
Received: 2 April 2020 Revised: 11 April 2020 Accepted: 11 April 2020 Published on: 2 May 2020

DOI: 10.1002/nav.21905

R E S E A R C H A R T I C L E

A model of supply-chain decisions for resource sharing with an
application to ventilator allocation to combat COVID-19

Sanjay Mehrotra Hamed Rahimian Masoud Barah Fengqiao Luo Karolina Schantz

Department of Industrial Engineering and

Management Sciences, Northwestern University,

Evanston, Illinois

Correspondence
Sanjay Mehrotra, Department of Industrial

Engineering and Management Sciences,

Northwestern University, Evanston, IL 60208.

Email: mehrotra@northwestern.edu

Funding information
National Science Foundation, Grant/Award

Number: CMMI-1763035.

Abstract
We present a stochastic optimization model for allocating and sharing a critical

resource in the case of a pandemic. The demand for different entities peaks at differ-

ent times, and an initial inventory for a central agency are to be allocated. The entities

(states) may share the critical resource with a different state under a risk-averse con-

dition. The model is applied to study the allocation of ventilator inventory in the

COVID-19 pandemic by FEMA to different U.S. states. Findings suggest that if

less than 60% of the ventilator inventory is available for non-COVID-19 patients,

FEMA’s stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly

adequate to meet the projected needs in slightly above average demand scenarios.

However, when more than 75% of the available ventilator inventory must be reserved

for non-COVID-19 patients, various degrees of shortfall are expected. In a severe

case, where the demand is concentrated in the top-most quartile of the forecast con-

fidence interval and states are not willing to share their stockpile of ventilators, the

total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ven-

tilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results

are also reported for a worst-case where the demand is at the upper limit of the

95% confidence interval. An important finding of this study is that a central agency

(FEMA) can act as a coordinator for sharing critical resources that are in short

supply over time to add efficiency in the system. Moreover, through properly man-

aging risk-aversion of different entities (states) additional efficiency can be gained.

An additional implication is that ramping up production early in the planning cycle

allows to reduce shortfall significantly. An optimal timing of this production ramp-up

consideration can be based on a cost-benefit analysis.
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1 INTRODUCTION

COVID-19 was first identified in Wuhan, China in December

2019 (Hui et al., 2020). It has since become a global pan-

demic. As of March 31, 2020 the United States has overtaken

China in the number of deaths due to the disease, with more

than 3900 deaths. United States, Italy, and Spain have all sur-

passed the death toll in China. However, United States tops

the list of all countries in the current number of confirmed

COVID-19 cases exceeding 400 000 (Johns Hopkins Univer-

sity, 2020). In Northern Italy, one of the global epicenters

of the pandemic, COVID-19 completely overwhelmed the

healthcare system, forcing doctors into impossible decisions

about which patients to save. Physicians on the front lines

have shared accounts of how they must now weigh factors like

age, comorbidities, and probability of surviving prolonged

intubation when deciding which patients with respiratory fail-

ure will receive mechanical ventilation (Rosenbaum, 2020).

Naval Res Logistics 2020;67:303–320 wileyonlinelibrary.com/journal/nav © 2020 Wiley Periodicals, Inc. 303

https://orcid.org/0000-0003-1106-1901


304 MEHROTRA ET AL.

1.1 A resource constrained environment

While approximately 80% of COVID-19 cases are mild, the

most severe cases of COVID-19 can result in respiratory fail-

ure, with approximately 5% of patients requiring treatment

in an intensive care unit (ICU) with mechanical ventilation

(Wu & McGoogan, 2020). Mechanical ventilation is used to

save the lives of patients whose lungs are so damaged that

they can no longer pump enough oxygen into the blood to

sustain organ function. It provides more oxygen than can be

delivered through a nasal cannula or face mask, allowing

the patient’s lungs time to recover and fight off the infec-

tion. Physicians in Italy have indicated that critical COVID-19

patients often need to be intubated for a prolonged period of

time (15-20 days) (Rosenbaum, 2020), further exacerbating

ventilator scarcity.

Limiting the death toll within the United States depends

on the ability to allocate sufficient numbers of ventilators

to hard hit areas of the country before infections peak and

ensuring that the inventory does not run out. Harder hit

states (such as New York, Michigan, and Louisiana) are

desperately trying to acquire additional ventilators in antic-

ipation of significant shortages in the near future. Yet in

the absence of a coordinated federal response, reports have

emerged of states finding themselves forced to compete with

each other in order to obtain ventilators from manufacturers

(State Health Systems, 2020). According to New York’s Gov-

ernor Cuomo, the state has ordered 17 000 ventilators at the

cost of $25 000/ventilator, but is expected to receive only 2500

over the next 2 weeks (NY Governor, 2020). As of March 31,

2020, according to the U.S. presidential news briefing, more

than 8100 ventilators have been allocated by FEMA around

the nation. Of these, 400 ventilators have been allocated to

Michigan, 300 to New Jersey, 150 to Louisiana, 50 to Con-

necticut, and 450 to Illinois, in addition to the 4400 given to

New York (March 31 White House Briefing, 2020).

Going forward, the federal response to the COVID-19 pan-

demic will require centralized decision-making around how

to equitably allocate, and reallocate, limited supplies of ven-

tilators to states in need. Projections from the Institute for

Health Metrics and Evaluation at the University of Washing-

ton, which assume that all states will institute strict social

distancing practices and maintain them until after infections

peak, show states will hit their peak demand at different time

points throughout the months of April and May. Many states

are predicted to experience a significant gap in ICU capac-

ity, and similar, if not greater, gaps in ventilator capacity, with

the time point at which needs will begin to exceed current

capacity varying by state (IHME, 2020).

1.2 Our contributions

In response to the above problem, this paper presents a model

for allocation and possible reallocation of ventilators that are

available in the national stockpile. Importantly, computational

results from the model also provide estimates of the short-

fall of ventilators in each state under different future demand

scenarios.

This modeling framework can be used to develop mas-

ter plans that will allocate part of the ventilator inventory

here-and-now, while allocating and reallocating the avail-

able ventilators in the future. The modeling framework

incorporates conditions under which part of the historically

available ventilator inventory is used for non-COVID-19

patients, who also present themselves for treatment along

with COVID-19 patients. Thus, only a fraction of the his-

torical ventilator inventory is available to treat COVID-19

patients. The remaining demand needs are met by alloca-

tion and re-allocation of available ventilators from FEMA

and availability of additional ventilators through planned pro-

duction. FEMA is assumed as the central agency that coor-

dinates state-to-state ventilator sharing. The availability of

inventory from a state for re-allocation incorporates a certain

risk-aversion parameter. We present results while perform-

ing a what-if analysis under realistically generated demand

scenarios using available ventilator demand data and ven-

tilator availability data for different U.S. states. An online

planning tool is also developed and made available for use

at https://covid-19.iems.northwestern.edu (COVID-19 Plan-

ning Tool, 2020).

1.3 Organization

This paper is organized as follows. A review of the related

literature is provided in Section 2. We present our resource

allocation planning model, and its re-formulation in Section 3.

Section 4 presents our computational results under different

mechanical ventilator demand scenarios for the COVID-19

pandemic in the United States. In Section 5, we introduce our

companion online COVID-19 ventilator allocation and shar-

ing planning tool. We end the paper with some discussion and

concluding remarks.

2 LITERATURE REVIEW

A medical resource allocation problem in a disaster is consid-

ered in Xiang and Zhang (2016). Victims’ deteriorating health

conditions are modeled as a Markov chain, and the resources

are allocated to optimize the total expected health recovery

rate and reduce the total waiting time. Certain illustrative

examples in a queuing network setting are also given in Xiang

and Zhang (2016). The problem of scarce medical resource

allocation after a natural disaster using a discrete event sim-

ulation approach is investigated in Cao and Huang (2012).

Specifically, the authors in Cao and Huang (2012) investigate

four resource-rationing principles: first come-first served,

random, most serious first, and least serious first. It is found

that without ethical constraints, the least serious first prin-

ciple exhibits the highest efficiency. However, a random

https://covid-19.iems.northwestern.edu
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selection provides a relatively fairer allocation of services and

a better trade-off with ethical considerations. Resource allo-

cation in an emergency department in a multiobjective and

simulation-optimization framework is studied in Feng, Wu,

and Chen (2017). Simulation and queuing models for bed

allocation are studied in Vasilakis and EI-Darzi (2001) and

Gorunescu, McClean, and Millard (2002).

The problem of determining the levels of contact tracing

to control spread of infectious disease using a simulation

approach to a social network model is considered in Arm-

bruster and Brandeau (2007). A linear programming model

is used in investigating the allocation of HIV prevention

funds across states (Earnshaw, Hicks, Richter, & Honey-

cut, 2007). This paper suggests that in the optimal allocation,

the funds are not distributed in an equitable manner. A lin-

ear programming model to derive an optimal allocation of

healthcare resources in developing countries is studied in

Flessa (2000). Differential equation-based systems modeling

approach is used in Araz, Galvani, and Meyers (2012) to find

a geographic and demographic dependent way of distribut-

ing pandemic influenza vaccines based on a case study of

A/H1N1 pandemic.

In a more recent COVID-19-related study, Kaplan (2020)

proposes a probability model to estimate the effectiveness

of quarantine and isolation on controlling the spread of

COVID-19. In the context of ventilator allocation, a concep-

tual framework for allocating ventilators in a public emer-

gency is proposed in Zaza et al. (2016). The problem of

estimating mechanical ventilator demand in the United States

during an influenza pandemic was considered in Meltzer,

Patel, Ajao, Nystrom, and Koonin (2015). In a high sever-

ity pandemic scenario, a need of 35 000-60 500 additional

ventilators to avert 178 000-308 000 deaths was estimated.

Robust models for emergency staff deployment in the event

of a flu pandemic were studied in Bienstock and Zen-

teno (2015). Specifically, the authors focused on managing

critical staff levels during such an event, with the goal of

minimizing the impact of the pandemic. Effectiveness of

the approach was demonstrated through experiments using

realistic data.

A method for optimizing stockpiles of mechanical venti-

lators, which are critical for treating hospitalized influenza

patients in respiratory failure, is introduced in Huang

et al. (2017). In a case-study, mild, moderate, and severe

pandemic conditions are considered for the state of Texas.

Optimal allocations prioritize local over central storage, even

though the latter can be deployed adaptively, on the basis of

real-time needs. Similar to this paper, the model in Huang

et al. (2017) uses an expected shortfall of ventilators in the

objective function, while also considering a second criteria

of total cost of ventilator stockpiling. However, the model in

Huang et al. (2017) does not consider distribution of ven-

tilators over time. In the case of COVID-19, the ventilator

demand is expected to peak at different times in different

states, as the demand for each state has different trajectories.

Only forecasts are available on how the demand might evolve

in the future.

In this paper, we assume that the planning horizon is finite,

and for simplicity we assume that reallocation decisions will

be made at discrete times (days). Under certain demand con-

ditions, the ventilators may be in short supply to be able to

meet the demand. Our model is formulated as a stochastic

program, and for the purpose of this paper, we reformulate

and solve the developed model in its extensive form. We

refer the reader to Birge and Louveaux (2011) and Shapiro,

Dentcheva, and Ruszczyński (2014) for a general description

of this topic.

3 A MODEL FOR VENTILATOR
ALLOCATION

In this section, we present a multiperiod planning model to

allocate ventilators to different regions, based on their needs,

for the treatment of critical patients. We assume that the

demand for ventilators at each planning period is stochastic.

We further assume that there is a central agency that coor-

dinates the ventilator (re)location decisions. The ventilators’

(re)location is executed at the beginning of each time period.

Once these decisions are made and executed, the states can

use their inventory to treat patients. Both the federal agency

and the states have to decide whether to reserve their inven-

tory in anticipation of future demand or share it with other

entities.

Before presenting the formulation, we list the sets, param-

eters, and decision variables that are used in the model.

• Sets and indices

–  : states (regions), indexed by n∈≔{1,… , | |},

–  : planning periods, indexed by t ∈  ≔{1, … , | |},

– Ω: ventilators’ demand scenarios, indexed by 𝜔∈Ω≔

{1, … , |Ω|},

• Deterministic parameters

– Yn: the initial inventory of ventilators in region n ∈ 

at time period t = 0,

– I: the initial inventory of ventilators in the central

agency at the beginning of time period t = 0,

– Qt: the number of ventilators produced during the time

period t− 1 that become available at the beginning of

time period t ∈  , for t≥ 1,

– 𝛾n: the percentage of the initial inventory of ventilators

in region n ∈  that cannot be used to care for the

patients at the critical level,

– 𝜏n: the percentage of the initial inventory of ventilators

in region n ∈  that the region is willing to share with

other regions, among those that can be used to care for

patients at the critical level,

– 𝜌n: the risk-aversion of region n ∈  to send their

idle ventilators to the central agency to be shared with

other regions,
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• Stochastic parameters

– d𝜔
n,t: the number of patients in region n ∈  at the

critical level that need a ventilator at the beginning of

time period t ∈  under scenario 𝜔∈Ω,

– p𝜔: probability of scenario 𝜔∈Ω,

• Decision variables

– xn, t: the number of ventilators reallocated to region

n ∈  by the central agency at the beginning of time

period t ∈  ,

– z𝜔n,t: the number of ventilators reallocated to the cen-

tral agency by region n ∈  at the beginning of time

period t ∈  under scenario 𝜔∈Ω,

– y𝜔n,t: the number of ventilators at region n ∈  that can

be used to care for the patients at the critical level at the

end of time period t ∈ {0} ∪  under scenario 𝜔∈Ω,

– s𝜔t : the number of ventilators at the central agency at

the end of time period t ∈ {0} ∪  under scenario

𝜔∈Ω.

For notational convenience, we also define the vector d𝜔
t ≔

(d𝜔
1,t, d

𝜔
2,t, … , d| |,t)⊤ for t ∈  and 𝜔∈Ω. Moreover, we

define d𝜔 ≔ (d𝜔
1
,d𝜔

2
, … ,d𝜔

T )
⊤, for 𝜔∈Ω. We might drop the

superscript 𝜔∈Ω from this notation and use the same sym-

bol with a tilde to denote that these parameters are stochastic.

For example, we might use d̃. Similarly, we define the deci-

sion vector xt ≔ (x1,t, x2,t, … , x∣ ∣,t)⊤ for each t ∈  and

x≔ (x1, x2, … , xT )⊤.

3.1 Model with no lead-time

In this section, we assume that there is no lead time between

sending a ventilator by an entity (a region or the central

agency) and delivery by another entity. With this assumption,

the planning model to minimize the expected shortage of

ventilators in order to treat patients at the critical level is

formulated as a two-stage stochastic program as follows:

min 𝜃
∑
t∈

∑
n∈

xn,t + E[f (x, d̃)] (1a)

s.t. xn,t ≥ 0, ∀n ∈  , ∀t ∈  , (1b)

where

f (x, d̃) ≔ min
∑
t∈

∑
n∈

(d̃n,t − yn,t)+ (2a)

s.t. yn,t−1 + xn,t − zn,t = yn,t, ∀n ∈  , ∀t ∈  , (2b)

st−1 + Qt +
∑
n∈

zn,t −
∑
n∈

xn,t = st, ∀t ∈  , (2c)

zn,t ≤ (yn,t −(1− 𝜏n)yn,0 −𝜌nd̃n,t)+, ∀n∈ , ∀t ∈  , (2d)

∑
n∈

xn,t ≤ st−1 + Qt +
∑
n∈

zn,t, ∀t ∈  , (2e)

yn,0 = (1 − 𝛾n)Yn, ∀n ∈  , (2f)

s0 = I, (2g)

zn,t ≥ 0, ∀n ∈  , ∀t ∈  , (2h)

yn,t ≥ 0, ∀n ∈  , ∀t ∈ {0} ∪  , (2i)

st ≥ 0, ∀t ∈ {0} ∪  . (2j)

We now explain the model in detail. In the first stage, the cen-

tral agency makes the “here-and-now” decisions x before the

stochastic parameters d̃ are realized. As captured in (1a), the

goal of the central agency is to minimize the expected total

shortage of ventilators over all time periods t ∈  and all

regions n ∈  . The objective also includes a cost, parame-

terized by 𝜃 of allocating a ventilator by the central agency to

a state at a given time. This cost can be set to zero, or set to a

small value. In our computations we set 𝜃 = 0.01.

In the second stage, once the stochastic parameters d̃ are

realized, the “wait-and-see” decisions zn, t, yn, t, st, n ∈  ,

and t ∈  , are made. These decisions are scenario-specific,

and are indicated by the superscript 𝜔∈Ω, in the extensive

formulation given in (3). Constraints (2b) and (2c) ensure

the conservation of ventilators for the regions and the cen-

tral agency at each time period, respectively. Constraint (2d)

enforces that at each time period, a region is not sending

out any ventilator to the central agency if its in-hand inven-

tory is lower than its safety stock, where the safety stock is

determined as 𝜌nd̃n,t, for t ∈  and n ∈  . Constraint

(2e) ensures that at each time period, the total number of

outgoing ventilators from the central agency to the regions

cannot be larger than the available inventory, after incorpo-

rating the newly produced ventilators and the incoming ones

from other regions. Constraints (2f) and (2g) set the initial

inventory at the regions and central agency, respectively. The

remaining constraints ensure the nonnegativity of decision

variables.

Note that the objective function (2a) and constraints (2d)

are not linear. By introducing an additional variable, the term

(d̃n,t − yn,t)+ in the objective function, for n ∈  , t ∈  , and

𝜔∈Ω, can be linearized as

en,t ≥ d̃n,t − yn,t,

en,t ≥ 0.

Furthermore, for each region n ∈  and time period t ∈  ,

constraint (2d) can be linearized as

yn,t − (1 − 𝜏n)yn,0 − 𝜌nd̃n,t ≥ M(gn,t − 1),
zn,t ≤ yn,t − (1 − 𝜏n)yn,0 − 𝜌ndn,t + M(1 − gn,t),

zn,t ≤ 𝑀𝑔n,t,

gn,t ∈ {0, 1},

where M is a big number.

By incorporating the finiteness of the support of d̃, a

linearized reformulation of model (1) can be written as a



MEHROTRA ET AL. 307

mixed-binary linear program in the following extensive form:

min 𝜃
∑
t∈

∑
n∈

xn,t +
∑
𝜔∈Ω

p𝜔

[∑
t∈

∑
n∈

e𝜔n,t

]
(3a)

s.t. y𝜔n,t−1
+ xn,t − z𝜔n,t = y𝜔n,t,

∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3b)

s𝜔t−1
+ Qt +

∑
n∈

z𝜔n,t −
∑
n∈

xn,t = s𝜔t ,

∀𝜔 ∈ Ω, ∀t ∈  , (3c)

y𝜔n,t − (1 − 𝜏n)y𝜔n,0 − 𝜌nd𝜔
n,t ≥ M(g𝜔

n,t − 1), ∀𝜔 ∈ Ω,

∀n ∈  , ∀t ∈  , (3d)

z𝜔n,t ≤ y𝜔n,t − (1 − 𝜏)y𝜔n,0 − 𝜌nd𝜔
n,t + M(1 − g𝜔

n,t),

∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3e)

z𝜔n,t ≤ 𝑀𝑔𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3f)

∑
n∈

xn,t ≤ s𝜔t−1
+ Qt +

∑
n∈

z𝜔n,t, ∀𝜔 ∈ Ω, ∀t ∈  , (3g)

y𝜔n,0 = (1 − 𝛾n)Yn, ∀𝜔 ∈ Ω, ∀n ∈  , (3h)

s𝜔
0
= I, ∀𝜔 ∈ Ω, (3i)

e𝜔n,t ≥ d𝜔
n,t − y𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3j)

xn,t ≥ 0, ∀n ∈  , ∀t ∈  , (3k)

z𝜔n,t, e𝜔n,t ≥ 0, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3l)

y𝜔n,t ≥ 0, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈ {0} ∪  , (3m)

s𝜔t ≥ 0, ∀𝜔 ∈ Ω, ∀t ∈ {0} ∪  , (3n)

g𝜔
n,t ∈ {0, 1}, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (3o)

where d𝜔
n,t denotes the number of patients at the critical level

in regions n ∈  that need a ventilator at the beginning

of time period t ∈  under scenario 𝜔∈Ω. Note that all

second-stage variables z𝜔n,t, y𝜔n,t, and s𝜔t , n ∈  , and t ∈ 

in model (3) have superscript 𝜔 to indicate their dependence

to scenario 𝜔∈Ω. It is worth noting that (1) (and (3) as well)

considers multiperiod decisions. In the model, the central

agency will make decisions for the entire planning horizon

using the information that is available at the beginning of

planning.

For our numerical experiments in Section 4, we used a

commercial mixed-integer programming solver to obtain the

results. Furthermore, we used I + 𝜏nyn,0 +
∑

t′≤tQt as a big-M

for n ∈  and t ∈  .

3.2 Model with lead-time

In this section, we assume that there is a lead time of L time

periods between sending a ventilator by an entity (a region or

the central agency) and delivery by another entity. With this

assumption, (1) can be generalized as follows:

min 𝜃
∑
t∈

∑
n∈

xn,t + E[f (x, d̃)] (4a)

s.t. xn,t ≥ 0, ∀n ∈  , ∀t ∈  , (4b)

where

f (x, d̃) ≔ min
∑
t∈

∑
n∈

(d̃n,t − yn,t)+ (5a)

s.t. yn,t−1 − zn,t = yn,t,

∀n ∈  , ∀t ∈  if t ≤ L, (5b)

yn,t−1 + xn,t−L − zn,t = yn,t,

∀n ∈  , ∀t ∈  if t > L, (5c)

st−1 + Qt −
∑
n∈

xn,t = st, ∀t ∈  if t ≤ L, (5d)

st−1 + Qt +
∑
n∈

zn,t−L −
∑
n∈

xn,t = st,

∀t ∈  if t > L, (5e)

zn,t ≤ (yn,t − (1 − 𝜏n)yn,0 − 𝜌nd̃n,t)+,
∀n ∈  , ∀t ∈  , (5f)

∑
n∈

xn,t ≤ st−1 + Qt, ∀t ∈  if t ≤ L, (5g)

∑
n∈

xn,t ≤ st−1 + Qt +
∑
n∈

zn,t−L,

∀t ∈  if t > L, (5h)

yn,0 = (1 − 𝛾n)Yn, ∀n ∈  , (5i)

s0 = I, (5j)

zn,t ≥ 0, ∀n ∈  , ∀t ∈  , (5k)

yn,t ≥ 0, ∀n ∈  , ∀t ∈ {0} ∪  , (5l)

st ≥ 0, ∀t ∈ {0} ∪  . (5m)
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Note that model (4) is obtained by revisiting constraints (2b),

(2c), and (2e) to incorporate lead time in the planning. Con-

straints (5b) and (5c) require the conservation of ventilators

for the regions at each time period, where a ventilator sent

by the federal agency to a region at time period t− L, t>L,

will become available for the region at time period t. Con-

straints (5d) and (5e) ensure the conservation of ventilators

for the central agency, respectively, where a ventilator sent

by a region to the federal agency at time period t− L, t>L,

will become available for the central agency at time period

t. Constraints (5g) and (5h) enforce that the total number of

outgoing ventilators from the central agency to the regions

cannot be larger than the available inventory, after incorpo-

rating the newly produced ventilators and the incoming ones

from other regions. Similar to (2b) and (2c), constraint (2e) is

also divided into sets for t≤ L and t>L in (5g) and (5h).

By incorporating the finiteness of the support of d̃, a

linearized reformulation of model (1) can be written as a

mixed-binary linear program in the following extensive form:

similar to (3), model (4) can be written as a mixed-binary

linear program in the following extensive form:

min 𝜃
∑
t∈

∑
n∈

xn,t +
∑
𝜔∈Ω

p𝜔

[∑
t∈

∑
n∈

e𝜔n,t

]
(6a)

s.t. y𝜔n,t−1
− z𝜔n,t = y𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  ,

∀t ∈  if t ≤ L, (6b)

y𝜔n,t−1
+ xn,t−L − z𝜔n,t = y𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  ,

∀t ∈  if t > L, (6c)

s𝜔t−1
+ Qt −

∑
n∈

xn,t = s𝜔t , ∀𝜔 ∈ Ω,

∀t ∈  if t ≤ L, (6d)

s𝜔t−1
+ Qt +

∑
n∈

z𝜔n,t−L −
∑
n∈

xn,t = s𝜔t ,

∀𝜔 ∈ Ω, ∀t ∈  if t > L, (6e)

y𝜔n,t − (1 − 𝜏n)y𝜔n,0 − 𝜌nd𝜔
n,t ≥ M(g𝜔

n,t − 1),

∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6f)

z𝜔n,t ≤ y𝜔n,t − (1 − 𝜏)y𝜔n,0 − 𝜌nd𝜔
n,t + M(1 − g𝜔

n,t),

∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6g)

z𝜔n,t ≤ 𝑀𝑔𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6h)

∑
n∈

xn,t ≤ s𝜔t−1
+ Qt, ∀𝜔 ∈ Ω, ∀t ∈  if t ≤ L, (6i)

∑
n∈

xn,t ≤ s𝜔t−1
+ Qt +

∑
n∈

z𝜔n,t−L,

∀𝜔 ∈ Ω, ∀t ∈  if t > L, (6j)

y𝜔n,0 = (1 − 𝛾n)Yn, ∀𝜔 ∈ Ω, ∀n ∈  , (6k)

s𝜔
0
= I, ∀𝜔 ∈ Ω, (6l)

e𝜔n,t ≥ d𝜔
n,t − y𝜔n,t, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6m)

xn,t ≥ 0, ∀n ∈  , ∀t ∈  , (6n)

z𝜔n,t, e𝜔n,t ≥ 0, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6o)

y𝜔n,t ≥ 0, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈ {0} ∪  , (6p)

s𝜔t ≥ 0, ∀𝜔 ∈ Ω, ∀t ∈ {0} ∪  , (6q)

g𝜔
n,t ∈ {0, 1}, ∀𝜔 ∈ Ω, ∀n ∈  , ∀t ∈  , (6r)

4 VENTILATOR ALLOCATION CASE
STUDY: THE UNITED STATES

The ventilator allocation model (3), described in Section 3,

was implemented in Python 3.7. All computations were per-

formed using GUROBI 9.0.1, on a Linux Ubuntu environment

on two machines. In the first machine, we used 14 cores, with

3.4 GHz processor and 128 GB of RAM, and set the time limit

to 2 hours. In the second machine, we used 64 cores, with

2.2 GHz processor and 128 GB of RAM, and set the time limit

to 3 hours.

4.1 Ventilator demand data

Since projected ventilator need is a key input for the model, it

is important to use accurate estimates of the demand forecasts.

The forecasts of ventilator needs generated by IHME (2020)

were used in our computational study. These forecasts were

first made available on March 26, 2020, and used the most

recent epidemiological data and advanced modeling tech-

niques. The available information closely tracks the real-time

data (IHME COVID-19 Projections, 2020). This COVID-19

needs forecast data was recently used in a recent presidential

news brief (March 31 White House Briefing, 2020). Although

it is difficult to validate the ventilator need forecasts against

actual hospital and state level operational data, as this infor-

mation is not readily available, we find that this model’s

forecasts for deaths are quite accurate. For example, the model

forecasted 217.9 deaths (CI: [176.95, 271.0]) on March 29,

2020 for the State of New York. The number of reported

deaths in the state on March 29, 2020 was 237. Similarly, the

model forecasted 262.2 deaths (CI: [206.9, 340]) on March

30, 2020 against the actual deaths of 253 on that day. A new

update of the forecasts was published on April 2, 2020, and is

used in the current version of our paper.
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4.2 Demand scenario generation

We considered a 70-day planning period, starting from March

23, 2020 and ending on May 31, 2020. We generated the

random demands in ways that correspond to projected future

demands under different mitigation effects. More precisely,

we considered six different cases to generate random samples

for the number of ventilators needed to care for COVID-19

patients. These cases are listed below:

Case I. Average-I: Each of the demand scenarios has equal

probability and the distribution is uniform over the

range of the CI provided in IHME (2020).

Case II. Average-II: The demand scenarios in the top 25% of

CI have 0.25 probability (equally distributed); and

scenarios in the bottom 75% have 0.75 probability.

Case III. Above average: The demand scenarios in the top

25% of CI have 0.50 probability; and the scenarios

in the bottom 75% have 0.50 probability.

Case IV. Well above average: The demand scenarios in the

top 25% of CI have 0.75 probability; and the demand

scenarios in the bottom 75% have 0.25 probability.

Case V. Severe (CI worst quartile): The demand scenarios in

top 25% have 100% probability, that is, 0%

probability is assigned for the bottom 75% demand

scenarios.

Case VI. Extreme (CI upper limit): There is only demand

scenario, which happens at the upper limit of CIs.

We further discuss the demand generation procedure. A

demand scenario contains the demand data for all days and

states. In all Cases I-VI, we assumed that the forecast CI

provided in IHME (2020), for each day and for each state,

represents the support of the demand distribution.

Cases I and II are generated to develop average demand sce-

nario representations that use the information provided in the

CI given in IHME (2020) in two different ways. In Case I, it

is assumed that the mean is the median of the demand distri-

bution (ie, the right- and left-tail of the demand distribution

have 0.5 probability). We randomly generated a number to

indicate which tail to sample from, where both tails have the

same 0.5 probability of being chosen. Once the tail is deter-

mined, we divided the tail into 50 equally distanced partitions,

and chose a random partition to uniformly sample from. We

repeated this process for all days and states. In order to capture

the spatiotemporal correlation between demand realizations,

we sampled from the same tail and partition for all days and

states, although the range from which we sample depends on

the CI. In this case, all scenarios are equally likely.

In Case II, we randomly generated a number to indicate

which tail to sample from, where the top 25% of the CI (ie, the

right tail) has a 0.25 probability and the bottom 75% (ie, the

left tail) has a 0.75 probability of being chosen. If the right tail

is chosen, we set the weight of the scenario to 0.25, and we

set it to 0.75 otherwise. The rest of the procedure is similar to

Case I. In order to determine the probability of scenarios, we

normalized the weights. Demand scenarios in Cases III-V are

generated in the same fashion as in Case II, where the only

difference is in the probability of which tail to choose from,

which is determined by the sampling scheme described in the

definition of the case.

Cases I and II are intended to parameterize the model

to capture the average case. These two cases were consid-

ered because our data analysis showed that the confidence

intervals on the forecasts provided by IHME COVID-19

Projections (2020) were not symmetric. We attempted a

log-transformation of the confidence intervals, but found

that the log-transforms also provided asymmetric confidence

intervals. Hence, it was considered more appropriate to gen-

erate the demand scenarios using two different sampling

schemes.

For Cases I-VI, we generated 24 scenarios, while in Case

VI, there is only one scenario which happens at the upper

limit of CI. Note that in each case, different quantities for the

random demand d̃𝜔
n,t, t ∈  , n ∈  , and 𝜔∈Ω, might

be generated. An illustration of the trajectory of demand sce-

narios over time is given in Figures 1-3 for the US and the

States of New York and California. The y-axis in these figures

represents the demand realization in each sampled scenario.

4.3 Ventilator inventory, stockpile, and production

Another key input to the planning model is the initial ventila-

tor inventory. As of March 23, 2020, before the rapid rise of

COVID-19 cases in the State of New York, FEMA had about

20 000 ventilators in reserve, that is, I = 20 000. We used this

for our model which suggests ventilator allocation decisions

from March 23, 2020.

Estimates for the initial inventory of ventilators at different

states were obtained from Mapping US Health System (2020).

These estimates are based on a hospital survey (Rubinson

et al., 2010; United States Resource, 2020). The estimates for

new ventilator production were obtained based on informa-

tion provided at the US presidential briefings on March 27,

2020 (Coronavirus Outbreak, 2020). These estimates suggest

that the normal yearly ventilator production capacity is about

30 000 ventilators/year. However, under the U.S. Defense Pro-

duction Act, with the participation of additional companies,

production of approximately 10 000 ventilators/month could

be possible (Coronavirus Outbreak, 2020). Using this infor-

mation, for the baseline case we assumed that the current daily

ventilator production rate is Qt = 80 ventilators/day; and it

will be increased to Qt = 320 ventilators/day starting on April

15, 2020. We refer to this case, as “baseline production,” and

analyzed in Section 4.5.1. We also analyze the case that the

ramp-up in production happens on April 1, 2020 or April 7,

2020 in Section 4.5.2.

4.4 Inventory sharing parameters

Recall that in the model, parameter 𝛾 is used to indicate

the fraction of ventilators used to care for non-COVID-19
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FIGURE 1 Summary of generated scenarios (Cases I-VI) for the United States, adapted from the data provided in (IHME, 2020) on April 2, 2020 [Colour

figure can be viewed at wileyonlinelibrary.com]

patients. Additionally, a parameter 𝜏 is used in the model to

estimate a state’s willingness to share the fraction of their

initial COVID-19-use ventilators. Similarly, the parameter 𝜌

is used to control the state’s risk-aversion to sending their

idle ventilators to FEMA for use in a different state. We

suppose that for all states n, n ∈  , we have 𝛾n = 𝛾 ,

𝜌n = 𝜌, and 𝜏n = 𝜏. In order to systematically study the

ventilator allocations and shortfalls, we used the follow-

ing parameters: 𝛾 ∈ {50%, 60%, 75%}, 𝜌∈ {1.25, 1.5, 3}, and

𝜏 ∈ {0%, 10%, 25%}.

4.5 Numerical results

In this section, we present and discuss the numerical results

for the case that there is no lead-time, that is, L = 0 or there

is a lead-time of 1 day. For most instances, we observed that

even obtaining an integer feasible solution to (3) and (6) in

the time limit was not possible. Therefore, we replaced these

models with their expected value problem, where the stochas-

tic demand is substituted with the expected demand. Then,

we solved the resulting model. This heuristic yields an inte-

ger feasible solution to model (3) and (6) for all instances

we tested in the time limit, and we report those results

here. In Section 4.5.1, we provide the results on ventilator

shortage and inflow/outflow from/to FEMA for the case that

there is no lead-time. We also analyze the effect of early

ramp-up in production and lead-time on ventilators’ shortage

in Sections 4.5.2 and 4.5.3, respectively.

4.5.1 Baseline production with no lead-time
In this section, for each setting (𝛾 , 𝜌, 𝜏), we solved the

expected value problem of model (3) under Cases I-VI.

A summary of ventilators’ shortage results is reported in

Tables 1-3. We briefly describe the columns in these tables.

Column “Total” denotes the expected total shortage, and is

calculated as

Total ≔
∑
t∈

∑
n∈

wn,t,

where wn,t ≔ (dt,n − It,n)+, dt,n ≔
∑

𝜔∈Ωp𝜔d𝜔
n,t, It,n ≔ y0,n +

FEMAt,n, and FEMAt,n ≔ min
{∑

t′≤txt,n, (dt,n − y0,n)+
}

.

Quantity “Worst day” in column “Worst day (t)” denotes

the expected shortage in the worst day, and is calculated as

Worst day ≔ max
t∈

∑
n∈

wn,t,

http://wileyonlinelibrary.com
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FIGURE 2 Summary of generated scenarios (Cases I-VI) for the State of New York, adapted from the data provided in (IHME, 2020) on April 2, 2020

[Colour figure can be viewed at wileyonlinelibrary.com]

where t denotes a day that the worst expected shortage hap-

pens, that is, t ∈ arg maxt∈
∑

n∈ wn,t. Moreover, quantity

“Worst day-state” in column “Worst day-state (t)” denotes the

expected shortage in the worst day and state, and is calculated

as

Worst day-state ≔ max
t∈

max
n∈

wn,t,

where (t, n) ∈ arg maxt∈ arg maxn∈ wn,t.

The results in Tables 1-3 suggest that when up to 60%

of a state’s ventilator inventory is used for non-COVID-19

patients, FEMA’s current stockpile of 20 000 ventilators is

nearly sufficient to meet the demand imposed by COVID-19

patients in mild cases (ie, Cases I-III). The ventilator avail-

ability situation gets worse in the case where 75% (or

greater %) of the available ventilators must be used for

non-COVID-19 patients and states’ risk-aversion parameter

to send the idle ventilators to FEMA to be used in a differ-

ent state is 3. In this case, if states are willing to share up to

50% of their excess inventory with other states, then 12 700

number of ventilators will be required beyond FEMA’s cur-

rent stockpile to meet demand in Cases I-IV. However, if no

such sharing is considered, then the need for ventilators would

increase to 14 200. This situation gets even worse for Cases

V and VI, where the inventory shortfall on the worst day

(April 19, 2020) is between 17 200 and 30 600. This shortfall

decreases moderately to 15 900-28 000 if states are willing to

share part of their initial ventilator inventory. If parameter 𝜌

goes down to 1.25, the inventory shortfall on the worst day

(April 19, 2020) is between 13 800 and 22 800. This shortfall

decreases moderately to 12 800-21 300 if states are willing to

share part of their initial ventilator inventory.

We also analyzed the ventilators’ reallocation to/from dif-

ferent states for the setting (𝛾 , 𝜌, 𝜏) = (0.75, 3, 0), which is

the most dramatic case we considered from the inventory

and stockpile perspectives. We report a summary of results

in Table 4 under the two worst demand situations, Cases V

(severe) and VI (extreme). Column “Total inflow” in this table

denotes the total incoming ventilators to a state n ∈  from

FEMA, and is calculated as

Total inflow ≔
∑
t∈

xn,t.

Similarly, column “Total outflow” denotes the expected total

outgoing ventilators from a state n ∈  to FEMA in order

http://wileyonlinelibrary.com
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FIGURE 3 Summary of generated scenarios (Cases I-VI) for the State of California, adapted from the data provided in (IHME, 2020) on April 2, 2020

[Colour figure can be viewed at wileyonlinelibrary.com]

to be shared with other states to be used to treat COVID-19

patients, and is calculated as

Total outflow ≔
∑
t∈

∑
𝜔∈Ω

p𝜔z𝜔n,t.

Also, column “Net flow” represents the difference between

“Total inflow” and “Total outflow.”

The results in Table 4 indicate that in Cases VI (severe) and

V (extreme), the State of New York requires between 11 100

and 17 500 additional ventilators for COVID-19 patients dur-

ing its peak demand. However, between 400 and 17 000 of

these ventilators can be given to a different state after the peak

demand in the State of New York has subsided. The insights

about other states can also be obtained from this table.

4.5.2 The effect of early ramp-up in production
on ventilators’ shortage
In this section, we consider the cases that the ramp-up in

production happens on April 1, 2020 or April 7, 2020, as

opposed to the baseline production, where the ramp-up in

production happens on April 15, 2020. A summary of venti-

lators’ shortage is given in Table 5 for the parameter setting

(𝛾 , 𝜌, 𝜏) = (0.75, 3.00, 0), under the two worst demand situ-

ations, Cases V (severe) and VI (extreme). As it is evident

from Table 5, early ramp-up in production could save up more

than 80 000 and 100 000 lives in Case V (severe) and Case VI

(extreme), respectively.

4.5.3 The effect of lead-time on ventilators’ shortage
In this section, we analyze ventilators’ shortage for the case

that there is a lead-time of 1 day. A summary of results under

Case VI is presented in Table 6. It can be seen from this

table that, as expected, the inventory shortfall increases with

an increase in the lead-time (approximately up to 500 on the

worst day).

5 VIEWING RESULTS USING AN ONLINE
TOOL

A companion online planning tool is developed in order to

view the outputs on the number of ventilators needed and

the shortage that might happen under various conditions

http://wileyonlinelibrary.com
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TABLE 1 Ventilators’ shortage summary under Cases I-VI, with Q = 320 and (𝜌, L) = (1.25, 0)

(𝜸, 𝝉) Case Total Worst date (t) Worst date-state (t, n)

(0.50, 0.00) I 3 0 0

II 1 0 0

III 4 0 0

IVa 3565 961 (April 15, 2020) 544 (April 16, 2020, Illinois)

Va 14 966 2641 (April 16, 2020) 713 (April 16, 2020, Alabama)

VIa 121 259 10 513 (April 17, 2020) 2929 (April 16, 2020, Alabama)

(0.50, 0.25) I 15 2 (April 21, 2020) 1 (April 22, 2020, New Mexico)

II 1 0 0

III 17 1 (April 24, 2020) 1 (April 7, 2020, King and Snohomish Counties, WA)

IVa 100 7 (April 17, 2020) 2 (April 21, 2020, Idaho)

Va 350 133 (April 16, 2020) 78 (April 16, 2020, Alabama)

VIa 73 029 7512 (April 16, 2020) 2306 (April 16, 2020, Alabama)

(0.50, 0.50) I 5 0 0

II 2 0 0

III 15 1 (March 28, 2020) 1 (April 20, 2020, Other Counties, WA)

IV 46 5 (April 15, 2020) 1 (April 24, 2020, Idaho)

Va 88 8 (April 19, 2020) 1 (April 25, 2020, Montana)

VIa 58 379 6834 (April 17, 2020) 2283 (April 16, 2020, Alabama)

(0.60, 0.00) I 6 1 (April 17, 2020) 0

II 4 0 0

III 27 3 (April 15, 2020) 1 (April 22, 2020, Nebraska)

IVa 29 681 4317 (April 16, 2020) 1021 (April 16, 2020, Alabama)

Va 53 698 6435 (April 16, 2020) 1608 (April 16, 2020, Alabama)

VIa 204 905 15 128 (April 17, 2020) 3827 (April 16, 2020, Alabama)

(0.60, 0.25) I 10 1 (April 12, 2020) 1 (April 12, 2020, Other Counties, WA)

II 5 0 0

III 50 5 (April 19, 2020) 1 (April 19, 2020, Rhode Island)

IVa 14 898 2726 (April 16, 2020) 757 (April 16, 2020, Alabama)

Va 34 218 4548 (April 17, 2020) 1191 (April 16, 2020, Alabama)

VIa 163 019 13 334 (April 17, 2020) 3396 (April 16, 2020, Alabama)

(0.60, 0.50) I 15 1 (April 26, 2020) 1 (March 25, 2020, King and Snohomish Counties, WA)

II 9 1 (04/05/2020) 0

III 17 3 (April 19, 2020) 1 (April 21, 2020, Iowa)

IVa 8553 2031 (April 16, 2020) 600 (April 16, 2020, Florida)

Va 26 916 3958 (April 17, 2020) 1110 (April 16, 2020, Alabama)

VIa 139 404 12 755 (April 16, 2020) 2835 (April 16, 2020, Alabama)

(0.75, 0.00) I 10 1 (April 19, 2020) 0

II 23 2 (April 27, 2020) 1 (May 1, 2020, South Dakota)

IIIa 9390 1907 (April 15, 2020) 835 (March 23, 2020, New York)

IVa 131 614 11 430 (April 16, 2020) 2407 (April 16, 2020, Alabama)

Va 173 004 13 768 (April 16, 2020) 3001 (April 16, 2020, Alabama)

VIa 381 943 22 801 (April 17, 2020) 4411 (April 16, 2020, Alabama)

(0.75, 0.25) I 56 6 (April 14, 2020) 1 (April 15, 2020, Other Counties, WA)

II 7 1 (April 22, 2020) 0

IIIa 5732 1350 (April 14, 2020) 835 (March 23, 2020, New York)

IVa 118 583 10 637 (April 16, 2020) 2395 (April 16, 2020, Alabama)

Va 157 319 13 337 (April 16, 2020) 2988 (April 16, 2020, Alabama)

VIa 359 230 22 200 (April 17, 2020) 4382 (April 16, 2020, Alabama)

(0.75, 0.50) I 36 3 (April 14, 2020) 1 (April 14, 2020, Maine)

II 8 1 (May 1, 2020) 0

IIIa 3608 953 (April 14, 2020) 835 (March 23, 2020, New York)

IVa 109 542 10 446 (April 16, 2020) 2407 (April 16, 2020, Alabama)

Va 146 505 12 774 (April 15, 2020) 2837 (April 16, 2020, Alabama)

VIa 336 767 21 321 (April 17, 2020) 4345 (April 16, 2020, Alabama)

a Reached the time limit. The reported results correspond to the best integer solution found.
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TABLE 2 Ventilators’ shortage summary under Cases I-VI, with Q = 320 and (𝜌, L) = (1.50, 0)

(𝜸, 𝝉) Case Total Worst date (t) Worst date-state (t, n)

(0.50, 0.00) I 5 0 0

II 1 0 0

III 3 0 0

IVa 6775 1677 (April 16, 2020) 459 (April 17, 2020, Illinois)

Va 20 009 3352 (April 17, 2020) 713 (April 16, 2020, Alabama)

VIa 130 989 11 206 (April 17, 2020) 3164 (April 16, 2020, Alabama)

(0.50, 0.25) I 4 0 0

II 1 0 0

III 3 0 0

IVa 30 4 (April 17, 2020) 1 (April 24, 2020, Idaho)

Va 4370 1105 (April 16, 2020) 352 (April 16, 2020, Alabama)

VIa 85 197 8719 (April 17, 2020) 2461 (April 16, 2020, Alabama)

(0.50, 0.50) I 3 0 0

II 4 0 0

III 8 1 (April 15, 2020) 0

IVa 47 4 (April 24, 2020) 1 (May 2, 2020, Florida)

Va 531 199 (April 17, 2020) 142 (April 17, 2020, Florida)

VIa 75 157 7850 (April 17, 2020) 2359 (April 16, 2020, Alabama)

(0.60, 0.00) I 4 0 0

II 4 0 0

III 10 2 (April 19, 2020) 1 (April 22, 2020, Nebraska)

IVa 37 140 5209 (April 16, 2020) 1117 (April 16, 2020, Alabama)

Va 62 710 7059 (April 17, 2020) 1644 (April 16, 2020, Alabama)

VIa 216 449 15 348 (April 18, 2020) 3449 (April 16, 2020, Alabama)

(0.60, 0.25) I 8 1 (April 1, 2020) 0

II 4 0 0

III 36 4 (April 20, 2020) 1 (April 22, 2020, Utah)

IVa 23 097 3827 (April 17, 2020) 756 (April 16, 2020, Alabama)

Va 46 101 5944 (April 17, 2020) 1524 (April 16, 2020, Alabama)

VIa 178 867 14 269 (April 17, 2020) 3404 (April 16, 2020, Alabama)

(0.60, 0.50) I 11 1 (April 28, 2020) 1 (April 30, 2020, Hawaii)

II 11 1 (April 19, 2020) 1 (April 19, 2020, Idaho)

III 29 4 (April 1, 2020) 1 (April 1, 2020, New Jersey)

IVa 16 658 3001 (April 17, 2020) 862 (April 18, 2020, Illinois)

Va 36 029 5012 (April 18, 2020) 1179 (April 16, 2020, Alabama)

VIa 157 337 13 400 (April 17, 2020) 3347 (April 16, 2020, Alabama)

(0.75, 0.00) I 16 1 (April 16, 2020) 0

II 30 2 (April 22, 2020) 1 (April 4, 2020, New Jersey)

IIIa 14 997 2790 (April 15, 2020) 835 (March 23, 2020, New York)

IVa 143 039 12 376 (April 17, 2020) 2674 (April 16, 2020, Alabama)

Va 185 441 14 537 (April 17, 2020) 3324 (April 16, 2020, Alabama)

VIa 394 587 23 457 (April 18, 2020) 4802 (April 16, 2020, Alabama)

(0.75, 0.25) I 26 3 (April 14, 2020) 0

II 10 1 (May 1, 2020) 0

IIIa 11 209 2388 (April 15, 2020) 835 (March 23, 2020, New York)

IVa 131 086 11 824 (April 16, 2020) 2674 (April 16, 2020, Alabama)

Va 172 744 13 957 (April 17, 2020) 2998 (April 16, 2020, Alabama)

VIa 375 323 23 105 (April 18, 2020) 4802 (April 16, 2020, Alabama)

(0.75, 0.50) I 51 4 (April 14, 2020) 1 (April 15, 2020, New Hampshire)

II 13 1 (April 9, 2020) 1 (April 9, 2020, Washington)

IIIa 8698 2082 (April 15, 2020) 835 (March 23, 2020, New York)

IVa 122 866 11 314 (April 16, 2020) 2407 (April 16, 2020, Alabama)

Va 161 075 13 839 (April 17, 2020) 3001 (April 16, 2020, Alabama)

VIa 357 178 22 452 (April 18, 2020) 4384 (April 16, 2020, Alabama)

a Reached the time limit. The reported results correspond to the best integer solution found.



MEHROTRA ET AL. 315

TABLE 3 Ventilators’ shortage summary under Cases I-VI, with Q = 320 and (𝜌, L) = (3.00, 0)

(𝜸, 𝝉) Case Total Worst date (t) Worst date-state (t, n)

(0.50, 0.00) I 3 0 0

II 1 0 0

III 3 0 0

IVa 22 239 2974 (April 19, 2020) 917 (April 21, 2020, Illinois)

Va 48 434 5591 (April 19, 2020) 1626 (April 21, 2020, Florida)

VIa 247 524 18 006 (April 17, 2020) 4387 (April 16, 2020, Alabama)

(0.50, 0.25) I 3 0 0

II 1 0 0

III 3 0 0

IVa 7749 1250 (April 20, 2020) 410 (April 20, 2020, Illinois)

Va 25 576 3348 (April 19, 2020) 1003 (April 16, 2020, Alabama)

VIa 190 771 14 883 (April 17, 2020) 3916 (April 16, 2020, Alabama)

(0.50, 0.50) I 3 0 0

II 1 0 0

III 3 0 0

IVa 2666 750 (April 19, 2020) 289 (April 20, 2020, Florida)

Va 14 403 2567 (April 20, 2020) 1115 (April 21, 2020, Florida)

VIa 132 855 11 965 (April 18, 2020) 3161 (April 21, 2020, Illinois)

(0.60, 0.00) I 4 0 0

II 4 0 0

III 8 1 (April 24, 2020) 0

IVa 62 677 6506 (April 19, 2020) 1529 (April 16, 2020, Alabama)

Va 100 644 9489 (April 19, 2020) 2435 (April 23, 2020, Illinois)

VIa 337 955 22 532 (April 17, 2020) 4831 (April 16, 2020, Alabama)

(0.60, 0.25) I 4 0 0

II 4 0 0

III 12 1 (April 20, 2020) 0

IVa 50 770 5565 (April 19, 2020) 1271 (April 16, 2020, Alabama)

Va 81 225 8120 (April 19, 2020) 1969 (April 16, 2020, Alabama)

VIa 297 366 20 457 (April 17, 2020) 4581 (April 16, 2020, Alabama)

(0.60, 0.50) I 7 1 (March 24, 2020) 0

II 7 1 (April 17, 2020) 0

III 16 1 (April 19, 2020) 1 (April 6, 2020, New York)

IVa 39 464 4727 (April 19, 2020) 1021 (April 16, 2020, Alabama)

Va 64 578 7000 (April 19, 2020) 1618 (April 16, 2020, Alabama)

VIa 246 365 17 870 (April 18, 2020) 3954 (April 22, 2020, Illinois)

(0.75, 0.00) I 7 1 (April 19, 2020) 0

II 9 1 (May 1, 2020) 0

IIIa 29 710 3463 (April 19, 2020) 835 (March 23, 2020, New York)

IVa 179 044 14 176 (April 19, 2020) 2829 (April 16, 2020, Alabama)

Va 231 612 17 201 (April 19, 2020) 3429 (April 16, 2020, Alabama)

VIa 527 275 30 596 (April 17, 2020) 5700 (April 16, 2020, Alabama)

(0.75, 0.25) I 23 3 (April 15, 2020) 1 (April 15, 2020, Ohio)

II 22 2 (April 8, 2020) 2 (April 9, 2020, Washington)

IIIa 27 362 3410 (April 19, 2020) 835 (March 23, 2020, New York)

IVa 169 753 13 504 (April 19, 2020) 2674 (April 16, 2020, Alabama)

Va 218 080 16 487 (April 19, 2020) 3324 (April 16, 2020, Alabama)

VIa 506 928 29 776 (April 17, 2020) 5700 (April 16, 2020, Alabama)

(0.75, 0.50) I 20 1 (April 14, 2020) 1 (April 22, 2020, Indiana)

II 8 1 (May 1, 2020) 0

IIIa 24 204 3155 (April 19, 2020) 835 (March 23, 2020, New York)

IVa 160 279 12 675 (April 19, 2020) 2407 (April 16, 2020, Alabama)

Va 205 062 15 889 (April 19, 2020) 3,289 (April 16, 2020, Alabama)

VIa 464 863 28 015 (April 17, 2020) 5,447 (April 16, 2020, Alabama)

a Reached the time limit. The reported results correspond to the best integer solution found.
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TABLE 4 Inflow and outflow from/to FEMA summary with Q = 320 and (𝛾 , 𝜌, 𝜏, L) = (0.75, 3.00, 0.00, 0)

Case V Case VI

State Total inflow Total outflow Net flow Total inflow Total outflow Net flow

Alabama 2025 0 2025 1496 0 1496

Alaska 53 0 53 50 0 50

Arizona 451 0 451 486 0 486

Arkansas 185 0 185 197 0 197

California 1154 0 1154 1445 0 1445

Colorado 762 0 762 702 0 702

Connecticut 242 0 242 183 0 183

Delaware 33 0 33 13 0 13

District of Columbia 0 0 0 0 0 0

Florida 4307 0 4307 5131 0 5131

Georgia 1057 0 1057 1051 0 1051

Hawaii 162 0 162 184 0 184

Idaho 208 0 208 202 0 202

Illinois 4361 53 4307 4555 0 4555

Indiana 910 0 910 1050 0 1050

Iowa 641 0 641 664 0 664

Kansas 282 0 282 304 0 304

Kentucky 166 0 166 231 0 231

King and Snohomish Counties, WA 212 0 212 209 0 209

Louisiana 615 4.75 610 543 230 313

Maine 105 0 105 92 0 92

Maryland 1324 0 1324 1511 0 1511

Massachusetts 589 0 589 447 0 447

Michigan 1354 42 1311 1037 885 152

Minnesota 289 0 289 254 0 254

Mississippi 434 0 434 443 0 443

Missouri 204 0 204 294 0 294

Montana 112 0 112 114 0 114

Nebraska 129 0 129 130 0 130

Nevada 332 0 332 337 0 337

New Hampshire 106 0 106 92 0 92

New Jersey 718 19 698 505 384 121

New Mexico 204 0 204 195 0 195

New York 11 144 420 10 723 14 187 13 544 643

North Carolina 656 0 655 727 0 727

North Dakota 35 0 35 33 0 33

Ohio 216 0 216 176 0 176

Oklahoma 325 0 325 274 0 274

Oregon 114 0 114 149 0 149

Other Counties, WA 181 0 181 193 0 193

Pennsylvania 209 0 209 76 0 76

Rhode Island 68 0 68 64 0 64

South Carolina 324 0 324 353 0 353

South Dakota 81 0 81 93 0 93

Tennessee 866 0 866 590 0 590

Texas 2471 0 2471 3010 0 3010

Utah 209 0 209 227 0 227

Vermont 1 0 1 0 0 0

Virginia 1852 0 1852 2211 0 2211

Washington 160 0 160 168 0 168

West Virginia 146 0 146 175 0 175

Wisconsin 451 0 451 545 0 545

Wyoming 58 0 58 68 0 68
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TABLE 5 Ventilators’ shortage summary with early ramp-up in production under Cases V and VI, with Q = 320 and
(𝛾 , 𝜌, 𝜏, L) = (0.75, 3.00, 0.00, 0)

Ramp-up date Case Total Worst date (t) Worst date-state (t, n)

April 1, 2020 Va 254 354 17 741 (April 18, 2020) 3713 (April 16, 2020, Alabama)

VIa 420 675 25 965 (April 18, 2020) 5183 (April 16, 2020, Alabama)

April 7, 2020 Va 305 466 20 101 (April 18, 2020) 4075 (April 16, 2020, Alabama)

VIa 480 100 28 437 (April 17, 2020) 5481 (April 16, 2020, Alabama)

April 15, 2020 Va 346 571 22 140 (April 18, 2020) 4334 (April 16, 2020, Alabama)

VIa 527 275 30 596 (April 17, 2020) 5700 (April 16, 2020, Alabama)

a Reached the time limit. The reported results correspond to the best integer solution found.

TABLE 6 Ventilators’ shortage summary with a lead-time of 1 day, under Case V and VI, with Q = 320 and
𝜌 = 3.00

(𝜸, 𝝉) Total Worst date (t) Worst date-state (t, n)

(0.50, 0.00) a 263 587 18 085 (April 18, 2020) 4421 (April 16, 2020, Alabama)

(0.50, 0.25) a 204 526 14 896 (April 18, 2020) 3942 (April 16, 2020, Alabama)

(0.50, 0.50) a 147 805 12 432 (April 19, 2020) 3249 (April 16, 2020, Alabama)

(0.60, 0.00) a 356 540 22 815 (April 18, 2020) 5160 (April 16, 2020, Alabama)

(0.60, 0.25) a 314 168 20 711 (April 18, 2020) 4802 (April 16, 2020, Alabama)

(0.60, 0.50) a 253 921 18 332 (April 19, 2020) 4389 (April 16, 2020, Alabama)

(0.75, 0.00) a 545 022 31 008 (April 18, 2020) 5733 (April 16, 2020, Alabama)

(0.75, 0.25) a 526 368 30 140 (April 18, 2020) 5481 (April 16, 2020, Alabama)

(0.75, 0.50) a 487 666 28 704 (April 18, 2020) 5448 (April 16, 2020, Alabama)

a Reached the time limit. The reported results correspond to the best integer solution found.

(COVID-19 Planning Tool, 2020). This website is avail-

able at https://covid-19.iems.northwestern.edu. The users can

choose the demand scenario (Cases I-VI) and choose differ-

ent options for parameter 𝛾 , the fraction of ventilators used to

care for non-COVID patients, parameter 𝜏, state’s willingness

to share the fraction of their initial COVID-19-use ventilators,

parameter 𝜌, the state’s risk-aversion to sending their idle ven-

tilators to FEMA for use in a different state, and parameter L
for lead-time. The results on the website are shown in inter-

active graphical and tabular formats. A snippet of this online

planning tool is given in Figure 4.

Interested readers can refer to this online companion for

more details and analysis beyond what is presented in this

paper. The results on COVID-19 Planning Tool (2020) will

be updated as additional computations are conducted and new

forecast confidence intervals become available.

6 CONCLUDING REMARKS

We have presented a model for procuring and sharing

life-saving resources whose demand is stochastic. The

demand arising from different entities (states) peaks at dif-

ferent times, and it is important to meet as much of this

demand as possible to save lives. Each participating state

is risk averse to sharing their excess inventory at any given

time, and this risk-aversion is captured by using a safety

threshold parameter. Specifically, the developed model is

applicable to the current COVID-19 pandemic, where many

U.S. states are in dire need of mechanical ventilators to pro-

vide life-support to severely and critically ill patients. Com-

putations were performed using realistic ventilator need fore-

casts and availability under a wide combination of parameter

settings.

Our findings suggest that the fraction of currently avail-

able ventilators that are to be used for non-COVID-19 patients

strongly impacts state and national ability to meet demand

arising from COVID-19 patients. When more than 40% of

the existing inventory is available for COVID-19 patients, the

national stockpile is nearly sufficient to meet the demand in

mild cases. However, if less than 25% of the existing inven-

tory is available for COVID-19 patients, the current national

stockpile and the anticipated production may not be sufficient

under extreme demand scenarios. As expected, the magnitude

of this shortfall increases when one considers more and more

extreme demand scenarios.

Overall, the model developed in this paper can be used as

a planning tool/framework by state and federal agencies in

acquiring and allocating ventilators to meet national demand.

The results reported in this paper can also provide a guide

to states in planning for their ventilator needs. We, however,

emphasize that these results are based on certain modeling

assumptions. This includes the process of demand forecast

scenario generation, estimates of initial ventilator inventory,

and future production quantities. Each one of these, as well

as other model parameters, can be changed in the model input

https://covid-19.iems.northwestern.edu
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(a)

(b)

FIGURE 4 Online COVID-19 ventilator allocation and sharing planning tool (COVID-19 Planning Tool, 2020). A, Plugging in the parameters. B, The

dynamic U.S. map comparing the ventilators’ shortage in different states, on any date in the planning horizon [Colour figure can be viewed at

wileyonlinelibrary.com]

to obtain more refined results. Nevertheless, an important

finding is that a state’s willingness to share its idle inventory

can help address overall shortfall.

While this paper has focused on ventilator needs in the

United States, such a model can also be adapted for use in

international supply-chain coordination of equipment such as

ventilators across countries. COVID-19 is expected to have

different peak dates and demand cycles in other countries, and

one or two additional disease spread cycles are likely until an

effective vaccine becomes available.

In conclusion, we point out that the model developed in

this paper has a one-time planning decision, that is, there

are no “wait-and-see” decisions in the model over time. One

can also formulate the ventilator allocation problem as a

time-dynamic multistage stochastic program, where the deci-

sion maker can make recourse decisions as time evolves based

on the information available so far on the stochastic demands

and past decisions. We are currently working on such an

extension.

In addition to the model being a one-time planning decision

model, the model and its output have some additional limita-

tions. First, the model may have multiple optimal solutions.

In a resource constrained environment, alternative solutions

may allocate the same number of ventilators differently. The

solutions reported in the tables are only one such solu-

tion. Moreover, these solutions were obtained from solving

the models approximately with a prespecified time limit.

The solutions from the optimization model presented in this

paper depend on the accuracy of ventilator need forecasts.

These forecasts are being revised regularly, as additional

data based on state-specific mitigation efforts is becoming

available.

Second, the objective function in the model treats the short-

fall in large and small states equally. State-specific considera-

tion may allow further refinements to the model. Specifically,

instead of formulating the objective as an expected value

minimization model, we can formulate the objective as a min-
max objective of shortfall for each state—thus minimizing the

maximum shortfall to any state. Such a model is expected to

yield a more equitable solution.

Third, the model in Section 4.5.3 assumes a constant lead

time. We can modify this model to allow for state-specific

lead times. Such a modification will allow one to system-

atically study the effect of state-specific lead time on the

overall allocation efficiency. Moreover, if shipment times are

of concern and a secondary coordination to a stocking depot

http://wileyonlinelibrary.com
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is required, the model can be adapted to allow for creation

of transshipment depots (warehouses) that serve a cluster

of states. In this case, the central agency will first ship the

inventory to the warehouse, who will further distribute it to

the states in need.

In all of these aspects the modeling framework presented in

this paper should be considered as a first step in the direction

of developing planning models that allow for critical resource

sharing over time. Nevertheless, the overall conclusions based

on the model remain valid: In a resource-constrained environ-

ment where the demand of different entities peaks at different

time points, it is possible to achieve improved efficiency in

resource utilization through supply-demand matching over

time. Risk aversion to sharing excess supply in anticipation

of future demand reduces the efficiency resulting from such

sharing.
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