
J Med Virol. 2020;92:1615–1628. wileyonlinelibrary.com/journal/jmv © 2020 Wiley Periodicals LLC | 1615

Received: 26 March 2020 | Accepted: 8 April 2020

DOI: 10.1002/jmv.25866

R E S E A RCH AR T I C L E

Mathematical modeling of interaction between innate
and adaptive immune responses in COVID‐19 and
implications for viral pathogenesis

Sean Quan Du | Weiming Yuan

Department of Molecular Microbiology

and Immunology, Keck School of Medicine,

University of Southern California,

Los Angeles, California

Correspondence

Sean Quan Du and Weiming Yuan, Department

of Molecular Microbiology and Immunology,

Keck School of Medicine, University of

Southern California, 1450 Biggy St, NRT5516,

Los Angeles, CA 90033.

Email: seand168@gmail.com (SQD) and

weiming.yuan@usc.edu (WY)

Funding information

National Cancer Institute,

Grant/Award Number: P30 CA014089;

National Institute of Allergy and Infectious

Diseases, Grant/Award Number:

R21 AI‐149365

Abstract

We have applied mathematical modeling to investigate the infections of the ongoing

coronavirus disease‐2019 (COVID‐19) pandemic caused by SARS‐CoV‐2 virus. We

first validated our model using the well‐studied influenza viruses and then compared

the pathogenesis processes between the two viruses. The interaction between host

innate and adaptive immune responses was found to be a potential cause for the

higher severity and mortality in COVID‐19 patients. Specifically, the timing mismatch

between the two immune responses has a major impact on disease progression. The

adaptive immune response of the COVID‐19 patients is more likely to come before

the peak of viral load, while the opposite is true for influenza patients. This difference

in timing causes delayed depletion of vulnerable epithelial cells in the lungs in

COVID‐19 patients while enhancing viral clearance in influenza patients. Stronger

adaptive immunity in COVID‐19 patients can potentially lead to longer recovery time

and more severe secondary complications. Based on our analysis, delaying the onset

of adaptive immune responses during the early phase of infections may be a potential

treatment option for high‐risk COVID‐19 patients. Suppressing the adaptive immune

response temporarily and avoiding its interference with the innate immune response

may allow the innate immunity to more efficiently clear the virus.
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1 | INTRODUCTION

Since December 2019, coronavirus severe acute respiratory syn-

drome coronavirus 2 (SARS‐CoV‐2) has rapidly spread across the

globe and become the top issue affecting millions of people around

the world. Although most of the patients of coronavirus disease‐2019
(COVID‐19) show mild symptoms and can recover on their own,

about 20% of the patients develop severe symptoms. Common

symptoms include fever, cough, shortness of breath, as well as other

flu‐like symptoms (sore throat, chills, fatigue, etc.). Patients with se-

vere illness tend to have severe pneumonia, sometimes acute

respiratory distress, which could lead to multiple organ failures

and death. The hospital stay can be weeks for such patients.1‐4 There

is no proven cure or antiviral drugs available yet.

The influenza virus typically binds to the sialic acid receptors on

the surface of epithelial cells in the upper respiratory tracks and the

upper divisions of bronchi.5 In very severe, and often fatal cases of

influenza, the infection will spread to the lower lungs.6,7 Similarly, the

SARS‐CoV‐2 virus binds to the angiotensin‐converting enzyme 2

(ACE2) receptors on the surface epithelial cells.8 These cells with

ACE2 expression are hence vulnerable to virus attack and are called

target cells in mathematical models. The density of the target cells

has been found to vary significantly in different regions of the re-

spiratory tracks, with the highest in the lungs, followed by the nose,
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and lastly, the trachea/bronchi tissues.9‐11 As such pneumonia is

relatively common among COVID‐19 patients.

The incubation time for influenza is typically 48 hours or

less.12 The eclipse phase is reported to be around 6 hours, with viral

load peaks around 2 to 3 days postinfection (dpi).5 The infection

typically resolves in 3 to 5 days. In typical influenza patients, the

adaptive immune responses (AIRs) including pathogen‐specific anti-

bodies (Abs) and CD8+ cytotoxic T lymphocytes (CTL) are first

observed around 5 dpi, peaking around 7 dpi.13 The mean incubation

period for COVID‐19 patients is estimated to be 6 days, with a range

distribution of 13 days.14,15 The median time from symptoms to

discharge from the hospital was about 22 days, whereas the median

time to death was 18 days.4 Among this study of 191 patients, the

shortest observed duration of viral shedding among survivors was 8

days, whereas the longest was 37 days. Among 29 patients who re-

ceived the antiviral drug lopinavir/ritonavir and were discharged, the

median time from illness onset to initiation of antiviral treatment was

14 days and the median duration of viral shedding was 22 days. The

median duration of viral shedding was 19 days in patients with se-

vere disease status and 24 days in patients with critical disease

status. The median time from illness onset to dyspnea was similar in

survivors and non‐survivors, with a median duration of dyspnea of 13

days for survivors. The much longer incubation time, duration of viral

shedding, and time it takes from disease onset to discharge in

COVID‐19 patients are critical in our modeling study, which puts a

strong constraint on what the model outputs should look like.

In this paper, we used mathematical modeling to investigate the

dynamics of the viral infection/replication inside a human host, in

particular, the influenza and the SARS‐CoV‐2 virus, as well as the

interactions of target cells with the innate and AIRs. Our model

suggests that most of the differences between the two types of

infections can potentially be attributed to the timing mismatch

between the two immune responses. More specifically, influenza is a

very acute infection; all vulnerable cells are completely depleted and

viruses are more or less cleared by the innate immune response,

before the adaptive immune response (AIR), which has a transient

nature, reaches a significant level. The arrival of AIR may seem futile

but it helps to completely clear the remaining viruses. On the other

hand, the peak level of the AIR of the COVID‐19 patients is more

likely to come before the number of infected cells reaches its peak,

due to the slower disease progression outlined above. As such the

AIR helps to eliminate more viruses in the rapid growth phase and

slow down the infection and depletion of vulnerable epithelial cells in

the lungs of COVID‐19 patients. A strong AIR, in this case, may be

bad for the patients, as the disease progression is extended longer

while a weaker AIR can be beneficial for the patients due to the rapid

depletion of the target cells. One recent observation puzzling for

many is the apparent resurgence of the disease for some “cured”

patients. Based on our theory and modeling, this phenomenon can be

explained by that of a strong interaction of innate and AIRs in a host,

which can sometimes create double peaks in viral load, separated by

weeks. In the second part of our study, we applied our modeling to

the current bedside treatment regimen. Antiviral drugs and

immunosuppressive drugs have been evaluated as potential treat-

ments for high‐risk patients. We proposed an immune‐suppressing
treatment based on the leanings of our modeling study, which is to

apply immunosuppressive drugs during the early phase of infection to

reduce the AIRs to a level low enough not to interfere with the innate

immune response. Once the vulnerable cells are depleted, the drug

should be removed to let the AIR run its course to clear the re-

maining virus. This new approach can potentially lead to fast and

complete recovery. This counter‐intuitive approach aims to mimic the

excellent job human immune systems have done with the influenza

infection. Further studies on immune responses of COVID‐19 pa-

tients and validation of our core assumptions and theory are needed

before this can be applied in real patients' situations.

2 | MATHEMATICAL MODELS

Mathematical models have been developed to understand the

dynamics of viral infections.16‐20 Most of them fall into the category

of the target cell‐limited model with some variations. The simplest

version includes three species: uninfected susceptible target cells (T),

which in our case is the surface epithelial cells with ACE2 receptors,

located at the respiratory tracks including lungs, nasal and trachea/

bronchial tissues, infected virus‐producing cells (I), and the virus

particles (V). They can be described by the following set of

differential equations:

′
= − −

′
= −

′
= −

dT
dt

d T d T
k
A

VT

dI
dt

k
A

VT I

dV
dt

p I c V

,

,

.

0τ τ
τ

α

τ

α
δτ

τ τ

(1)

Detailed descriptions and definitions of the parameters are

shown in Table 1. Notice that uninfected target cells (T) are produced

and die at the same rate d. This ensures that without infection, the

number of target cells remains the same. The density of target cells T
A
0

is different for different tissues, and we specifically included the ef-

fective surface area here so that the constants (except T0 and A)

remain the same for different parts of the respiratory tracks of the

same patient. These constants can be different for different patients.

By the interaction of virus (V) with uninfected target cells (T) at a

constant infectivity rate k, the target cells become infected cells (I),

which in turn produce virus (V) with production rate p. Due to viral

cytopathicity, immune elimination and/or apoptosis, infected cells (I)

die at a rate δ . The virus is cleared at rate c from the cells by

mechanisms such as immune elimination. This set of equations es-

sentially describes the innate immune response of the host. ′ = ∕t t τ

is a dimensionless variable describing the time t in units of τ , tracking

how many cycles of replications the virus has gone through since the

inoculation, while τ is the average cycle time for virus reproduction

including the eclipse and burst phase. The reason for us to use ′t

instead of the familiar time variable t is to simplify numerical
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simulation, as well as making the constants more intuitively

understandable.

The ability of a virus to grow the infection or to be cleared is

determined by the basic reproductive ratio R:

= =R
kpT

A c
R

T
T

,0
0αδ

where R represents the number of infected cells newly generated

by one infected cell. With R> 1 the infection grows, while with R< 1

infected cells decrease and the virus is cleared out.21

Here it is important to note that T is a variable. When the target

cells are depleted, T goes down, and so does R. This is a very simple

yet critically important concept for understanding the virus clear-

ance. Complete depletion of the target cells, namely =T 0, leads to ,

hence achieving the best virus clearing ability. R0 is the native R at

′ =t 0, when the target cells are not depleted at all. It should be

pointed out that with the innate immunity alone, the Equations (1)

always lead to a stable equilibrium, which is achieved when the

elimination of infected cells is equal to the regeneration of the target

cells at any given time. This is why the AIR is so important, without

which the host may not be able to completely clear all virus particles.

Multiple studies have suggested that both the innate and AIRs

are important in modeling virus infections.22‐24 To account for the

AIR and the dynamic interactions among multiple players (target

epithelial cells, virus, +CD8 CTLs, and antibodies), we used the

equations employed by Miao et al25 with minor modifications, shown

as Equations (2). Table 2 described the new parameters introduced in

Equations (2).
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In their experiment, the authors found that the viral load peaked

at 2 to 3 dpi. The level of +CD8 cells and IgM data shows a very

narrow peak at about 8 days dpi, while the level of IgG antibody

shows a relatively broad peak lasting well over 50 days. We seek to

mimic these temporal profiles, using Δ ( ′)tE as an example:
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With such a profile, we can choose the peak position ′t c, and

the rising and falling width wr and wf in our simulation to see the

effects of these parameters on the viral infection dynamics. Our

main assumption is that the AIR is a short term effect, which as-

sumes that the virus is successfully cleared timely and the patient

survived. As such, it is not our goal to develop a detailed model for

AIRs, but rather to understand the necessary conditions that are

needed for a successful outcome for the patients. Other compo-

nents like IgA, CD4+ T cells, and a number of other components of

the AIR could also play important roles here.13 Although we have

used the three components of CD8+ and antibodies of IgM and IgG

as a representation of the AIR, our conclusions are more general.

This is because the conclusions are based on the overall effect of

the AIR, rather than the details of how each component of AIR

works. If we change the number of AIR components to 2 or 4, as

long as they have a similar transient profile, the conclusions should

remain the same.

To analyze the effect of antiviral drugs that either block infection

ϵk and/or production of viral particles ϵp, the target cell‐limited model

is modified as follows:
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with ≤ ≤0 , 1k pϵ .26 Here, =, 0k pϵ describes no antiviral drug effect

TABLE 1 Parameters in Equations (1)

Parameters Definition

τ Average cycle time for virus replication

′t ∕t τ , the number of cycles of virus replication

T Target cells at ′t

I Infected cells at ′t

V Total virus particles at ′t

A Effective surface area of the tissue

dτ % of normal target cells died during each cycle

δτ % of infected cells died during each cycle

cτ % of virus particle cleared during each cycle

α Ratio of the number of virus particles and the number

of virions

kτ % target cells infected during each cycle by unit

density of virions

pτ Number of virus particles each infected cell produces

during each cycle

T0 Target cells at ′t = 0

V0 Virus count at ′t = 0

I0 Infected cell count at ′ =t 0

TABLE 2 Definition of adaptive immune responses in
Equations (2)

kE Activity level for +CD8 cells

Δ ( ′)tE Normalized profile for +CD8 T cells killing activity at ′t

kG Activity level for IgG antibody

Δ ( ′)tG Normalized profile for serum IgG antibody activity at ′t

kM Activity level for IgM antibody

Δ ( ′)tM Normalized profile for serum IgM antibody activity at ′t
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while ϵ =, 1k p refers to a drug that is 100% effective. With the action

of the drug, the reproduction number R is revised as follows:

=
( − ) ( − )
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Finally, we want to add another component to describe the

effect of a drug that suppresses the innate immune response,

for reasons that will be discussed in the section of treatments by

immunosuppressive drugs. Equations (1), (2), and (3) are changed to

the following:
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with ≤ ≤c0 , 1ϵδ . Here, ϵ =, 0cδ describes no effect of immune‐
suppressing drugs while ϵ =, 1cδ refers to complete suppression.

3 | RESULTS

3.1 | Modeling influenza infections

Mathematical models of influenza infections have been studied

extensively,5,22‐25 our interest is to use it as a starting point before

we embark on more challenging work on SARS‐CoV‐2 infections.

We have carefully evaluated the parameter values tabulated by

Beauchemin et al5 and decided to use the values shown in Table 3.

The choice of the parameters is based on cross‐checking multiple

sources, and testing many simulation runs with variations of para-

meters to ensure that the output agrees with what is known about

influenza infections. It is not our intent to fit the model to any specific

set of data, but rather to be able to reproduce the general features

of the influenza infections. The result is shown at Figure 1. With

these parameters, the infected cell count peaks at 2.45 dpi; viral load

peaks at 2.98 dpi, and and the R0 is about 47. γτ , which describes an

exponential growth rate (shown in Appendix) is 2.34. As we should

expect, the target cells are depleted shortly following the peak of

the infected cells, after which the virus count decays exponentially.

The situation with regard to the decay portion is more compli-

cated, and the consideration of the AIR is warranted if one is to

understand it beyond 6 dpi. Table 4 shows the parameters for the

three components we considered in Equations (2).

These values are chosen so that the temporal profiles resemble

what was presented by Miao et al25 The choice of the peak time is

based on Beauchemin et al5 We should clarify that the temporal

profiles are not completely the same as in reference,25 as some other

literature has shown broader profiles.5 We have done sensitivity

analysis by doing multiple simulations, and find that as long as the

width is not too narrow, the results are not sensitive to the width

or shape of the peak. On the other hand, the location of the peak

time is very important for the complete clearing of the virus. The

result is shown in Figure 2.

In Figure 2, we included the same graph for virus count without

the AIR, as shown in Figure 1, except with a longer time scale. From

this point on, in all of the figures, we show the virus counts only,

as the infected cells counts always follow the same pattern as the

virus counts, except with a small time shift. At about 30 dpi, the

virus count goes to a small number and then gradually climbs up. This

tail is caused by the cell regeneration, as the newly generated epi-

thelial cells provide the target cells for the viral infection to stay on at

a relatively low level, eventually reaching equilibrium at a later time.

As long as the native R0 is greater than 1, this pattern is the universal

behavior of the Equations (1), namely, a rapid exponential rise fol-

lowed by an exponential decay, then eventually reaching an equili-

brium at a low level of infection. Changing parameters in Table 3 will

change the time scale, the peak/trough levels and locations of virus

count etc., but the general pattern is the same. When the AIR is

included, the virus clears out much faster. By day 15, the virus is

completely gone. Mathematically virus and infected cells count never

actually go to zero. However, we know that the infected cell count

has to be an integer. Therefore when this number is below 1, one can

safely consider it game‐over for the virus. In our modeling, we set

this cutoff to be 0.2 infected cell to be conservative.

The temporal profile of the three components of the AIR are also

shown in Figure 2 so that the readers can see their peak positions as

compared to the actual virus counts over time. After the AIR becomes

active, the decay of virus count becomes much faster. We also tried to

vary the parameters around what is listed in Table 3. In the case of the

influenza virus, if the peak time of the AIR is adjusted, only under some

extreme conditions (e.g., reducing the AIR activity level to below 0.08, or

raising the R0 to above 90 and keeping the AIR activity to 0.2 or lower),

one can make the tail end of the viral load survive and potentially thrive.

In other words, this ability to completely and swiftly clear the influenza

virus is common across a broad spectrum of parameters, which means

that most people can successfully clear influenza infections quickly and

completely. This has a lot to do with the acute nature of the influenza

infection, namely, the peak viral load is at 2 to 3 dpi and the target cells

TABLE 3 Parameters used for Influenza simulation

Parameters Values

τ 7 h

dτ 2.9x −10 4

δτ 0.4

cτ 0.4

Tk
A 0
τ

α
0.075

pτ 100

T0 108

V0 100

I0 10
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are completely depleted before 3 dpi, much before the AIR reaches its

peak level, which is at around 8 dpi. With few new cells generated, it

takes only a very low level of AIR to completely clear the remaining

virus. We reason that the acute nature and an appropriately timed

adaptive immunity is key to completely eradicate all influenza virus. The

fact that the adaptive immunity works so well with the innate immunity

can probably be traced back to the long history of human evolution and

its constant battles with acute virus infections. As our immune system

against viral infection is so optimized against acute viral infections such

as influenza, it may have some limitations against other infections by

slow‐progressing viruses, such as the coronavirus SARS‐CoV‐2.

3.2 | The role of innate and AIRs on SARS‐CoV‐2
virus infection

Due to the lack of experimental data, the discussions below are based

on our best assumptions and observations. When shifting gears from

the influenza virus to the novel corona virus, the most important

difference we noticed is the difference in the pace of infection pro-

gression. Multiple reports suggested that the viral counts of SARS‐
CoV‐2 do not reach a peak until 2 to 3 weeks postinoculation.2‐4

Here we will make a bold assumption that, if without the AIR, the

peak time is around 8 to 14 days, if not more. As most of the severe

cases result in pneumonia and the lungs are significantly larger than

the nose, T0 is estimated to be higher by a factor of 104. Table 5 lists

the only two parameters that are changed from Tables 3 and 4,

together with the three dependent variables as outputs from the

model. Here we aimed to have a peak time for infected cells at

around 12 dpi if considering the effect of innate immune response

only. Together with a 104 times increase of T0, these constraints

essentially limited our choice for the only other variable to a very

narrow range. The result is shown in Figure 3.

As we can see in Figure 3, the curve of virus count for an innate

immune response only (no AIR) is similar to that of influenza infec-

tions, except with a longer time scale. With AIR the peak of the viral

count is shifted from 12.02 to 16.33 dpi, and the decay becomes

much slower, indicating much slower recovery. We have also shown

the three components of the AIR on the same graph, which peak at

8 to 10 dpi. Once the AIR is activated, the steep rise of virus count is

slowed, and the maximum viral load is reduced by a factor of 3.3.

Another point we noticed is that the target cells are not depleted

completely, with about 6.5% being the lowest; this explains why the

decay is slower when compared to the innate‐only scenario, which

has complete depletion of target cells (not shown in the graph). What

does this mean for the severity of the disease? We hypothesize that

the AIR is not helping in the case of COVID‐19 due to a longer

duration of virus activity.

F IGURE 1 Target cell‐limited model of Influenza virus infection in human host: Target cells ∕T T0 as a ratio is shown in percentage with linear
scale to the right; infected cells and virus counts are shown in log scale to the left

TABLE 4 Parameters used for adaptive immune response (AIR),
modeling

Parameters Values

Component kτ, peak time (dpi), rising width (d), falling width (d)

CD8 + 0.3, 9, 2, 10

IgM 0.3, 8, 2, 10

IgG 0.3, 10, 10, 40
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From a mathematical standpoint, there is a huge advantage to

quickly deplete all target cells, namely, fast and complete elimination

of the virus. In reality, one critical question that remains is what are

the target cells and whether elimination of all target cells poses a

critical risk for patients. We hereby make the assumption that the

target cells are mainly epithelial cells with ACE2 expression, and the

complete elimination of these cells is not in itself causing failure of

lung function in patients. Rather, the extended duration of viral ac-

tivity may have led to hyperactive immune responses at a later stage,

which eventually leads to tissue damage and potentially ARDS. Our

assumption is based on the observation that only about 2% to 4% of

the epithelial cells have ACE2 receptors,4 giving us hope that the

loss of these cells is not going to cause a major loss of air exchange

capability. Another indication is that a large number of patients with

CT scans showing ground‐glass opacity do not necessarily have

severe COVID‐19 symptoms.2 In influenza infections, most of the

patients experience total depletion of target cells and recover

without any consequences.

Our initial choice of AIR activity of 0.3 is purely artificial at this

point, so we want to explore the effect of different levels of AIR

activity. The result is shown in Figure 4.

As we can see, with the AIR activity level of 0.2–0.4, the virus

count reaches a high level, and then the growth is slowed with the

activation of the AIR at around 8 dpi. After the effect of the AIR

wanes, the virus count continues its ascent, reaching its peak at a later

date. At a higher AIR activity level, we start to see an apparent drop in

virus count after the onset of AIR, reaching a trough then rising to its

peak at a much later day. Overall, an increase in the AIR activity tends

to increase the duration of viral activity extensively in this case. This is

because early activation of the AIR helps to reduce infection and de-

pletion of target cells before it reaches a peak level, which saves a

large number of uninfected target cells for later infection. When the

effect of the AIR wanes, the virus takes control again when the ef-

fective R rises above 1. Whether the virus count grows or drops during

the peak AIR activity is dependent on how strong the AIR effect is, and

whether the effective reproductive ratio R at the time is greater or less

than 1. This situation resembles a rampant forest fire. If the fire is left

alone, when all the trees are burnt out, the fire loses its fuel and dies

out quickly. Trying to fight the fire halfheartedly before that can only

result in partial control of the fire. Once the fire fighting stops, the fire

resumes in vengeance until all trees are burnt out. We believe that this

is the reason why a lot of severe patients cannot leave hospital beds,

and eventually develop ARDS and multiple organ failure. The examples

F IGURE 2 Influenza virus infection in human host: Virus counts of the same infection with and without AIR are shown in log scale to the left;
target cells ∕T T0 is shown with linear scale to the right; normalized temporal profile for Δ ( ) Δ ( ) Δ ( )t t t, ,E G M are shown in linear scale to the right

TABLE 5 Parameters used for corona virus modeling

Parameters Values

Tk
A 0
τ

α
0.01125

T0 1012

R0 7.03

γτ 0.66

Peak time for infected cells 12.02 dpi
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in Figure 4 with the AIR activity level greater or equal to 0.8 offers a

ready explanation for some perplexing clinical observations that some

patients can appear to be recovered, but have the virus level

resurges at a later time.

What's even more interesting is when we shift the day that the

AIR activity peaks, as shown in Figure 5.

To show the AIR effect on viral replication in a more pronounced

fashion, we fix the AIR activity level at 0.5, and vary the day of its peak

F IGURE 3 Corona virus infection in human host: Virus counts of the same infection with and without AIR are shown in log scale to the left;
target cells ∕T T0 is shown with linear scale to the right; normalized temporal profile for Δ ( ) Δ ( ) Δ ( )t t t, ,E G M are shown in linear scale to the right

F IGURE 4 Effect of adaptive immuneresponse (AIR) activity on the viral infection: The AIR activity level varies from 0 to 1.0, while the peak
of the AIR is fixed at 8 dpi
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time from 6 to 14 dpi. The virus peak time without the AIR is at 12 dpi.

As we can see, if the AIR peaks before 12 dpi, its effect is to lower the

maximum viral load somewhat, but extend the duration of viral activity

quite substantially. On the other hand, if the AIR peaks after 12 dpi, it

helps to clear out the remainder of the viral load more efficiently, as

shown by a sharper decay of virus. This ensures a quick and complete

clearance of the virus, resembling the scenario of influenza infections.

With additional simulations, we have found that if the AIR peak is after

the viral peak, a higher level of AIR activity always helps to clear the

virus faster. Contrarily, if the AIR peaks before the viral peak, higher

AIR activity can increase the duration of viral activity. We also found

that if the AIR level is low enough, for example below 0.1, its effect

becomes negligible and the virus replication and clearing process is

dictated by the innate immune response alone. As discussed earlier,

the consequences of extended duration of viral activity may be det-

rimental to the patients, which include a prolonged disease process,

increase of the patient's risk in secondary infections, tissue/organ

damage caused by an over‐active immune system and potential virus

spreading to other parts of the body.

These dramatic effects due to the AIR timing is mainly caused by

two factors: the presence of a large number of uninfected target

cells, and the AIR as a transient effect. A short‐term antiviral activity

during the exponential growth of the virus will always slow down the

growth of the virus and infection, leaving more target cells as a

source for continued infections later. This result is very general and

does not depend on the source of antiviral activity, as we can see

later with the analysis of antiviral drugs.

In essence, our modeling aims to explore potential means to

manage the COVID‐19 infections so that it can be similar to influenza

infections. When the virus can be quickly and completely cleared, the

AIR should be transient, similar to the influenza infections. Our

modeling then establishes that one of the requirements is that the

peak of AIR needs to come after the peak of infected cells, or

equivalently, the peak of viral load. This can be viewed as a necessary

condition for fast and complete clearing of virus. To achieve rapid

clearing of the virus, it is also desirable to have the target cells more

or less completely depleted. In reality, when the virus cannot be

cleared timely, it is likely that the AIR will also be extended longer,

so the conclusions from our modeling related to the later stage

development may need to be modified.

3.3 | Antiviral drugs on SARS‐CoV‐2 virus infection

When searching for a cure for COVID‐19 patients, an effective

antiviral drug is highly anticipated, so we decided to model the effect

of the antiviral drug on the corona virus infection. We started our

base case with a peak of the AIR at 8 dpi, and AIR activity level of 0.3,

as shown before. From Equations (3), the expression for R is revised

as follows:

= ( − ϵ )( − ϵ )R R
T
T

1 1 .k p 0
0

(5)

Here R0 is the native reproductive ratio; T
T0

is the percentage of the

target cells that are not depleted. The first two brackets show the

effect of the antiviral drugs on the reproductive ratio R, which shows

that the drug has an equivalent effect regardless of whether it is

acting on k or p. Next, we tried to simulate the effect of an antiviral

F IGURE 5 Effect of adaptive immuneresponse (AIR) peak day on viral dynamics: data shows the viral load over time when the day of AIR
peak is changed from 6 to 14 days

1622 | DU AND YUAN



drug with 50% efficacy on k, namely, ϵ = 0.5k , taken for 15 days

consecutively. Taking this drug for a longer time does not necessarily

make it more beneficial in this particular scenario. As a comparison,

the base scenario is also included with a native R0 of 7.03, and AIR

activity of 0.3 peaking at 8 dpi. The base scenario is shown as a blue

line in Figure 6. When the drug is applied, the effective R is reduced

to 3.52, according to the formula above, not considering the effect

of target cell depletion.

Similar to the AIR effects shown in Figure 5, Figure 6 shows

that additional drug‐induced antiviral activity has a pronounced

effect on the duration of viral activity within the host for the three

scenarios when the antiviral drug is started on 5 dpi, 10 dpi, or

15 dpi. During the 15 days when the antiviral drug is effective, the

virus growth rate is reduced. After the drug is removed, the virus

either resumes its growth or remains at a plateau. In all three

scenarios, the duration of virus activity is extended substantially,

which can lead to detrimental consequences for the patients. On the

other hand, if the drug is started 18 or 23 dpi, after the peak of

infected cells, the effect of the antiviral drug is to speed up the virus

clearing, which is beneficial for the patient. In Figure 6, the deple-

tion of target cells is also shown for the scenario of the drug started

at 18 dpi. As we can see, the depletion is not complete (12% target

cells remain), which explains why the decay is slow even with the

additional drug activity.

The situation is very different if the antiviral drug efficacy is

raised to 90%, namely, = 0.9kϵ . When the drug is applied, the

effective R becomes 0.7, which leads to virus clearance. We ran

the same set of scenarios as above and the results are shown in

Figure 7. The blue line again shows the base scenario with no drug

applied. If the drug is applied early, as shown for the scenario with

a start date of 5 dpi, the infection can be stopped completely

before it makes any real progress. When the drug is started at 10

or 15 dpi, double peaks of viral count are observed. The reason is

that when the drug is stopped, R jumps back to 7, so that virus

resumes its rapid growth until the target cells are depleted,

causing a second peak in virus count. Therefore if the drug is

stopped before the virus is cleared out completely, the infection

will resurge. This is similar to what we have seen in Figure 4 with

the transient antiviral activity of strong AIR, except the peak‐
trough‐peak curve is smoother there. When the drug is applied

after the viral peak is reached, it has a small but positive effect of

faster recovery, similar to the scenario shown in Figure 6. The level

of target cell depletion is also shown for the scenario of the drug

started at 15 dpi. At the first peak of viral load, less than 30% of

the target cells are depleted by the infection. This is why a

second exponential growth starts after the drug is removed.

To avoid this kind of unwanted effect, the antiviral drug needs

to be maintained until the virus is completely cleared. In the

Appendix, we showed the relationship between the duration the

drug needs to be administered, and the time the drug is started.

The simple rule of thumb is that the later the drug is started, the

longer it is required to be applied to ensure complete clearing of

the virus.

It is interesting to note that γ‐immunoglobulin has been widely

used to treat COVID‐19 patients in China. In a way, injection of

γ‐immunoglobulin can be modeled similarly as antiviral drugs

F IGURE 6 Effect of Antiviral drug on viral dynamics: The drug is assumed to be 50% effective on k, and applied to a host with R0 of 7.03 for
15 days consecutively with various starting dates; viral counts to the left with exponential scale; target cell ∕T T0 is shown for the scenario of the
drug applied at 18 dpi, to the right with linear scale
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(assuming that it is able to deliver some antiviral function). It will be

interesting to know if some researchers have compiled data to cor-

relate the efficacy of this treatment with the timing of the injections.

Our theory predicts that if the γ‐immunoglobulin is used early on, it

will most likely delay the depletion of target cells so the duration of

the disease will be extended for the patients, hence with poor

prognosis. On the other hand, if it is applied after the peak of infected

cells, it should be helpful to some extent.

In summary, for an antiviral drug to be useful, the drug needs to

be effective enough so that the effective reproductive ratio R falls

below 1 (see Equation (5) for the factors affecting R). Under such a

condition, it is desirable to apply it early on and must be maintained

until the viral load is completely cleared (in the Appendix we pro-

vide an estimate for the duration of the regimen). When a drug

cannot meet this criterion, applying it before the target cells are

fully depleted is typically not beneficial to the patient, and likely

will make things worse for the patients. This should have some

significant implications for drug companies when they design the

clinical trials. At this point, as we do not know much about the

potential level of the AIR, R0, and the efficacy of the antiviral drug, it

is difficult to identify a risk‐free way of applying the antiviral drug. A

prudent approach is to measure the viral loads frequently post‐drug
administration. If the viral load does not drop rapidly shortly after, it

may indicate that the effective R is not below 1, and the drug should

be stopped. If the drug is known to be effective but not effective

enough to cause R to go below 1, it might still be useful to apply it

after a large percentage of the target cells have been depleted. As a

safety measure, it may be desirable to continue the regimen for a

few more days after the viral load drops below the detection limit to

ensure complete clearance.

3.4 | Effect of drugs to suppress AIR temporarily

Currently, there is already a class of drugs called immunosuppressive

drugs (drugs to suppress AIRs). A large body of research has been

done on the effects of the drugs on different parts of immune re-

sponse.27,28 The goal of investigating immunosuppressive drugs is to

explore their possible applications in COVID‐19 disease management.

Immunosuppressants such as corticosteroids have been applied

to SARS and COVID‐19 patients, with positive results.29,30 From

the previous discussions, we propose a potential treatment plan

by applying immunosuppressive drugs as soon as an infection is

detected in the lungs, and remove the drug as soon as the target

cells are fully depleted. This approach is simple and only requires the

immunosuppressive drugs to be able to reduce the AIR activity to a

level low enough not to interfere with the innate immunity. From the

discussions around Figure 4, this approach should clear out the virus

quickly if the AIR activity level is below 0.1. If the drug effect is not

removed quickly, and the AIR does not rise after the drug is removed,

the patients may not be able to completely clear the residue level of

the virus. We projected that a short regimen of antiviral drugs 3 to

5 days after the peak of virus counts may help to completely clear the

remaining low level of virus load. The purpose of the antiviral drug

F IGURE 7 Effect of antiviral drug on viral dynamics: the drug is assumed to be 90% effective on k, and is applied for 15 days consecutively
with various starting dates; viral counts to the left with exponential scale; target cell ∕T T0 is for drug started on 15 dpi only, shown with linear
scale to the right
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regimen is to mimic the effect of the AIR in patients with influenza

infections.

If the drug effect can be removed immediately after the peak

infection, so that the AIR level increases after the drug is removed,

we then have a situation that the AIR peaks after the target cells

are depleted. The discussions around Figure 5 established that with

this scenario, the virus can always be cleared completely, regardless

of the level of the AIR. With this approach, the novel coronavirus

infections are essentially reduced to influenza‐like infections in

adults, except with slower disease progression.

One possible concern with our proposed approach is that the

immunosuppressive drugs may inevitably have some limited side

effects on the innate immune response, in addition to the intended

effect on the AIR. This is considered by Equations (4), which gives

us the following (see Appendix):

=
( − ϵ )( − ϵ )

( − ϵ )( − ϵ )

≈
( ∕ )

( − ϵ )( − ϵ ) −
( − ϵ ) + ( − ϵ )

R R
T
T

t
ln T I

R c

1 1

1 1
,

1 1
.

k p

c

r
k p

c

0
0

0 0

0
1 1

2
cδ

δ

δ δ

(6)

From the above, it is clear that the effect on ϵc,δ is to raise R and

reduce tr . On the other hand, if the drug also has some effect on the

infection of target cells and the production of virus particles by in-

fected cells, due to its immune‐suppressing nature, the effect should

be negative ϵk,p, which also raises R, and reduces tr . The effect of

reducing tr is beneficial for the patients, as it reduces the duration of

viral activity in the host. On the other hand, an increasing R tends to

increase the maximum virus count at the peak, which may or may not

have a significant effect on the patients, as the virus are quickly

cleared out.

To address this possible concern, we did some simulations with

the following: the immunosuppressive drug is assumed to have either

a 50% or 90% effect on ϵδ , the drug with 50% effect on ϵδ is applied

from 1 dpi up to 12 dpi, while the second drug is applied from 1 dpi

up to 10 dpi. The choice to apply the drug from 1 dpi is merely to

simplify our simulation, and may not be necessary, as our main goal is

to suppress the AIR. The AIR peak day is assumed to be the same as

the base scenario at 8 dpi, and the AIR activity level is reduced to 0.1.

The same base scenario without drug is also shown as the blue line in

Figure 8. With both scenarios, we observed a big reduction of the

duration of viral activity. Not only the date of viral peak is moved

from 16 to 11 dpi, but the decay from the peak is also much faster.

This rapid decay is beneficial for the patients as well, and it's due to

the complete depletion of the target cells. The overall virus replica-

tion curve with the immunosuppressive drug resembles closely the

curve for adult influenza infections (shown in Figure 2) except with a

longer time scale. When compared to the base scenario with AIR (the

blue line in Figure 8), we find that the maximum viral load is in-

creased by a factor of 3.6–4.7. However, if we compare it to the base

scenario of innate response alone without AIR, the maximum viral

load varies by less than 15%. In summary, we think that the benefit of

shortening the disease duration outweighs the cost of increased viral

load for a short period.

We see multiple potential advantages of this novel approach.

There are a number of well‐studied, FDA‐approved drug

F IGURE 8 Effect of immunosuppressive drug on viral dynamics: The drug is assumed to be 50 or 90% effective so = 0.5ϵδ or 0.9; drug is
applied from 1 dpi until 10 or 12 dpi (with the end day shown on legend); viral counts shown to the left with exponential scale; target cell ∕T T0 is
shown for 10 dpi for both 50% and 90% drugs, with linear scale to the right
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candidates to choose from. Animal models can help to define the

range for the main parameters quickly. Finally, as long as the drug

is applied for enough days so that the suppression of the AIR is

beyond the peak of virus load, this approach always resulted in a

quick clearance of the virus. Removing the drug in time should

enable the AIR to be fully stimulated, so the patient most likely can

have antibody‐based immunity for the virus in the near future, as

in the case of patients recovered from influenza infections. In our

discussion so far, we have assumed that the drug effect is im-

mediate, namely, the drug effect shows up immediately after its

application and the effect goes away immediately after the drug

is removed. This is clearly not realistic, so one of the key con-

siderations when selecting the right immunosuppressive drugs is

its pharmacokinetics; a drug with short elimination and absorption

half time is more desirable, considering the time‐sensitive nature

of the effect. In a recent study by Wang et al,29 the authors re-

viewed the effect of a low‐dose and short‐term application of

corticosteroid to COVID‐19 patients at an early stage, and found

some clear benefits of for the patients as compared to the patients

without the treatment, including the shortening the disease

course. This is consistent with our findings. In their study, the drug

corticosteroid was applied for 11 days or more, which according

to our theory, might be a little too long for optimal results,

considering its half time of 12 to 36 days.

4 | DISCUSSIONS AND CONCLUSIONS

Previous studies have investigated the RNA expression of ACE2 in

72 human tissues.9 Two more recent studies have shown that the

percentage of epithelial cells with ACE2 receptors in bronchial is

much lower than in turbinate and lung tissues (0.2% vs 2–3%).10,11

Considering the difference in surface area between the lungs and

the nasal cavity,31‐33 we arrived at a rough estimate of 104 as the

ratio of target cells in these two organs. A quick simulation using

the much lower T0 suggests that the peak of infected cells is chan-

ged from 12 to 8 dpi in the nose with the innate immune response

alone. If infection is localized at the nasal cavity only, it is then much

more likely for the peak of the AIR to come after the peak of in-

fected cells. In this case, most likely the infection will resolve itself

just like influenza infections, except the disease may take a few

more days. This may explain why a lot of people do not develop

severe symptoms or remain asymptomatic if the infection is loca-

lized in the nasal area without reaching and propagating in the

lungs. If our analysis can be verified clinically, methods and tech-

niques (for example antiviral nasal sprays) to enhance trachea/

bronchial tubes as a barrier to stop the spread of the virus from

upper respiratory tracks to the lungs can be effective in reducing

the percentage of patients with pneumonia.

Another important parameter we have not discussed is the cell

regeneration rate, dτ , of the epithelial cells. In Table 3, we have listed

it as 2.9 × 10−4, which corresponds to 10−3 day−1 for d. This is based

on a study by Rawlins and Hogan34 on the half‐life of epithelial cells

in the mouse lung. This parameter, if it is higher, will make the de-

pletion of the target cells more difficult. This is because as the target

cells are depleted, new target cells are generated. The higher the

regeneration rate, the more new target cells are available for viruses

to infect and stay alive. Our simulation results remain essentially the

same if this parameter is lower or increased by no more than a factor

of 20. Beyond that, depletion of the target cells becomes sub-

stantially more difficult to achieve. Thereby, clearing the virus also

becomes harder to accomplish. Could this be the reason for the

observed higher severity rate among older patients? We reason

that this is not likely, as the cell regeneration rate should be higher

for younger patients, while older people are known to have more

difficulty repairing lung damage.35

In this article, we have applied the target cell‐limited model to

study the novel corona virus infections mostly in human lungs.

Through comparison between SARS‐CoV‐2 and influenza viruses, and

by analyzing the interactions among various players (target cells,

innate and AIRs, and different types of drugs), we propose that the

main reason for the higher probability of severe symptoms, pro-

longed hospital stays, and even fatal outcomes for COVID‐19
patients2,3 may be that the peak of infected cells and virus counts

often comes after the peak of the AIR in these patients. This mis-

match of timing and the resulted interference with innate immunity

by adaptive immunity, leads to incomplete depletion of the target

cells, thus providing uninfected target cells for continued infection.

Prolonged infection can induce overactive immune responses,

secondary complications, and sometimes fatal outcomes.

We also discussed the prospects of antiviral drugs and im-

munosuppressive drugs in combating COVID‐19 infections. Our

proposal to apply immunosuppressive drugs at an early stage to re-

duce the interference from adaptive immunity so that the innate

immunity and the depletion of target cells can together achieve fast

elimination of the virus seems to be unconventional. However, it is

particularly interesting to note that, as we were working on our

mathematical modeling, the recent study by Wang et al29 demon-

strated that an early stage low‐dose and short‐term application of

corticosteroid treatment in patients with severe COVID‐19 pneu-

monia was beneficial and essentially validated our findings. We

envision that new insights from our analysis and modeling will

encourage more work in this direction.
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APPENDIX

From Figure 1, two distinctive regions are easily identifiable: an ex-

ponential growth for viral load/infected cells, followed by an ex-

ponential decay after reaching the peak. To figure out what

determines the time it takes for infected cells to reach the peak, we

make an approximation of =T T0 (for most part of the exponential

growth, the target cells depletion is minimal) in Equations (1) and get

the following:

=

′
= −
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= −
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Let = ′I I e t
0
γτ and = ′V V e t

0
γτ , we get the following:
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Solving the above equation, we find the following:

= +
( − )

−
+kpT

A
c c

4 2
.0

2

γ
α

δ δ

When ≫
( − )kpT

A
c

4
0

2

α

δ , we have

≈ −
+kpT

A
c

2
.0γ

α

δ

The time it takes for the infected cells to reach the peak, tr , is as

follows, assuming complete depletion of the target cells:
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If the exponential growth is interrupted by an antiviral drug, the T0

should be replaced with Imax . Similar to the result (A3), we can derive

the following for clearing/decay time:
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Notice that here we used Imax and Imin, because to clear virus com-

pletely we need to get to a level lower than the initial level of in-

fected cells. Immediately we can see that when =R 0, we have the

lowest tc, which means the fastest clearing of virus. If we assume that

Imin = 1, ≫ ( − ϵ )( − ϵ )c R4 1 1k p δ and ≫c δ , the above result can be

further simplified:

≈
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t
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Combining with (A3) we can calculate the ratio of decay time vs

rise time:
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If we assume that the infection is inoculated with 1 infected cell, then

the above can be further simplified as
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This above ratio is important for estimating how long the antiviral

drug needs to be taken to clear out the virus in the host. Notice that

we made the assumption of ≫c δ ; if the opposite is true, then in

formula (A5) we simply need to exchange the positions of c with δ .
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