome
for long-term alterations to human physiology. This trial was

registered at clinicaltrials.gov as NCT01826591. Am J Clin Nutr
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Introduction
Current rates of obesity are alarmingly high and continue

to increase each year (1), a trend that was originally confined
to more affluent societies but has now begun to spread to the
developing world (2). Diseases associated with obesity include
heart disease, diabetes, and respiratory conditions, all of which
contribute to lower life expectancy and quality of life. Countries
faced with these trends have not been able to reverse them,
despite large-scale public health and medical efforts for weight
management. In order to combat these rising health concerns,
and to circumvent the need for medication, many turn to diet as
a way to target weight loss. However, in the context of obesity,
weight modulation through diet has been largely ineffective for
long-term weight management for a variety of reasons (3–5).

Previous work has established a relation between obesity and
the microbiome, including the causal role of obesity-associated
microbiotas to confer weight gain when transplanted into lean
mice (6–11) and weight-associated taxa in humans (12). The
microbiota can impact energy extraction from dietary intake (7),
fat storage in adipose tissue (13), and intestinal permeability
(14), all of which can contribute to obesity and associated
inflammation. In humans, obesity and long-term dietary patterns
are associated with microbiome composition (15, 16), as well
as predictive of weight regain (6). Due to the malleability and
interindividual variance in the microbiota, as well as its impact
on host physiology, diets based on an individual’s microbiome
may be a path forward in identifying more effective weight-loss
strategies in humans.

The Diet Intervention Examining The Factors Interacting with
Treatment Success (DIETFITS) clinical trial compared a healthy
low-carbohydrate (low-carb) with a healthy low-fat approach to
weight loss, in a year-long dietary intervention study (17). The
original objective of the parent trial was to observe how host
factors, such as a metabolism-related genotype and insulin resis-
tance, affected the success of the 2 diets as measured by weight
loss. It was shown that, while participants did lose a significant
amount of weight over a period of 12-mo, neither diet was univer-
sally superior and specific aspects of host genotype or insulin re-
sistance were unable to predict diet-specific weight-loss success.

Here we explore another individual-specific factor, the micro-
biome, in diet-specific weight loss from a subset of participants
in the DIETFITS trial. In this exploratory analysis of the
microbiome in the DIETFITS weight-loss diet study, our primary
objective was to determine if baseline microbiota composition
or diversity was associated with weight-loss success. Our
secondary objective was to examine the relation more broadly
between 12-mo changes in individual components of microbiome
composition, diet, and weight.

Methods

Study design

The detailed methods for the main DIETFITS randomized
trial were previously described (17, 18). Briefly, 609 generally
healthy, nondiabetic participants [BMI (kg/m2): 28–40] were
randomly assigned in equal proportions in a parallel-design
weight-loss diet study to 1 of 2 diets: healthy low-carb or healthy
low-fat. Enrollment for the first participant in the first cohort
started in January 2013 and follow-up for the last participant in

the last cohort was completed in May 2016. Randomization was
performed using an allocation sequence determined by computer-
ized random-number generation in block sizes of 8 (4/diet group).
There were no exclusions for antibiotics. Medication exclusions
included lipid-lowering, antihypertensive medications, and those
known to affect weight/energy expenditure, and psychiatric
medications. The CONSORT flow diagram has been published
previously (17).

Intervention strategy—Limbo/Titrate/Quality, taught by
health educators

The intervention strategy for changing dietary behaviors in
accordance with treatment assignments involved 22 evening
sessions of 15–20 participants per class taught by health educa-
tors over the 12-mo protocol. In the first 8 wk participants were
instructed to work toward limiting either fat or carbohydrates
(specific to diet group assignment) to 20 g/d (“Limbo” phase) and
then try to maintain that for at least a few weeks. At that point,
they were allowed to add small amounts of fat or carbohydrate
back to their diet, specifically with the goal of seeking the lowest
level they could achieve and felt realistically could be maintained
as a lifelong eating pattern, should the diet enable weight loss
(“Titrate” phase). The “lowest they could go” was determined
individually between each participant and their assigned health
educator, with the stated objective of identifying a level that
could be maintained even after the study ended (i.e., in contrast
to simply following a diet they would go off of once the study
ended). Throughout the study both diet groups were told to
maximize vegetable and whole-food intake and minimize or
eliminate added sugars and refined grains; this was intended to
help both groups focus on high “Quality” diets. Diet group–
specific quality aspects included other recommendations such as
steel-cut oats for the healthy low-fat group, and avocados for the
healthy low-carb group.

Participants were encouraged to use paper and pen or any of
the available app-based diet-tracking tools (e.g., MyFitnessPal),
as needed, and to share the results and review them periodically
with their health educator. Additional support came from fellow
participants where strategies for success were shared either in the
class setting, in group e-mails, or in some cases, Facebook groups
that were set up for this purpose by the participants themselves.

Dietary assessment, study subsample, and database
management

Dietary intake at each time point was assessed using 3 unan-
nounced 24-h multiple-pass recall interviews (2 on weekdays
and 1 on a weekend day). The 24-h recalls were administered
by trained dietitians, over the phone, using Nutrition Database
System for Research (NDS-R) software (17). Data collection
intervals were at prerandomization baseline, 3-mo, 6-mo, and 12-
mo. Weight was measured by digital scale at the Stanford Clinical
Translational Research Unit.

Due to the large size of the study sample, participants were
enrolled in 5 cohorts of ∼120 participants per cohort, with a
new cohort starting approximately once every 6-mo. The analysis
described here is taken from a subset of participants (n = 49) from
whom stool samples were collected (Figure 1A, Supplemental
Table 1), all of whom were volunteers from what is referred
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FIGURE 1 One year of a low-carbohydrate or low-fat diet results in specific dietary alterations and weight loss. Twelve-month study design for 2 diet
groups: healthy low-carbohydrate (white) and healthy low-fat (gray). A: Weight, food-intake assessment, and stool for microbiome analysis were collected at
the indicated sampling times. B–E: Levels of carbohydrate intake (B; grams), fat intake (C; grams), calorie intake (D; kilocalories), and weight (E; kilograms)
over time for participants, separated by diet group. White: low-carbohydrate; gray: low-fat. Significant differences were assessed using a Wilcoxon paired test,
adjusted P value <0.05 (Benjamini-Hochberg). Low-fat: n = 24; low-carbohydrate: n = 25. Significant differences in panel B: low-fat BL vs. 3-mo, BL vs.
6-mo, BL vs. 12-mo; low-carbohydrate BL vs. 3-mo, BL vs. 6-mo, BL vs. 12-mo, 3-mo vs. 12-mo; in panel C: low-fat BL vs. 3-mo, BL vs. 6-mo, BL vs.
12-mo, 3-mo vs. 12-mo; in panel D: low-fat BL vs. 3-mo, BL vs. 6-mo, BL vs. 12-mo, 3-mo vs. 12-mo; low-carbohydrate BL vs. 3-mo, BL vs. 6-mo, BL vs.
12-mo; in panel E: low-fat BL vs. 3-mo, BL vs. 6-mo, BL vs. 12-mo; low-carbohydrate BL vs. 3-mo, BL vs. 6-mo, BL vs. 12-mo, 3-mo vs. 12-mo, 6-mo vs.
12-mo. P values are listed in Supplemental Table 4. BL, baseline.

to as “cohort 3” (17). Analyses for this study were done using
data generated by those volunteers who provided ≥3 of the
5 possible stool samples; of the 49 participants, 27 submitted
samples and complete sequencing data from all 5 time points,
21 were complete for 4 out of 5 time points, and 1 was complete
for 3 out of 5 time points. Baseline demographics and dietary
changes across 12-mo were comparable between the subset of
the microbiome analyses and the larger parent study population
(Supplemental Tables 2 and 3).

Study data were collected and managed using Research
Electronic Data Capture (REDCap) electronic data capture tools
hosted at Stanford University (Research IT grant support Stanford
CTSA award number UL1 TR001085 from NIH/National Center
for Research Resources). REDCap is a secure, Web-based
application designed to support data capture for research studies

(19). The procedures followed were in accordance with the
ethical standards of the institution or regional committee on
human experimentation and that approval was obtained from the
relevant committee on human subjects.

Stool collection and 16S ribosomal RNA gene amplicon
sequencing

Stool samples were collected at 5 time points over the course
of the study for this cohort: prerandomization baseline, 3-mo,
6-mo, 9-mo, and 12-mo. Participants were provided with stool
collection kits. All stool samples were kept in participants’
home freezers (−20åC) wrapped in ice packs, until they were
transferred on ice to the research laboratory and stored at −80åC.
There were no intentional freeze–thaw cycles and all samples
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were sequenced together. DNA was extracted using the MoBio
PowerSoil kit according to the Earth Microbiome Project’s
protocol (20) and amplified at the V4 region of the 16S ribosomal
RNA (rRNA) subunit gene and 250 nucleotides (nt) paired-end
Illumina sequencing reads were generated. Forward reads were
trimmed at 250 bp and reverse reads were trimmed at 175 bp. An
average of 16,121 reads were used as input, with an average of
9374 reads recovered after filtering, denoising, merging forward
and reverse reads, and removing chimeras.

Statistical analysis

16S rRNA gene amplicon sequencing data were demultiplexed
using the QIIME pipeline version 1.8. Amplicon sequence
variants (ASVs) were identified with a learned sequencing
error correction model (DADA2 method) (21), using the dada2
package in R. ASVs were assigned taxonomy using the
GreenGenes database (version 13.8). Data were rarefied to 5882
reads per sample using the phyloseq package in R (version 3.4.0).
Subsequent analyses including diversity analysis were performed
using the phyloseq package in R. ɑ Diversity was quantified as
the number of observed ASVs in a rarefied sample. Taxonomic
abundance was calculated by taking the number of reads of each
taxon (phylum, class, order, family, genus levels) and dividing
them by the total number of reads per sample.

Statistical comparisons for bacterial abundances were per-
formed using the significance analysis of microarrays (SAM)
algorithm (22) using the siggenes package in R. While initially
developed for microarrays, SAM is generalizable to other high-
dimensional biological data (23). SAM assigns a score to each
tested feature based on the change in the feature relative to the
SD of repeated measurements, then determines a false discovery
rate (FDR) by permutation testing. Significance was determined
as q value < 0.05 (q value is the P value analog for FDR).
Changes were assessed using paired participant data, using each
participant’s own baseline as a reference sample. Due to missing
data (either where a stool sample was not collected or sequencing
did not yield enough reads), we randomly selected the same
number of participants from each diet (sample function without
replacement in the R base package) based on the diet group with
the fewest samples when comparing a given time point to ensure
statistical comparability between diet groups (3-mo: n = 22; 6-
mo: n = 18; 9-mo: n = 23; 12-mo: n = 21).

An elastic net (EN) algorithm was applied to determine
if the participant-specific genera abundance at baseline could
predict total weight loss at the end of the dietary study. In this
microbiome data set, taxonomic abundance is highly correlated
by nature and the EN was used to eliminate redundant parameters,
while maintaining interrelated parameters. The sparse regression,
cross-validated model split into 75% of the participants as the
training set and the remaining 25% as the test set. The model was
run 3 times: 1) predict weight loss of all participants from baseline
genera abundance, 2) predict weight loss of only the healthy low-
fat diet participants, and 3) predict weight loss of only the healthy
low-carb diet participants.

Relations between bacterial abundances and weight were
assessed using a linear mixed-effects model using the nlme
package in R; we included a participant term in the model
to address autocorrelation of multiple samples from the same

participant over time. P values were adjusted for multiple
hypothesis testing using a Benjamini-Hochberg correction.

Results

Changes in diet and weight

Participants following the low-carb diet significantly de-
creased their carbohydrate consumption compared with baseline
at every time point (Figure 1B, Supplemental Table 4). The low-
fat-diet participants also modestly but significantly decreased
carbohydrate consumption at all time points relative to baseline
(adjusted P < 0.05). Similarly, participants in the low-fat
diet significantly decreased their fat intake compared with
baseline at every time point (Figure 1C, Supplemental Table 4).
There was no significant change in fat intake in the low-carb
diet group. Furthermore, there was no significant change in
protein intake for either diet group at any time (Supplemental
Figure 1, Supplemental Table 4). Participants in both diets
reported lowering their calorie intake by ∼30%, and maintaining
those calorie levels for the duration of the study (Figure 1D,
Supplemental Table 4).

On average, both groups successfully decreased in weight over
the course of 12-mo ( Figure 1E, Supplemental Table 4). There
was no significant difference in mean weight loss between the 2
groups, with large interparticipant variance (mean ± SD change:
−5.1 ± 6.7 kg for the low-carb diet and −5.6 ± 5.7 kg for the low-
fat diet over 12-mo; Supplemental Figure 2). In general, weight
loss was maintained over the course of the study, with a small
amount of weight regain observed in the low-carb group (adjusted
P < 0.05 between 6-mo and 12-mo; Supplemental Figure 2).
Interestingly, there was no significant relation found between
weight loss and degree of calorie restriction ( Supplemental
Figure 3).

Baseline microbiome composition does not predict weight
loss

In order to determine whether baseline microbiota composition
was an indicator of general or diet-specific weight loss, we
identified microbial taxa by 16S rRNA gene amplicon sequencing
from participant stool samples. We could not build a significant
cross-validated model to predict weight loss from baseline
microbiome composition, as described by either taxonomic
summaries or by ASVs (EN model and random forest). Similarly,
diet-specific weight loss could not be predicted from composition
at baseline (Supplemental Figure 4). In addition, no significant
model could be built from composition at 3-mo, indicating that
early changes to the microbiota were not predictive of total
weight loss. When participants were divided into 2 groups based
on vsupper and lower quartiles of weight loss in each cohort,
these binned groups could not be identified based on differences
in baseline composition or ɑ diversity. Taken together, neither
baseline nor early microbiota composition was an indicator of
total weight loss.

Microbial composition exhibits resilience after initial shift

We also examined the effects of dietary intervention and
weight loss on the microbiome. To determine how microbial
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FIGURE 2 Evidence that gut microbiota composition is perturbed by diet but exhibits resilience over time. Bray-Curtis distance between all samples was
calculated, and principal coordinate analysis was used to find new axes that captured the most variance across sample distance. Values for principal coordinate
1 (PC1) of Bray-Curtis distance was plotted, grouped by participant and by diet. Filled black circles, baseline sample; open triangles, 3-mo sample; +, 6-mo
sample; x, 9-mo sample; open diamond, 12-mo sample. Low-fat: n = 24; low-carbohydrate: n = 25. Carb, carbohydrate.

composition changed over the length of the dietary intervention,
we assessed the abundance of the observed taxa at the phylum,
class, order, family, and genus level for each participant over
time. Interestingly, for each diet, we observed changes at 3-mo
relative to baseline; however, these changes were not sustained
throughout the remainder of the study, with the exception of
1 taxonomic change at 6-mo [6-mo, 9-mo, 12-mo, SAM 2-
class paired (22); Supplemental Table 5; specific changes
are discussed later in the article]. The same trend was seen
when testing individual ASVs despite participants maintaining
their diet and lower weight throughout the course of the study
(Supplemental Table 6).

To determine how the microbiota as a whole shifted at different
times in the study, Bray-Curtis dissimilarity was used to show the
amount of shared “species” (ASVs) between samples. The first
principal component of BC-distance was plotted per participant

and showed a distinct shift at 3-mo compared with the remaining
time points (Figure 2). This shift was observed in both diets,
but most clearly in the low-carb group, with the 3-mo sample
being the left-most point for nearly every participant, and with
a significantly larger distance between baseline and 3-mo as
compared with baseline and 6-mo (Supplemental Figure 5). The
return of microbiota composition toward baseline status at 6- and
12-mo occurred despite participants continuing their assigned
diet and maintaining weight loss beyond the 3-mo period.

Each diet results in distinct changes to the microbiota
during the first 3-mo

To better understand the microbiota compositional shift that
occurred at 3-mo, we identified specific taxa that changed in
relative abundance in each diet group. Each diet had a unique
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set of taxa that significantly changed across the cohort in the first
3-mo. Importantly, no differences in taxa were found between
the 2 diet groups at baseline. In the low-carb diet, changes
were found in taxa from the Proteobacteria, Bacteroidetes, and
Firmicutes phyla (Figure 3A). In the low-fat diet, changes were
found in the taxa from the Actinobacteria and the Firmicutes
phyla (Figure 3B). Several of these changes in each diet group
occurred at several taxonomic levels, or in closely related genera
such as Bilophila and Desulfovibrio in the low-carb diet group
(both in the Desulfovibrionaceae family), or Dorea and Blautia
(both in the Lachnospiraceae family) in the low-fat diet group.
Interestingly, all changes specific to the low-carb diet were
increases in relative abundance, whereas all low-fat–specific
changes were decreases in relative abundance; there were no
uniform decreases or increases, respectively, indicating that the
compensatory changes in abundance varied by participant. There
were no observed changes in ɑ diversity (i.e., within individual)
in either diet, at any time point (Supplemental Figure 6).

Finally, the difference in taxonomic abundance was calculated
for all dietary intervention time points to the baseline time
point for each participant, and an unpaired analysis was used to
compare the healthy low-carb with healthy low-fat diets using the
value for difference. Despite the many significant within-group
differences noted above, no between-diet group differences were
detected; this should be interpreted cautiously because of the
extensive variability among participants, and therefore the limited
statistical power to detect between-diet group differences in the
relatively small subset of participant from the main weight-loss
trial available for this exploratory study.

Microbial compositional changes in response to both diets
correlate with weight

In addition to the diet-specific changes observed at 3-mo,
several taxa changed in relative abundance in both diets, all
of which were in the Bacteroidetes phylum (Figure 4A). We
hypothesized that, because these changes were shared by both
diets, they could be due to a physiological shift in the host (i.e.,
weight loss, calorie intake) rather than a direct consequence of
a differential dietary makeup. We modeled the relation between
weight and each taxonomic abundance separately for the entire
study duration (confined to taxa whose abundance is >1% in
≥5% of the samples), using linear mixed-effects models to
account for participant autocorrelation, and assessed significance
after correcting for multiple-hypothesis testing (see Methods).
Five of the 7 taxa identified as shared changes at 3-mo were
significantly negatively associated with weight (Figure 4B).
In addition, the genera Lachnospira and Oscillospira were
negatively associated with weight, whereas Faecalibacterium,
Clostridiales, and Clostridium were positively associated with
weight. Additionally, analysis was completed using calories
rather than weight and no taxa were significantly associated with
calorie intake using this analysis.

Discussion
In this work, we examine the dynamics of the microbiome

in the context of weight loss and dietary change. Investigation
of the microbiome is of emerging interest considering the rising

rates of obesity and general failure of current diet-based strategies
for long-term weight loss. The original parent study did not find
an association with either insulin resistance or genotype pattern
and weight loss, which led to an interest in exploring whether
other factors, such as the microbiome, predisposed certain
individuals to lose more weight on specific diets. We did not
find an association between baseline microbiome composition
and weight loss on either diet. This finding suggests that,
in our cohort, microbiome composition does not help predict
the degree of weight loss on either a low-carb or low-fat
diet. This conclusion contrasts with recent work that found
personalized glycemic responses to specific diets, predicted in
part by microbiome composition (24), as well as studies that
predict diet-specific weight loss from Bacteroides to Prevotella
ratio (25, 26). Study size and diet type are important factors
in the sensitivity of these analyses, so it is possible that future
studies will reveal additional microbiome predictors of weight
loss.

While we did not find an association between baseline
microbiome composition and weight loss, we did observe high
variance in weight loss among individuals in the study, suggesting
that there are likely host factors that predispose individuals
to weight loss that have yet to be elucidated. We did not
find a statistically significant relation between the degree of
calorie restriction and the amount of weight loss, which could
suggest that more nuanced diets rather than nonspecific calorie
restriction may be important for successful, sustained weight
reduction. Alternatively, a true relation may exist between calorie
restriction and weight loss that was masked by inaccuracies in
self-reported diet data, which are well established (27). This
observation presents an opportunity for personalized diets that
better suit an individual’s starting state, although substantial
investigation is required to study both relevant host factors
and aspects of diet that can be used as levers to impact host
physiology.

While we did not find microbiome signatures predictive of
weight loss, we did observe substantial but transient changes to
the microbiome during the first 3-mo of the intervention. We
found that there were 2 forces affecting the microbiome: the
change in diet (i.e., specific changes in macronutrient availability)
and the host physiological changes associated with weight loss.
While it is difficult to disentangle these effects, mouse models
have shown obesity-independent effects of a high-fat diet on the
microbiome, demonstrating that host physiology and diet can
exert separate and independent effects on the microbiota. We
identified changes from baseline to 3-mo in bacterial taxa that
included a subset that were shared between the 2 diet groups
and a subset that were exclusive to 1 diet group. On the low-
carb diet, participants had increases in the relative abundance of
taxa in the Proteobacteria, Bacteroidetes, and Firmicutes phyla
after 3-mo. In contrast, participants following the low-fat diet
exhibited decreases in Actinobacteria and Firmicutes after 3-mo.
This result is consistent with previous work that observed an
obesity-independent increase in Firmicutes in mice fed a high-fat
diet (28), as well as higher levels of Firmicutes found in humans
consuming a high-fat diet (15).

Among the changes that were shared between the 2 diets
was an increase in Bacteroidetes relative abundance. Lower
Bacteroidetes abundance has been observed in obese relative
to lean mice and humans (7, 8). In addition, a small cohort
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FIGURE 3 Each diet results in distinct changes in the gut microbiota composition after 3-mo. Diet-specific compositional changes at 3-mo on low-
carbohydrate (A) or low-fat (B) diets. Fractional abundances of taxa that significantly changed between the baseline sample and 3-mo sample exclusively
in either diet group are shown. Significance calculated as adjusted q value <0.05 (SAM 2-class paired). Plots colored by phylum—in panel A: white,
Proteobacteria; light gray, Bacteroidetes; dark gray, Firmicutes; in panel B: light gray, Actinobacteria; dark gray, Firmicutes. Gray boxes denote shared lineage.
Significant changes found in both groups are shown in Figure 4A. “x_” indicates phylogenetic level where x = p, phylum; c, class; o, order; f, family; g, genus.
Number of samples used was based on the lowest number of samples available in low-fat or low-carbohydrate per time point: BL vs. 3-mo: n = 22/diet; BL
vs. 6-mo: n = 18/diet; BL vs. 9-mo: n = 23/diet; BL vs. 12-mo: n = 21/diet. BL, baseline; SAM, significance analysis of microarrays.



1134 Fragiadakis et al.

g__Bacteroides

BL 3mo
0.0

0.2

0.4

f__Bacteroidaceae

BL 3mo
0.0

0.2

0.4

o__Bacteroidales

BL 3mo
0.0

0.2

0.4

0.6

c__Bacteroidia

BL 3mo
0.0

0.2

0.4

0.6

BL 3mo

0.00

0.02

0.04

0.06

p__Bacteroidetes

BL 3mo
0.0

0.2

0.4

0.6

BL 3mo

0.00

0.02

0.04

0.06

F
ra

ct
io

na
l A

bu
nd

an
ce

A. Changes shared across both diet cohorts in first three months

B. Taxa significantly correlated with weight across duration of the study

Feature Coefficient Adjusted p-value
f__Bacteroidaceae* -0.172 0.000349
g__Bacteroides* -0.172 0.000349
g__Faecalibacterium 0.175 0.010
p__Bacteroidetes* -0.089 0.036
p__Firmicutes 0.103 0.036
c__Bacteroidia* -0.089 0.036
c__Clostridia 0.110 0.036
o__Bacteroidales* -0.089 0.036
o__Clostridiales 0.110 0.036
g__Lachnospira -0.121 0.036
g__Oscillospira -0.148 0.036

g__Parabacteroidesf__Porphyromonadaceae

FIGURE 4 Changes observed in both diets correlate with weight. A: Compositional changes at 3-mo shared between the low-carbohydrate diet and low-fat
diet. Abundances of taxa that significantly changed between the baseline sample and 3-mo sample on both diets are shown (all participants plotted). Significance
calculated as adjusted q value <0.05 (SAM 2-class paired). White, healthy low-carbohydrate; gray, healthy low-fat. All taxa shown share the same phylogeny
(Bacteroidetes phylum). Diet-specific changes are shown in Figure 3. “x_” indicates phylogenetic level where x = p, phylum; c, class; o, order; f, family; g,
genus. Number of samples used was based on the lowest number of samples available in low-fat or low-carbohydrate per time point: BL vs. 3-mo: n = 22/diet;
BL vs. 6-mo: n = 18/diet; BL vs. 9-mo: n = 23/diet; BL vs. 12-mo: n = 21/diet. B: Modeling results of taxonomic abundance and weight. Linear mixed-effects
models were optimized per taxa, with taxa significantly associated with weight listed in the table (adjusted P value <0.05, Benjamini-Hochberg). Taxa were
tested whose abundance was >1% in ≥5% of the samples. ∗Denotes taxa that were identified in Figure 4A. Low-fat: n = 24, low-carbohydrate: n = 25. BL,
baseline; SAM, significance analysis of microarrays.

(n = 12) of individuals following either a carbohydrate- or fat-
restricted diet exhibited an increase in Bacteroidetes abundance
that correlated with weight loss (8). Our hypothesis that these
shared changes in both diets are due to weight loss rather than
specific dietary changes was supported by our finding that these
taxa correlated with weight throughout the study. Oscillospira
and Lachnospira abundances were negatively associated with
weight, consistent with a reported association of Oscillospira
with leanness (12) and lower levels of Lachnospira in obesity
(29). In contrast, Firmicutes and members of its lineage were
positively associated with weight, which is consistent with

the Firmicutes to Bacteroidetes ratio being higher in obese
individuals (8).

The changes in the microbiota described here were confined
to the first 3-mo of the intervention: these taxa were statistically
indistinguishable between baseline and 1 y. This was despite
participants largely maintaining their weight loss and maintaining
statistically and clinically meaningful dietary changes relative to
baseline (17). These data suggest a resilience of the microbiota
to dietary and host physiological change after an initial change,
perhaps due to host physiological factors that exert a homeostatic
corrective force on the microbial community to return to a
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long-established state. Interestingly, previous work identified a
microbiome-based “memory” of obesity (6), which may explain
the phenomenon of individuals regaining lost weight despite
maintaining a previously effective diet (2–5). The resilience we
observed may be an instance of the same phenomenon, and fur-
ther work is needed to explore strategies to overcome microbial
resilience in this context. Notably, there was some recidivism
in intake of micronutrients (either fat or carbohydrates) at 1 y,
which could explain some of the resilience of the microbiome;
however, this return of microbiome state was observed as early
as 6-mo, when participants continued to maintain low levels of
macronutrients.

This study has several limitations. The microbiome profiles
presented here represent 16S rRNA gene amplicon data; however,
the addition of functional features of the microbiome (i.e.,
metagenomics, SCFA, metabolites, etc.) would allow for deeper
mechanistic insight. This study also did not include a control
group, either with no diet change or a weight-maintaining diet,
which would have given useful insight into how the microbiome
naturally changes over time and how these changes compare
with diet-induced changes. Our sampling of the microbiota was
confined to 3-mo intervals, which restricts our understanding of
the full dynamics of microbiome composition. While we see
changes that occur at 3-mo post–diet intervention that are no
longer present at 6-mo, it is not possible to determine when
those changes first began nor when they start to disappear, as
well as whether there were further oscillations not captured.
Additionally, because this was a secondary analysis and therefore
the study was not designed with this aim, the lack of predictive
power of baseline microbiome signatures to predict weight loss
could have been from insufficient statistical power, which can
be tested in future studies with larger participant populations. In
addition, these diets were not specifically designed to target the
microbiota but rather were selected based on their prevalence as
diets for weight loss. Future studies using diets that have been
shown to modulate the microbiota, such as those high in dietary
fiber (30, 31), may shed further light on the interaction between
diet, the microbiome, and weight loss. Finally, while we assess
weight as our main outcome, we do not profile other elements of
host health such as inflammation and immune status, which are
likely affected by diet and the microbiome (32).

In light of the rising rates of obesity and the accompanying
morbidities, along with our current failures thus far in reversing
such trends, there is a moral imperative to identify long-term
effective solutions for weight loss. The recalcitrant nature of diet
effectiveness leaves many individuals at a loss for solutions, and
to bear not only the burden of their health concerns but also a
misplaced sense of failure in personal responsibility that often is
perpetuated by the medical community (33). This limited long-
term efficacy points to gaps in our understanding of the interplay
between specific diets and host factors, such as inflammatory
and metabolic state, and the microbiome. This work identifies
distinct but transient effects of diet and host physiological
state on the gut microbiota in humans. Future work is needed
to understand mechanisms of microbiota resilience, including
microbial functionality and interaction with host factors such
as inflammation. Weight-loss trial designs that incorporate
microbiota monitoring and implement microbiota-targeting diets
are a logical step toward addressing the individual and global
health burden of the obesity epidemic.
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