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Abstract

Understanding the environmental justice implications of the mortality impacts of air pollution 

exposure is a public health priority, as some subpopulations may face a disproportionate health 

burden. We examined which residential environmental and social factors may affect disparities in 

the air pollution-mortality relationship in North Carolina, US, using a time-stratified case-

crossover design. Results indicate that air pollution poses a higher mortality risk for some persons 

(e.g., elderly) than others. Our findings have implications for environmental justice regarding 

protection of those who suffer the most from exposure to air pollution and policies to protect their 

health.
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1. Introduction

A large body of literature has demonstrated consistent evidence of the effects of exposure to 

air pollution on mortality (Achilleos et al., 2019; Di et al., 2017; Qu et al., 2018; Wu et al., 

2019; Yu et al., 2019). Such mortality burdens may vary by population and region. However, 

questions remain on which individual and community factors contribute to differences in the 

associations between air pollution and health among subpopulations. Understanding these 

health disparities and their potential determinants is a critical public health concern.
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Recent studies on disparities suggest that several factors such as sex, age, pre-existing 

conditions, race/ethnicity, socioeconomic status (SES), and residential environmental factors 

such as proximity to green spaces and blue spaces may be associated with higher risk of 

adverse health outcomes related to exposure to air pollution (Li et al., 2017; Liu et al., 2019; 

Ou et al., 2008; Qu et al., 2018; Tibuakuu et al., 2018). For example, a study in Hong Kong 

found that female, the elderly, and people with lower SES had increased risk of death 

associated with air pollution compared to other populations (Qiu et al., 2015). Another study 

by Richardson et al. (2013) found that persons in lower-income regions in Europe were more 

susceptible to the health effects of PM10 than other populations, however the findings varied 

between Eastern and Western Europe, and by type of mortality. Place or neighborhood 

factors may play an important role in explaining spatial heterogeneity in air pollution 

exposure and/or health risk. Living in different residential areas may lead to differential 

exposure to stressors and access to neighborhood resources (Gee and Payne-Sturges 2004). 

Although some studies suggested health disparities from the impacts of exposure to air 

pollution, further work at different locations is needed given the variation in population 

characteristics across regions and the potential changes in disparities over time given 

temporal patterns in related variables (e.g., air pollution levels, population structure). 

Identifying the most important factors related to disparities to air pollution-mortality 

associations in a given location and the most affected subpopulations is critical to establish 

appropriate plans and conduct effective interventions to protect public health.

Ozone and PM2.5 are major atmospheric pollutants directly affecting human health. The 

recent Global Burden of Disease (GBD) estimated that exposure to ambient PM2.5 causes 

4.2 million deaths globally, with an additional 254,000 deaths globally caused by ozone 

exposure (GBD 2015). US burden of disease study lists ambient PM2.5 and O3 pollution as 

the 8th and 15th leading risk factors in the US in 2010 (Murray and Collaborators US Burden 

of Disease, 2013). Numerous studies in many parts of the world provided scientific evidence 

that increased risk of mortality was associated with exposure to these pollutants (Fann et al. 

2012; Farhat et al. 2013). The aim of our study was to assess several health disparity factors 

for major air pollutants with mortality associations. Thus, we chose PM2.5 and O3 as our key 

exposure of interest.

Recent studies have used predicted air pollutant concentrations, which allow for better 

spatial and temporal coverage than monitoring data, to estimate the relationship between 

ambient air pollution and several health outcomes (Bravo et al., 2017; Fann et al., 2018). 

While these values are estimates, they address the lack of high spatial and temporal 

resolution in many ambient monitoring networks. Most monitors are located in urban areas, 

which may not fully reflect exposure in rural regions without monitors. Also, many monitors 

do not operate continuously throughout the year (e.g., measurements every 3 or 6 days for 

PM2.5, only for the warm season for O3), which prohibits the investigation of cumulative 

acute exposures over multiple days. Limited spatial and temporal resolution of some 

monitoring networks may hinder investigation of exposure and health effects in some 

regions. Thus, health effect estimates based on monitoring data alone may not fully capture 

the susceptibility due to differences between communities or subpopulations.
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North Carolina (NC) is relatively large and diverse state with underlying geographies that 

include extensive agricultural regions and forests, coastal areas, and multiple medium-large 

urban centers. NC has a range of air quality with areas in noncompliance with EPA 

regulations for criteria pollutants (e.g., O3, PM2.5) and distinct spatial patterns of racial 

distribution or poverty patterns. This study area allows us to evaluate diverse populations 

and factors regarding environmental health disparities. Although previous studies in this area 

explored the relationship between air pollution, race, and SES (Gray et al. 2013) or 

investigated spatial-temporal association between PM2.5 and daily mortality (Choi et al. 

2009), no study evaluated several residential environmental and socioeconomic factors that 

may affect disparities in air pollution-mortality relationships and assessed multiple 

disparities, which can contribute to a better understanding of interactions of disparity factors.

This study investigated the health disparities attributable to exposure to air pollutants 

(PM2.5, O3) in North Carolina, USA. We used Community Multi-scale Air Quality (CMAQ) 

downscaler output to estimate daily PM2.5 and O3 concentrations for 2002–2013. We 

evaluated which residential environmental and socio-economic factors affect disparities in 

air pollution-mortality relationships using a stratified model for each effect modifier. Our 

study has implications for environmental justice regarding which subpopulations are 

vulnerable and which factors affect disparities in associations between air pollution and 

mortality. This work extends current understanding of environmental health disparities.

2. Methods

2.1 Data

We obtained individual-level mortality data for North Carolina from 2002 to 2013 from the 

North Carolina State Center for Health Statistics, Vital Statistics Department. For each 

participant, mortality data included date of death, residential location, sex, age at death (<65, 

≥65 years), race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, non-Hispanic 

Asian, or non-Hispanic other), education (<12 years, high school graduate, 1–4 years of 

college, ≥5 years of college, or unknown), and marital status (never married, married, 

widowed, divorced, or unknown). We excluded participants with incomplete data for any 

variable. We classified mortality data as: total mortality as all causes of death except external 

causes (International Classification of Diseases, ICD-10, A00-R99), cardiovascular mortality 

(ICD-10, I00-R99), and respiratory mortality (ICD-10, J00-J99).

Ambient PM2.5 and O3 concentrations for each of North Carolina’s census tracts were 

obtained for 2002–2013 from the downscaler output from the US Environmental Protection 

Agency (EPA). The downscaler utilizes air monitoring station data and Community 

Multiscale Air Quality (CMAQ) output at 12×12km grid cell resolution to estimate daily air 

pollution concentrations at census tract centroids. Downscaler output includes estimates of 

daily 24-h average for PM2.5 and daily 8-h maximum for O3. For these estimates we 

assigned exposure based on the grid cell in which the participant’s residence was located. 

Additional details for the downscaler modeling approach and evaluation are provided 

elsewhere (Berrocal et al., 2012). To compare the robustness of effect estimates of 

downscaler predicted PM2.5 and O3 levels with those generated using monitoring data, we 

obtained daily 24-h PM2.5 and 8-h maximum O3 measurement values from the EPA’s Air 
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Quality System. We assigned exposures for each participant as the daily measurements from 

monitors nearest each subject’s residence (based on each subject’s residential location 

(latitude/longitude)) including monitors outside North Carolina, within 40km of North 

Carolina’s boundary. We use the downscaler exposure estimates as main analysis and 

monitor-based values as sensitivity analysis. The total number of cases (i.e., deaths) for 

downscaler- and monitor-based estimate was 775,338 and 209,669, respectively. There were 

fewer deaths when using monitor-based estimates as monitor-derived air pollution effect 

estimates were based on the time and locations for which exposure estimates are available 

from both methods.

Due to lack of measured daily weather data, we used gridded weather data at the county 

level. The gridded weather data using Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) interpolation method are reported on a daily basis and at high spatial 

resolutions (4×4km grid). PRISM provides data for the continental US. The algorithms and 

the details have been described elsewhere (Daly et al., 2008; PRISM Climate Group, 2004). 

A previous study showed good agreement between measured and gridded weather data 

(Mourtzinis et al., 2017). We used daily levels of temperature and dew point temperature at 

the county level. County-level values were calculated as the average of all grid cells with 

centroids within each county.

To assess health disparity factors in the association between exposure to air pollution and 

mortality, we included several residential environmental and socio-economic factors based 

on the previous literature review. We considered individual-level factors, residential 

greenness, proximity to water bodies, median household income, and classification of 

urbanicity.

As a residential greenness measure, urban vegetation was assessed using the Normalized 

Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor aboard the Terra satellite image from NASA’s Earth 

Observing System. We used the global MODIS product MOD13Q1 version 5, which has 

been corrected for atmospheric contamination from water, clouds, and aerosols. This product 

is a 16-day composite at a spatial resolution of 250m. We calculated average NDVI at the 

ZIP-code level for the study period. We categorized average NDVI as above or below the 

median (<0.61 or ≥0.61).

We obtained information on water bodies (e.g. river, lake) from the North Carolina 

Department of Environmental Quality Online GIS to examine effect modification by 

proximity to water bodies. We calculated the distance from each subject’s residence to water 

bodies to assess the effect of blue space and categorized proximity to water as above or 

below the median (<10.2km or ≥10.2km).

To assess community-level effect modification we used 2010 Census data at the census tract 

level including variables of median household income, as a surrogate for SES, and 

population size. We classified urbanicity as metropolitan (urban area ≥50,000 people), 

micropolitan (urban cluster of 10,000–49,999), and rural (urban cluster of <10,000) area. We 

used median values to define categories of income.
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2.2 Statistical analysis

We applied a time-stratified case-crossover design to estimate the association between air 

pollution and mortality. In this approach, each case acts as his or her own control and thus 

the method has benefits of controlling for potential confounding from fixed characteristics 

by design. To avoid selection bias, we applied time-stratified referent selection based on 

same day of the week of the same year when a death occurred. Each case could be compared 

to multiple control days.

Some O3 monitors operate only during the warm season (e.g., April-September) when O3 is 

anticipated to be high. We generated separate effect estimates for the association with 

mortality for: 1) year-round O3 exposure and 2) warm season O3 exposure (April-

September). We examined the lagged effect of air pollutants with single-day lags (lag 0, lag 

1, lag 2) and multiday lags (lag 01, lag 02). Lag 0 meant the effect of the air pollution on the 

same day as the day of mortality (i.e., date of death). Lag 1 refers to the air pollution on the 

day before the day of death. Lag 02 presented the cumulative effect of the current day and 

prior 2 days’ air pollution on the current day’s mortality. For monitor-based effect estimates, 

we investigated the effect of PM2.5 for only single-day lag as most PM2.5 monitors typically 

record observations every three days.

We conducted additional analyses considering spatial clustering in the model. We accounted 

for spatial autocorrelation from unmeasured spatially distributed risk factors by including a 

random intercept for each county where cluster effects are incorporated into the model as 

independent and identically distributed random variables to account for the within-cluster 

correlation. We also conducted additional analysis considering NDVI at the county level.

We calculated Population-attributable risks (PARs) based on the calculated effect estimates 

in this study. The PAR% is the percentage of incidence of a disease within a population 

(exposed and non-exposed), due to exposure. This statistic describes the percentage 

incidence of a disease within a population that could be prevented if exposures were 

eliminated. We estimated Population-attributable risks (PARs) per pollutant using our risk 

estimates and the following equation: PAR% = 100 × P(R − 1) / [P(R – 1) + 1], for which P 

is the prevalence of the exposure (i.e., air pollution) in the population and is assumed to be 

100% as everyone in the population exposed to air pollution and R is the relative risk (or 

OR).

To examine the potential effect modifiers, we performed stratified analyses by individual- 

and community-level factors for total mortality. We then tested statistical significance of 

differences between effect estimates of strata of a potential effect modifier by calculating the 

95% confidence interval as Q1 − Q2 ± 1.96 SE12 + SE22 where Q1 and Q2 are the estimates 

for the two strata of the potential effect modifier (e.g., male and female), and SE1 and SE2 

are their respective standard errors. To categorize community-level factors, we tested other 

cutoff points (e.g., quartile) as well as median value. We also investigated multiple 

susceptibilities by combinations of potential factors of effect modification (e.g., race/

ethnicity and census-tract median income). We fitted conditional logistic regression models 

to estimate the association between air pollution and mortality. Odds ratios and 95% 
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confidence intervals were calculated on the basis of an increase of 10 μg/m3 in PM2.5 or 10 

ppb in O3. All analyses were conducted using SAS (9.4, SAS Institute, Cary, NC, USA) and 

R (version 3.5.1, R Core Team).

3. Results

During the study period, there were 775,338 cases (i.e., total deaths) with 3,410,015 control 

days. Table 1 shows characteristics of the study population. The 775,338 total deaths 

included 261,663 from cardiovascular disease and 86,017 from respiratory disease. The 

study population had more females than males (52.3% vs. 47.7%). The majority of the 

deceased were non-Hispanic white (77.7%), and ≥65 years (75.2%). Most subjects had less 

than a high school level education or were high school graduates (71.2%) and were married 

or widowed (78.5%). For community-level characteristics, mean census-tract median income 

was $45,116. Most subjects lived in metropolitan areas (85.0%). For study participants, 

average NDVI was 0.61 and average distance from residence to water bodies was 12.6km.

The average PM2.5 concentrations from CMAQ downscaler and EPA monitor were similar, 

although average O3 concentration for CMAQ downscaler output was higher than EPA 

monitor concentrations. Spatial variations in air pollution levels are provided in Figure 1. 

Descriptive statistics for residential environmental factors are provided in Supplementary 

Table 1 and air pollution levels based on community-level SES are provided in 

Supplementary Table 2.

Supplementary Table 3 provides correlation coefficients across variables. Strong positive 

correlations between downscaler- and monitor-derived air pollution concentrations were 

observed (r=0.96 for PM2.5; r=0.84 for O3). Average NDVI was negatively correlated with 

county-level total population (r=−0.48).

Table 2 shows odds ratios (OR) and 95% confidence intervals (CI) of the association 

between exposure using downscaler-derived PM2.5 and O3 for risk of total and cause-

specific mortality. All models were adjusted for same day’s temperature and dew point 

temperature. We observed positive associations between PM2.5 exposure and risk of total 

and cardiovascular mortality. An 10μg/m3 increase in lag 01 PM2.5 exposure was associated 

with an OR of 1.019 (95% CI 1.012, 1.025) and 1.017 (95% CI 1.007, 1.028) for total and 

cardiovascular mortality, respectively. For O3, a 10ppb increase in lag 02 exposure was 

associated with total mortality (OR 1.006; 95% CI 1.002, 1.010). We did not find 

statistically significant associations with respiratory mortality.

We performed additional analysis for the warm season (April to September) O3 

(Supplementary Table 4). The effect estimates from the warm season were generally similar 

with those of year-round O3.

To confirm the robustness of our findings, we performed additional analysis comparing the 

effect estimates based on exposures from the downscaler- and monitor-derived 

concentrations (Figure 2). Effect estimates from the monitor-derived concentrations were 

similar to those of the original findings from downscaler-derived concentrations.
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We observed positive associations between exposure to PM2.5 and O3 and risk of total 

mortality; for these associations we conducted additional analyses considering spatial 

autocorrelation in the model. Results were similar to original findings (Supplementary Table 

5). We calculated PAR for air pollution and total mortality. The PARs for total mortality due 

to PM2.5 (lag01) and O3 (lag02) exposure were 1.9% and 0.6% respectively (Supplementary 

Table 6). Findings from additional analysis considering NDVI at the county level were 

similar with original findings (Supplementary Table 7).

For the exposure lag and mortality for which we observed the largest and also the most 

statistically significant associations (i.e., PM2.5 and O3 exposure for total mortality), we 

evaluated effect modification by community and individual characteristics. Table 3 shows 

estimated associations between air pollution exposure and total mortality stratified by 

community-level factors. We investigated the relationship between PM2.5 and O3 exposure 

and total mortality by residential green space, blue space, urbanicity, and census-tract 

median income level (Table 3). We did not find any statistically significant differences 

between groups. However, the association between air pollution and the risk of total 

mortality was slightly higher, although not statistically different, in areas with less green 

space, further distance to water bodies, ≥50,000 people, or lower median income level. 

Estimated associations for O3 showed similar patterns except for urbanicity and census-tract 

median income level.

We also assessed potential effect modification by individual characteristics (Table 4). 

Stratified analyses showed that associations between PM2.5 exposure and total mortality 

were higher in males than females although these results were not statistically different. We 

found higher risk in persons who were non-Hispanic White or non-Hispanic Black, ≥65 

years, less educated (<12 years), never married, and widowed. For O3, we observed similar 

patterns with slightly higher risk in males, persons ≥65 years, and those who were less 

educated (<12 years).

We conducted additional analysis to assess combined disparities in the associations between 

air pollution and total mortality by combinations of individual- and community-level 

characteristics (Table 5). We assessed mortality disparities by combinations of race/ethnicity 

and census-tract median income level. The highest and most significant association between 

PM2.5 exposure and total mortality was found in non-Hispanic Black participants living in 

areas with the lowest community-level SES. Of non-Hispanic Black participants, a 

significant association between PM2.5 exposure and total mortality was observed only for 

those living in the lowest census-tract median income level.

4. Discussion

In this study, we evaluated which subpopulations are vulnerable and which factors affect 

disparities in associations between exposure to air pollution and risk of mortality. Although 

the results were not statistically different among groups, some factors such as age, 

education, and urbanicity were associated with higher risk of total mortality from PM2.5 

exposure. For combinations of individual- and community-level factors, the magnitude of 

Son et al. Page 7

Health Place. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



health disparities observed was more pronounced for Non-Hispanic Blacks living in lower 

community-level SES.

Our findings of positive associations between short-term exposure to PM2.5 or O3 and 

mortality are consistent with those of many studies in the literature, with similar range of 

effect size (Supplementary Table 8). As an example, a recent study by Wu et al. (2019) 

reported that increased exposure to particulate matter (PM2.5, PMcoarse, and PM10) in 

Lanzhou, an industrial city in China, was associated with higher risk of cardiovascular 

mortality. Other studies observed associations between short-term exposure to PM2.5 and 

total mortality (Li et al., 2017; Yorifuji et al., 2016). Chen et al. (2017) found strong 

evidence that short-term exposure to O3 is significantly associated with increased total 

mortality.

Our findings on the disparities in air pollution–health associations by some individual- and 

area-level characteristics are consistent with those of previous studies, which find 

disproportionate health burdens from air pollution. Many studies showed evidence that some 

factors such as older age, low education, and living in urban areas are associated with higher 

risk of mortality from air pollution exposure, consistent with our findings (Bravo et al., 

2016; Deguen and Zmirou-Navier, 2010; Son et al., 2012). Wong et al. (2008) suggested that 

people residing in socially deprived communities have higher mortality risk from ambient air 

pollution. On the other hand, results for effect modification by some factors have varied. 

Some previous studies found no differences by sex (Ren et al., 2010), while others found 

higher effect for males (Chen et al., 2010; Son et al., 2012) or females (Kan et al., 2008; 

Zanobetti and Schwartz, 2000).

In this study, we did not find significant differences by residential environmental factors 

such as green and blue spaces. Studies on health disparities attributable to air pollution by 

residential environmental factors such as residential greenness are limited although some 

research examined the direct effect of greenness on health outcomes. A few recent studies on 

effect modification of the PM2.5 mortality association found inconsistent results. A recent 

study by Yitshak-Sade et al. (2019) reported that estimated PM2.5 effects on cardiovascular 

mortality were attenuated by higher neighborhood greenness in areas with lower 

socioeconomic status. Another study found positive modification of greenness on the PM2.5 

and mortality association (Kioumourtzoglou et al., 2016). Heo and Bell (2019) found that 

the association between short-term exposure to particulate matter and hospitalization was 

lower in areas with more green space. Possible mechanisms of how green space might 

influence health include reduced risks of physical and mental illnesses by increased 

opportunities for physical activity and other pathways. Moreover, living near green space 

may benefit health by facilitating social interaction, and can promote recovery from stress 

(Richardson et al. 2010). Also, proximity to water bodies may reduce exposure to many 

urban stressors and have beneficial effects on physiological systems that integrate stress 

response through higher exposure to health promoting factors and behaviors (Crouse et al. 

2018).

Previous findings on disparities in mortality risk related to air pollution were inconsistent 

across different study areas and populations. The patterns of disparities varied depending on 
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the health outcomes and measures of several variables studied. The differences in health 

disparities we observed may result from several factors such as variation in population 

characteristics, distribution and/or composition of characteristics and their interactions 

within groups (e.g., age, education, and racial/ethnic composition in urban/rural population), 

biological and generic vulnerabilities, access to health care and quality, social and physical 

environment, and health-related behaviors (Thomson et al., 2006). In the analysis of 

combined disparities by race/ethnicity and census-tract median income level, we found that 

Non-Hispanic Blacks living in lower community-level SES (below median) had the highest 

risk estimate for the association between PM2.5 and total mortality. Our findings indicate 

that health disparities may relate to socioeconomic differences between/within racial groups; 

analysis of racial/ethnic differences without consideration of other factors such as 

socioeconomic status and access to health care may not fully capture the full and complex 

system. Race/ethnicity and socioeconomic status may be linked through psychosocial 

pathways such as perceived stress, biological markers of chronic stress (Morello-Frosch et 

al. 2011; Goodman et al. 2005; Gee et al. 2004). In general, racial minorities tend to have 

lower socioeconomic status, however, socioeconomic differences do not fully explain racial 

disparities. Race/ethnicity is highly correlated with residential location. Poorer 

neighborhoods tend to have higher rates of psychosocial stressors, which may contribute to 

health disparities.

A previous study conducted within-race analyses, finding that most of the apparent 

differences in air pollutant effects found across races were explained by socioeconomic 

and/or health care disparities (Gwynn and Thurston, 2001). Ito and Thurston (1996) found 

that black females had the highest risk for air pollution impacts for total, respiratory, and 

cancer mortality in race and sex-specific analysis. This may relate to multiple factors for the 

subpopulations and their interactions (e.g., correlation between SES and race/ethnicity at the 

community level, relationship between percentage of racial minorities living in urban areas 

with higher levels of pollution and/or harmful residential environment, existing health 

conditions or behaviors) (Martenies et al., 2017). A challenge to the study of disparities in 

health risk is that many of the characteristics of interest are often correlated. These 

complexities change the isolation of responsible factors that contribute to health disparities 

and different impacts of mechanisms on various populations. Evaluation of disparities in 

health risk relate to multiple relationships among possible disparity factors. Thus, more 

research at the local scale is needed to consider the complex interactions among factors on 

health risk from air pollution exposure.

There are several limitations to this work. We used downscaler predictions of air pollution 

levels that allow us to estimate air pollution concentrations at locations and time periods 

without monitors. Although we confirmed that the downscaler-derived findings were robust 

in comparison to results generated using monitoring data for areas and times with monitors, 

we could not evaluate the effect estimates in areas without monitors (e.g., non-urban areas). 

Urban and non-urban areas may have different characteristics of exposure (e.g., pollutant 

mixtures, chemical compositions) and demographics. Thus, further research considering 

uncertainty on differences in urban and non-urban areas is warranted. We used 2010 Census 

data to estimate population characteristics for the study period (2002–2013). Using 2010 

Census data may not perfectly reflect actual population characteristics for the period 2002–
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2013. However, assigning more timely data may introduce uncertainty as well due to some 

issues such as data from different sources, boundary changes over time. For example, ACS 

and Census data are not equivalent and there are some differences between the ACS and 

Census data such as residence rules, reference periods, definitions, and methods between the 

two data sources that can impact comparability. Thus, we used only 2010 Census data for 

the whole study period for consistency. Also, for our Census variables there is likely to be 

little relative change across the Census tracts overall across time. Some measures of 

disparity factors we considered (e.g., census-tract median household income for community-

level socioeconomic status) may not fully reflect the actual aspects of each factor, although 

the correlations between several measures of SES in this study were highly correlated with 

each other (Supplementary Table 9). Many studies have used several measures such as 

individual- or community-level measures of income and education to represent SES, 

however SES has complexities of several correlated factors (e.g., historical income) that may 

affect the associations and combinations of these variables (Williams et al., 2010).

Strengths of our study include the use of geocoded individual-level mortality data with high 

spatial and temporal resolution exposure data. Our study was able to estimate the health 

effect of cumulative short-term exposure to PM2.5 in areas and time periods without daily 

monitoring data. For some factors, we were able to assess multiple disparities (e.g., race and 

SES), which contributes to a better understanding of interactions of disparity factors and to 

environmental justice more broadly.

5. Conclusions

We provide additional evidence confirming previous work indicating that short-term 

exposure to PM2.5 and O3 are positively associated with increased risk of mortality. Our 

assessment of combined disparities indicate that the multiple aspects of disparity factors 

may affect disproportionate mortality burdens from air pollution exposures. The findings 

from our work have important implications for environmental decision making by 

identifying priorities for policy intervention on modifiable factors. This work can help focus 

on more efficient policy actions to mitigate health impacts for vulnerable populations with 

limited resources. Our findings on environmental health disparities provide valuable 

evidence for decision makers and help inform future research on environmental justice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Higher PM2.5-mortality effect estimates were associated with age and 

urbanicity.

• Blacks in poor communities had the highest, most certain PM2.5-mortality 

estimate.

• Multiple disparity factors, race and SES, may affect PM2.5-mortality burdens.
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Figure 1. 
Spatial variations in air pollution levels (A) PM2.5 (B) O3.
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Figure 2. 
Downscaler- vs. monitor-derived air pollution effect estimates based on the times and 

locations for which exposure estimates are available from both methods: (A) PM2.5 (B) 

warm-season O3. Lines reflect 95% intervals, horizontal estimates represent monitor-derived 

estimates, Vertical estimates represent downscaler-derived estimates.
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Table 1.

Characteristics of study population in NC, 2002–2013

Characteristics Total (N=775,338)

Cause of death

Total 775,338

Cardiovascular 261,663

Respiratory 86,017

Sex (%)

Male 369,883 (47.7)

Female 405,441 (52.3)

Missing 14 (0.0)

Race/ethnicity

Non-Hispanic White 602,125 (77.7)

Non-Hispanic Black 158,449 (20.4)

Hispanic 5,307 (0.7)

Non-Hispanic Asian 3,239 (0.4)

Non-Hispanic Other 6,096 (0.8)

Missing 122 (0.0)

Age at death

<65 years 192,631 (24.8)

≥65 years 582,707 (75.2)

Education

<12 years 303,198 (39.1)

High school graduate 249,042 (32.1)

1–4 years of College 175,497 (22.6)

5 or more years of college 36,141 (4.7)

Unknown 11,460 (1.5)

Marital status

Never married 73,592 (9.5)

Married 308,906 (39.8)

Widowed 299,738 (38.7)

Divorced 91,856 (11.9)

Unknown 1,246 (0.2)

Community-level factors

Census-tract median income (mean±SD) $45,116±$18,015

County-level urbanicity

Metropolitan (urban area ≥50,000 people) 659,332 (85.0)

Micropolitan (urban cluster of 10,000–49,999) 113,692 (14.7)

Rural (urban cluster of <10,000) 2,314 (0.3)

Average NDVI 0.61±0.05

Distance to water bodies (km) 12.6±10.3

Air Pollution Estimates
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Characteristics Total (N=775,338)

Downscaler PM2.5 (μg/m3) 11.4±5.7

Downscaler O3 (ppb) 41.7±13.7

Monitor-based PM2.5 (μg/m3) 11.5±6.1

Monitor-based O3 (ppb) 31.3±11.1

Weather variables

Temperature (°C) 14.9±8.7

Dew point temperature (°C) 8.2±9.8
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Table 2.

Odds ratios and 95% confidence intervals of PM2.5 and O3 for total and cause-specific mortality

Total Cardiovascular Respiratory

Downscaler PM2.5 (per 10μg/m3)

Lag 0 1.015 (1.009, 1.020) 1.011 (1.002, 1.020) 1.004 (0.988, 1.020)

Lag 1 1.015 (1.009, 1.020) 1.016 (1.007, 1.026) 1.002 (0.986, 1.019)

Lag 2 1.004 (0.998, 1.009) 1.003 (0.993, 1.012) 0.998 (0.982, 1.015)

Lag 01 1.019 (1.012, 1.025) 1.017 (1.007, 1.028) 1.004 (0.986, 1.023)

Lag 02 1.018 (1.011, 1.025) 1.016 (1.004, 1.028) 1.003 (0.983, 1.025)

Downscaler O3 (per 10ppb)

Lag 0 1.004 (1.001, 1.006) 1.000 (0.995, 1.004) 1.003 (0.995, 1.012)

Lag 1 1.004 (1.001, 1.007) 1.003 (0.997, 1.008) 0.999 (0.989, 1.009)

Lag 2 1.003 (1.000, 1.006) 1.003 (0.998, 1.007) 1.000 (0.991, 1.008)

Lag 01 1.005 (1.002, 1.008) 1.001 (0.996, 1.007) 1.002 (0.991, 1.012)

Lag 02 1.006 (1.002, 1.010) 1.003 (0.996, 1.009) 1.001 (0.989, 1.012)

N for downscaler PM2.5 and O3 exposure: 775,338
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Table 3.

Association between air pollution and total mortality, stratified by community-level environmental factors

PM2.5 O3

Green space

Average NDVI <0.61 1.020 (1.011, 1.028) 1.006 (1.000, 1.011)

Average NDVI ≥0.61 1.018 (1.009, 1.027) 1.006 (1.001, 1.012)

Blue space (proximity to water bodies)

<10.2 km 1.017 (1.008, 1.026) 1.004 (0.999, 1.009)

≥10.2 km 1.020 (1.011, 1.029) 1.008 (1.002, 1.013)

Urbanicity

urban area ≥50,000 people 1.021 (1.015, 1.028) 1.006 (1.002, 1.010)

urban cluster of 10,000–49,999 1.001 (0.985, 1.018) 1.004 (0.994, 1.015)

urban cluster of <10,000 1.014 (0.890, 1.155) 1.040 (0.965, 1.121)

Census tract median income

<41,500 USD 1.021 (1.012, 1.030) 1.004 (0.999, 1.009)

≥41,500 1.016 (1.008, 1.025) 1.008 (1.002, 1.013)

PM2.5 lag 01; O3 lag 02

Cutoff for green space, blue space, and median income: 50% median
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Table 4.

Association between air pollution and total mortality, stratified by individual-level factors

Characteristics PM2.5 O3

Sex

Male 1.023 (1.014, 1.032) 1.008 (1.003, 1.014)

Female 1.015 (1.006, 1.023) 1.004 (0.999, 1.009)

Race/ethnicity

Non-Hispanic White 1.020 (1.013, 1.027) 1.006 (1.001, 1.010)

Non-Hispanic Black 1.017 (1.004, 1.031) 1.008 (0.999, 1.016)

Hispanic 1.003 (0.931, 1.081) 0.959 (0.917, 1.003)

Non-Hispanic Asian 0.945 (0.859, 1.040) 1.024 (0.967, 1.085)

Non-Hispanic Other 1.018 (0.947, 1.094) 1.017 (0.974, 1.061)

Age at death

<65 years 1.009 (0.996, 1.021) 1.005 (0.997, 1.012)

≥65 years 1.022 (1.015, 1.029) 1.006 (1.002, 1.011)

Education

<12 years 1.025 (1.015, 1.035) 1.007 (1.001, 1.013)

High school graduate 1.016 (1.005, 1.027) 1.003 (0.997, 1.010)

1–4 years of College 1.013 (1.000, 1.027) 1.005 (0.997, 1.013)

5 or more years of college 1.017 (0.988, 1.046) 1.013 (0.995, 1.030)

Unknown 1.003 (0.956, 1.052) 1.013 (0.983, 1.044)

Marital status

Never married 1.024 (1.004, 1.044) 1.009 (0.997, 1.021)

Married 1.017 (1.007, 1.027) 1.006 (1.000, 1.012)

Widowed 1.023 (1.013, 1.033) 1.007 (1.001, 1.013)

Divorced 1.006 (0.988, 1.024) 1.000 (0.989, 1.011)

Unknown 1.123 (0.967, 1.303) 1.077 (0.981, 1.183)
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Table 5.

Association between PM2.5 exposure and total mortality in urban areas, stratified by combinations of factors

Census tract median 
income

Census tract median 
income

Census tract median 
income

Census tract median 
income

< 33,750 (25%) 33,750–41,500 41,500–52,269 ≥52,269 (75%)

Race/ethnicity

Non-Hispanic White 1.021 (1.003, 1.040) 1.025 (1.009, 1.041) 1.021 (1.007, 1.036) 1.022 (1.008, 1.035)

Non-Hispanic Black 1.035 (1.013, 1.058) 1.006 (0.976, 1.036) 1.008 (0.974, 1.043) 1.020 (0.984, 1.058)

Hispanic 1.005 (0.867, 1.166) 0.926 (0.777, 1.103) 1.106 (0.948, 1.286) 0.971 (0.840, 1.123)

Non-Hispanic Asian 0.978 (0.764, 1.254) 0.867 (0.687, 1.093) 0.986 (0.809, 1.202) 0.906 (0.780, 1.053)

Non-Hispanic Other 1.033 (0.937, 1.139) 1 1.171 (0.992, 1.383) 0.772 (0.587, 1.015) 0.896 (0.672, 1.195)
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