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Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive storage
of fatty acids in the form of triglycerides in hepatocytes. It is most prevalent in
western countries and includes a wide range of clinical and histopathological
findings, namely from simple steatosis to steatohepatitis and fibrosis, which may
lead to cirrhosis and hepatocellular cancer. The key event for the transition from
steatosis to fibrosis is the activation of quiescent hepatic stellate cells (qHSC) and
their differentiation to myofibroblasts. Pattern recognition receptors (PRRs),
expressed by a plethora of immune cells, serve as essential components of the
innate immune system whose function is to stimulate phagocytosis and mediate
inflammation upon binding to them of various molecules released from
damaged, apoptotic and necrotic cells. The activation of PRRs on hepatocytes,
Kupffer cells, the resident macrophages of the liver, and other immune cells
results in the production of proinflammatory cytokines and chemokines, as well
as profibrotic factors in the liver microenvironment leading to qHSC activation
and subsequent fibrogenesis. Thus, elucidation of the inflammatory pathways
associated with the pathogenesis and progression of NAFLD may lead to a better
understanding of its pathophysiology and new therapeutic approaches.
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Core tip: Non-alcoholic fatty liver disease is a frequent disorder in western countries with
a wide range of histopathological findings, varying from simple steatosis to fibrosis or
even cirrhosis. Metabolic dysregulation, principally during obesity, triggers chronic
inflammation in the liver, defined as steatohepatitis that favors the development of
fibrosis and likely cirrhosis and hepatocellular cancer. In this review we summarize and
discuss the current literature regarding the principal inflammatory pathways involved in
the pathogenesis of Non-alcoholic fatty liver disease and progression to non-alcoholic
steatohepatitis.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is defined as fatty acid accumulation in
hepatocytes, called steatosis, in the absence of significant alcohol consumption or
other known liver  diseases.  It  is  mostly attributed to conditions such as obesity,
insulin resistance, microbiome disturbances and genetic predisposition[1-3]. NAFLD
covers a spectrum of liver disorders, ranging from benign steatosis to steatohepatitis
(NASH) or even cirrhosis and affects more than 40% of the population in western
countries and approximately 25% of the world population[4].  The simple form of
NAFLD is characterized by hepatic steatosis in at least 5% of hepatocytes without
ballooning,  while  NASH  is  characterized  by  hepatic  steatosis  in  at  least  5%  of
hepatocytes with hepatocyte injury independent of fibrosis[5].

Thirty percent of patients with NAFLD will eventually develop NASH[4]. In these
NAFLD patients, a gradual recruitment of cellular components of the immune system
leads to inflammation as well as to tissue fibrosis[4], which are the two fundamental
characteristics of NASH. Up until now it has been difficult to distinguish NAFLD
from NASH in clinical practice and liver biopsy remains the gold standard method for
the diagnosis of NAFLD and its progression to NASH[4,6]. The histological features of
NASH are hepatic steatosis,  hepatocellular ballooning and lobular inflammation
which constitute the main components of the widely used NAFLD Activity Score
(NAS)[5,7].  Importantly, hepatocyte ballooning is a feature denoting cellular injury
characterized by enlarged swollen hepatocytes with or without Mallory-Denk bodies
(MDB) in the cytoplasm[8].  Both ballooning of  hepatocytes and MDB are the two
hallmarks of ongoing inflammation; nevertheless the presence of MDB is supportive
but not required for the diagnosis of steatohepatitis[7,9].

A key event in the progression of steatosis into NASH is the differentiation of
hepatic stellate cells (HSCs) to myofibroblasts. Under normal conditions, quiescent
HSCs are localized in Disse’s space in the liver where they store around 80% of the
body’s vitamin A. In conditions of chronic stimulation, HSCs proliferate and produce
extracellular  matrix  (ECM)  proteins  which  contribute  to  the  emergence  and
progression to hepatic fibrosis[10]. Although myofibroblasts can also be produced by
portal fibroblasts and vascular smooth muscle cells, the main source of ECM during
NASH development are activated HSCs[11-14]. Several mechanisms, including obesity-
related low-grade inflammation and insulin resistance,  as well  as changes in the
intestinal microbiome may trigger this process[15]. This review summarizes the current
literature regarding the inflammatory mechanisms contributing to the progression of
steatosis into liver fibrosis and NASH.

THE MULTIPLE HIT HYPOTHESIS IN NAFLD TO NASH
PROGRESSION
Liver fibrosis is defined as damage caused by an excessive accumulation of connective
tissue proteins in the liver, especially interstitial collagens that form fibrous scar and
subsequent development of NASH[16,17]. A well described hypothesis for the transition
of  NAFLD to NASH, including fibrosis,  is  that  of  the “multiple  hit  hypothesis”.
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According to this hypothesis, NAFLD is induced by the simultaneous synergism of
multiple factors such as insulin resistance, adipose tissue inflammation, oxidative
damage as well as activation of Transforming growth factor-beta (TGF-β) in a pre-
existing lipid-rich environment in the liver[18].

The initial event leading the transition of steatosis to NASH is the accumulation
and storage of lipids as macrovesicular fat in the cytoplasm of the hepatocytes[10,19]

which  consists  of  fatty  acids,  ceramides,  free-cholesterol,  diacyl-glycerol  and
phospholipids[4]. This toxic lipid-induced hepatocyte injury, referred as lipotoxicity,
leads  to  cellular  stress,  apoptosis  and  eventually  cell  death[20,21].  The  apoptotic
hepatocytes initiate an inflammatory process by secreting extracellular vesicles[4]

which consist  of  exosomes,  microvesicles  or  apoptotic  bodies  that  contribute  to
intercellular communication in NASH pathogenesis[22,23]. More specifically, HSCs and
Kupffer cells engulf the apoptotic bodies released from the hepatocytes, leading to the
secretion of fibrogenic factors such as TGF-β, or inflammatory mediators such as
Tumor necrosis factor-α (TNF-α)[24]. Additionally, cytokines and chemokines secreted
by Kupffer cells promote the recruitment of other immune cells, further perpetuating
the inflammatory process and HSC activation taking place under steatotic conditions
in the liver[25]. Of note, obesity and metabolic dysregulation lead to alterations in the
gut microbiome, thus provoking increased permeability of the small bowel and as a
consequence further increasing fatty acid absorption as well as easier penetration by
bacterial endotoxins[26]. These events may cause the gut microbiota to transverse the
intestinal barrier and translocate to the liver thereby triggering the inflammatory
response[27,28].

The “second hit” of the multiple hit hypothesis constitutes the continuous lipid
buildup  in  hepatocytes  during  NAFLD  thus  inducing  oxidative  stress  via
mitochondrial overload leading to a “chronic-like” production of reactive oxygen
species, cytokines and chemokines which are prerequisite mediators in NAFLD to
NASH progression[29,30]. The increased oxidative stress, the cell death that ensues and
the continuous unresolved inflammation perpetuate HSC activation that  lead to
fibrosis[31,32].  More precisely, in response to continuous exposure to cytokines and
growth factors, qHSCs are getting activated and proliferate producing compounds of
ECM[13],  such  as  the  collagen  type  I  and  type  III,  as  well  as  Τissue  inhibitor  of
metalloproteinases 1 (TIMP-1)[33], all contributing to fibrogenesis[32,33]. In addition, the
engulfment of apoptotic bodies by HSCs confers on them a partial resistance to TNF
and Fas ligand thereby gaining resistance against cell death[14]. Finally, the excessive
production of  ECM with a  dominance of  collagen leads  to  NAFLD-related liver
fibrosis[19].

INNATE IMMUNE PATHWAYS AND MEDIATORS LEADING
TO METABOLISM-RELATED LIVER FIBROSIS
The role  of  inflammation is  important  in  hepatic  fibrogenesis  during NAFLD[15].
Several immune cell populations of both the innate and adaptive immunity, already
existing  in  the  adult  liver  or  recruited  from the  circulation  during  NAFLD,  are
implicated in this process[6,15]. Kupffer cells, recruited monocyte-derived macrophages,
dendritic cells and neutrophils are major innate immune subpopulations involved in
NAFLD to NASH transition, while T-cell  subpopulations such as natural killer T
(NKT) cells, T-helper 17 (Th17) cells and T-regulatory (Treg) cells are also of major
importance[4,15].  Although the majority of the aforementioned cellular players are
thought to provoke the emergence of hepatic fibrosis during NAFLD and metabolic
dysregulation, a minority of them such as Treg, have a protective role, while evidence
regarding others, such as dendritic cells remains controversial[4,6,15,34].

Pattern recognition receptors (PRRs),  including Toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain-like receptors (NOD-like receptors or
NLRs) located predominantly on Kupffer but also on HSCs are essential for NAFLD-
related fibrosis by recognizing Pathogen-associated molecular patterns (PAMPs) and
Damage-associated molecular  patterns  (DAMPs)[35].  PAMPs are  external  danger
signals principally expressed by microbes such as bacteria and parasites, but they can
also be lipids, lipoproteins, proteins and nucleic acids[36]. DAMPs on the other hand
constitute  internal  pathogenic  agents  such as  HMGB1,  S100  protein,  heat  shock
proteins, hyaluronan and fibronectin[27] and in the case of NAFLD can be produced by
damaged hepatocytes[37].  Activation of TLRs and NLRs by PAMPs and DAMPs in
Kupffer cells as well as in HSCs during NAFLD leads to the secretion of cytokines
such as TNF-α and interleukin-1β (IL-1β), thus provoking the progression to NASH.
We herein describe the molecular inflammatory events taking place upon TLR and
NLR activation in the steatotic liver, as well as the role of cardinal cytokines that lead
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to the emergence and development of fibrosis during NAFLD.

TOLL-LIKE RECEPTORS
The TLR receptors comprise a group of 11 proteins in humans and 13 proteins in
mice.  In  the  liver,  TLRs  serve  as  PRRs  on  Kupffer  cells  and  HSCs,  but  are  also
expressed  by  other  cell  types  such  as  dendritic  cells,  endothelial  cells,  and
hepatocytes[38]. TLRs are divided into two subpopulations according to their cellular
localization. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11 are expressed exclusively on
the cell surface and mainly recognize PAMPs, while TLR3, TLR7, TLR8 and TLR9 are
localized  in  intracellular  vesicles  such  as  endosomes  or  lysosomes  and  the
endoplasmic  reticulum  (ER)  and  predominantly  recognize  DAMPs[27,39].  Upon
stimulation they activate  two signaling pathways;  the molecule  adaptor  protein
myeloid differentiation factor 88 (MyD88)-dependent signaling pathway and/or the
MyD88-independent pathway involving the TIR domain-containing adaptor (TRIF)
resulting in the production of type I Interferons (IFNs). The former is common to all
TLRs, except TLR3, and leads to the production of inflammatory cytokines while the
latter is associated with the production of IFN-β and the maturation of dendritic cells
and occurs via  the Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-
dependent signaling regulatory factor 3 (IRF-3) responsible for type I IFN synthesis as
well as inflammatory cytokines through associated NF-κB activation[40,41]. TLR2, TLR4
and  TLR9  are  expressed  in  both  Kupffer  cells  and  HSCs  and  their  roles  in  the
development of NASH is summarized below.

TLR2
Previous studies have shown a contributing role of  TLR2 in the development of
NASH. Miura et al[42] reported that TLR2 signaling in combination with palmitic acid
increased the  expression  of  proinflammatory  cytokines  including IL-1β,  and an
inflammasome component, Nod-like receptor protein 3 (NLRP3), in Kupffer cells but
not in HSCs. TLR2-/- mice fed a choline-deficient, l-amino acid-defined (CDAA) diet,
had reduced NAFLD activity score and diminished infiltration of inflammatory cells
compared to wild-type mice. Concurrently, the expression of alpha-smooth muscle
actin (α-SMA) was diminished, while the production of collagen a1 types I and IV
mRNAs were reduced as was the expression of TGF-β1, TIMP-1 and Plasminogen
Activator Inhibitor 1 (PAI-1) mRNA[42]. These data are in line with those of Ji et al[43]

who showed that carbon tetrachloride (CCl4) administration in TLR2-/- mice resulted
in  diminished liver  injury  as  indicated by  reduced activation  of  HSCs,  reduced
deposition  of  collagen  and  reduced  expression  of  several  pro-fibrotic  and  pro-
inflammatory genes including TNF-α, IL-6, Platelet-derived growth factor (PDGF),
TGF-β  and  TIMP-1.  Furthermore  Ji  et  al [43 ]  showed  that  the  CCl4-induced
phosphorylation of ERK1/2, p38 and JNK signaling pathways as well as impaired
NF-κB activation were significantly diminished in TLR2−/− mice compared with WT
mice, strongly suggesting that TLR2 may promote the fibrogenesis via  activating
MAPK  and  NF-κB  signaling  pathways[43].  Another  study  by  Szabo  et  al[44]  2005
investigated the roles of TLR2 and TLR4 in liver damage and on cytokine induction in
a methionine-choline deficient (MCD) diet-induced model of NASH. They reported
that MCD diet-induced steatohepatitis in mice results in the sensitization of TLR4 but
not to TLR2-induced liver injury.  In contrast  to the aforementioned studies they
showed that  steatohepatitis  in  TLR2-/-  mice  results  in  increased liver  injury  as
evidenced by elevated ALT and TNF-α levels suggesting a potential protective role
for TLR2 in fatty liver.

TLR4
The contribution of TLR4 in NASH pathogenesis has been widely studied. The TLR4
receptor is primarily activated by lipopolysaccharide (LPS) of Gram negative bacteria,
as  well  as  by HMGB1,  hyaluronan,  saturated fatty acids,  fibronectin,  heat  shock
proteins 60 and 70,  degraded matrix and DAMPs secreted by damaged cells[45,46].
However, bacterial products such as bacterial flagellin, bacterial toxins, and LPS or
DNA from the gut remain the main promoters of TLR4 activation[46,47].

TLR4 is expressed by Kupffer cells and HSCs. The TLR4 dimer associates with the
adaptor protein myeloid differentiation protein 2 (MD-2) on Kupffer cells and HSCs
which  in  turn  bind  indirectly  to  the  bacterial  endotoxin  lipid  A.  Lipid  A is  the
lipophilic domain of circulating LPS and forms the main cell wall component of Gram
negative  bacteria.  The  resulting  active  TLR4/MD-2/LPS  complex  binds
extracellularly and initiates a signaling cascade that leads to the activation of NF-κB
and the production of  pro-inflammatory cytokines leading to inflammatory and
immune responses[48]. In this manner, Kupffer cells participate in pro-inflammatory

WJG https://www.wjgnet.com May 7, 2020 Volume 26 Issue 17

Katsarou A et al. Ιnflammation and liver fibrosis

1996



and pro-fibrogenic cytokine production, while activated HSCs secrete ECM[27], as well
as chemokines, promoting further chemotaxis of immune cells in the liver[46].

Liu et al[49] employing a NAFLD animal model provided convincing evidence of the
involvement of TLR4 in NASH development. They investigated TLR4 signaling at
different stages of NAFLD induced by a high-fat, high fructose (HFHFr) diet in TLR4-
mutant and in control wild-type mice and assessed the pathological characteristics of
the  liver.  After  8  weeks  and  16  weeks  of  HFHFr  feeding,  the  WT mice  showed
increased AST and ALT levels compared to TLR4-mutant mice. Furthermore, as early
as week 4, histopathological evaluation showed that the HFHFr-fed wild type mice
exhibited  micro  and  macrovesicular  steatosis;  by  week  8  they  demonstrated
hepatocellular ballooning and lobular inflammation and by week 16 they showed
notable fibrosis while TLR4 mutant mice fed the same diet for the same length of time
showed significantly reduced fibrosis. Their data suggest that TLR4 signaling is a
major link between inflammation and fibrosis in NAFLD. Of note, the TLR4 receptor
downregulates TGF-β pseudoreceptor Bambi via MyD88-NF-kB pathway suggesting
that HSCs respond to TGF-β induced signals[46]. In addition, liver biopsies obtained
from obese women undergoing RYGB (Roux-en-Y Gastric Bypass) operation showed
increased TLR4 and IRF3 expression in subjects with NASH compared with those
with  NAFLD [50].  Interestingly,  a  study  investigating  the  status  of  bacterial
translocation in cirrhotic  liver  found that  in NASH liver tissue,  even if  bacterial
colonization was decreased, TLR4 mRNA and its protein product were increased
compared to the control group[51].

ΤLR9
TLR9  is  located  in  the  endoplasmic  reticulum  of  dendritic  cells,  macrophages,
endothelial cells and hepatocytes and principally recognizes non-methylated CpG
sequences in DNA of bacteria[52,53]. LPS upregulates the expression of TLR9 in murine
macrophages in a NF-kB- and MAPK-dependent manner[53]. Evidence obtained from
the human hepatic stellate cell line LX-2 cells as well as from primary mouse HSCs,
indicate that TLR9 also participates in HSC differentiation. DNA along with CpG
fragments  released  by  apoptotic  hepatocytes  led  to  an  increase  of  TGF-β1  and
collagen I mRNA in HSCs, implying activation of the latter via TLR9 stimulation[54]. In
a murine experimental model of NASH induced by CDAA diet, the Kupffer cells of
TLR9-/-  mice  showed  reduced  expression  of  IL-1β,  while  the  mice  showed  less
steatohepatitis  and  fibrosis  in  comparison  to  wild-type  control  mice[55].  Indeed,
translocated bacterial DNA seems to bind to TLR9 of Kupffer cells promoting the
secretion of IL-1β which in turn promotes hepatocyte damage and death via  lipid
accumulation, while inducing HSC activation, thus leading to steatohepatitis and
fibrosis[55]. In another study by Gäbele et al[56], activation of HSCs derived from TLR9+/+

mice by CpGs of bacterial DNA led to increased monocyte chemoattractant protein-1
(MCP-1)  mRNA  compared  to  those  from  TLR9-/-  mice,  indicating  that  MCP-1
secretion from HSCs strongly depends on the activation of TLR9.

NOD-LIKE RECEPTORS STRUCTURE AND FUNCTION
Nucleotide binding oligomerization domain-like receptors (NLRs) comprise a family
of conserved, cytosolic innate immune PRRs essential in detection of PAMPs and
DAMPs, including cytosolic microbial and danger components, as well as molecules
emanating from damaged or disrupted cells[57]. All members of the NLR family are
defined by a central NACHT or NOD domain responsible for oligomerization and
nucleotide-binding which mediates the activation of the transduction complex. The
majority of NLRs also have a C-terminal domain which is rich in leucine repeats
(LRRs), acting as a sensor of ligands, whereas a caspase recruitment or pyrin or a
baculovirus inhibitor repeats domain (CARD, PYD and BIR respectively) is situated in
the N-terminal region of NLRs. Homotypic interactions resulting to downstream
signaling are implemented by this N-terminal domain[58]. Importantly, depending on
the type of the N-terminal domain, the NLR family is divided into 4 main subfamilies,
namely NLR-A, NLR-B, NLR-C, and NLR-P (A for acidic transactivating domain, B
for BIRs, C for CARD and P for PYD)[59],  while NLR-X is an additional subfamily
without  any  significant  homology  to  the  N-terminal  domain  of  the  other
subfamilies[60,61].

NLRs include positive regulators of inflammation, such as the NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3), and anti-inflammatory ones such as
NLRX1 and NLRP12[62,63]. Upon activation, the majority of NLRs oligomerize to form
multiprotein inflammasome complexes which are high-molecular-weight cytosolic
multiprotein complexes in the cytosol of host cells that regulate pathogen recognition,
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host defense, and inflammatory processes. The activation of inflammasome occurs as
a  consequence  of  infection or  other  form of  cellular  stress  and damage,  such as
fragments of double stranded DNA, amyloid β, hyaluronic acid and monosodium
urate[47,64].  The NLRP3 is  the  most  studied inflammasome to  date.  This  cytosolic
structure of proteins is formed in a two-step process including priming, as a result of
overexpression by TLR signaling, and triggering, which is orchestrated by K+ efflux as
a result of increased production of reactive oxygen species, originating from damaged
mitochondria and lysosome destabilization both leading to inflammation. Assembly
of the NLRP3 inflammasome interacts with caspase-1 leading to its activation and
upon activation, caspase-1 promotes the maturation of the proinflammatory cytokines
IL -1β and IL-18 following cleavage of their precursors Pro-IL-1β and Pro-IL-18[47,64,65].
In addition, caspase-1 activates gasdermin D which is responsible for pore formation
leading to a form of cell death called pyroptosis. This proinflammatory type of cell
death  is  a  consequence  of  activation  of  inflammasome leading  to  the  release  of
cytoplasmic components including the inflammatory cytokines[66-68].

NLR in NASH
Growing evidence indicates the association of the innate immune system in sensing
cellular  stress  originating from deregulated metabolic  conditions.  In  the  case  of
NAFLD, upregulation and overactivity of cellular and molecular components of the
immune system, like the NLR inflammasomes, is believed to be the “effector links”
for the progression of steatosis into NASH.

NLR signaling and activation of inflammasomes is believed to take place not only
in innate immune cells like macrophages and neutrophils but also in non-immune
cells in the liver, such as hepatocytes, endothelial cells and HSCs[69]. An upregulation
in the expression of NLRP3 inflammasome components has been observed in livers of
mice fed a MCD diet, suggesting the participation of several hepatic cellular players,
apart  from  immune  cells,  in  the  initiation  of  inflammation  and  progression  to
NASH[70]. Indeed, murine hepatocytes have demonstrated activation of the NLRP3
inflammasome and subsequent caspase-1-dependent secretion of IL-1β after treatment
with palmitic acid and LPS, while danger signals that are released from hepatocytes
under the same conditions are able to activate liver mononuclear cells in a paracrine-
dependent manner[70]. Similarly, cultured HSCs deriving from rats show significant
increase in expression of several NLR family members, including NLRP1, NLRP3 and
NLRC4  after  treatment  with  LPS,  while  hepatocytes  were  predominantly
characterized  by  strong  NLRP3  activation[71].  Furthermore,  in  palmitate-treated
Kupffer cells, the release of IL-1β and IL-18 was shown to be dependent on NLRP3
inflammasome activation[72].

Genetic or pharmacological manipulations of NLR inflammasomes in mice have
provided important  information  in  scrutinizing  their  role  in  the  progression  of
NAFLD. The contribution of inflammasome in metabolic dysfunction and NAFLD has
been observed in knockout mice for NLRP3, which were fed a HFD, and displayed
improved insulin resistance, accompanied by attenuated fat deposition in the liver
and reduced adipocyte size in the adipose tissue[73]. Oppositely, continuous NLRP3
activation led to NASH development characterized by deteriorated inflammation and
fibrosis in murine models of diet-induced NAFLD[74]. Along this line, a recent study in
mice revealed that liver fibrosis and inflammation in a setting of experimental NASH
were attenuated after administration of a molecular NLRP3 inhibitor[75]. Importantly,
pyroptosis that is induced in hepatocytes upon NLRP3 activation and results in the
release of inflammatory mediators outside of the pyroptotic cell, is thought to be a
major  mechanism  of  propagating  inflammation  and  further  perpetuating  NLR
signaling to adjacent cells in the liver, such as HSCs[74,76,77].

Apart  from  experimental  animal  studies,  clinical  studies  in  individuals  with
metabolic  syndrome have indicated the  causal  link between IL-1β and IL-18,  as
products  of  inflammasome  activation,  to  the  development  of  metabolic
dysregulation[78]. For instance, the grade of NLRP3 expression in adipose tissue of
obese individuals correlates to the severity of type 2 diabetes mellitus in a direct
fashion[79]. Accordingly, NLRP3 and caspase-1 expression levels are elevated in the
liver  of  individuals  with  NASH [70].  In  human  HSC  cultures,  inflammasome
components  have  been  identified  as  essential  for  inflammatory  and  fibrotic
rearrangements following application of monosodium urate crystals[80].

CYTOKINES
Several cytokines, such as IL-1, IL-6, PDGF and TGF-β, secreted both by immune cells
as  well  as  by  parenchymal  cells  of  the  liver  during  NAFLD  contribute  to  the
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progression of the disease into NASH by promoting hepatic fibrosis via the activation
of  HSCs[15].  Apart  from  the  cytokines  produced  and  secreted  within  the  liver
microenvironment,  cytokines  derived  from  adipose  tissue  are  also  important
instigators of the aforementioned process. Especially under obese conditions, the
adipose tissue is characterized by the production of TNF-α and IL-6 by adipocytes
and macrophages which in turn target the liver inducing hepatic insulin resistance as
well as fat deposition and fibrosis[35,81,82].

TNF-α  and  PDGF  are  involved  in  the  earlier  phases  of  NAFLD-related  liver
inflammation when the main changes are matrix degradation, migration and cell
proliferation. On the other hand, TGF-β is critical in later stages of inflammation,
when matrix accumulation outweighs degradation[83]. It should be emphasized that
resident and recruited macrophages produce PDGF, TGF-α, TNF-α and insulin-like
growth factor-1 (IGF-1) which function as mitogenic agents for HSCs. Interestingly,
the HSCs themselves produce TGF-α and TGF-β after their activation. The latter
acquires an autocrine action inducing HSCs proliferation[83]. Herein, we describe the
implication of cardinal cytokines involved in HSC activation and their differentiation
to myofibroblasts.

TNF-α
The importance of TNF-α in NASH and hepatic fibrosis is supported by many studies.
A study including obese  patients,  demonstrated a  significant  increase  of  TNF-α
mRNA expression in livers derived from individuals with significant hepatic fibrosis
in comparison to those who were not characterized by liver fibrosis[84]. Similarly, in a
cross-sectional study with patients with NASH, a correlation between TNF-α along
with collagen type IV and the stage of fibrosis was found[85]. In wild type mice fed
with CDAA, an increased activity of TNF-α converting enzyme, which cleaves pro-
TNF-α into the active form of  TNF-α,  as  well  as  increased production of  TNF-α,
collagen a1, and TGF-β have been reported[86].

In principle, TNF-α is mainly produced by macrophages as a response to different
bacterial products such as LPS and exerts its action via the binding to TNF receptors
(TNFR) 1 and 2[87].  In the case of  hepatic injury,  such as during NAFLD-induced
hepatocyte damage, the released PAMPs and DAMPs induce the activation of innate
immune cells that secrete cytokines such as TNF-α, IL-6 and IL-1α[36]. The main source
of  hepatic  TNF-α  are  hepatocytes  and  Kupffer  cells,  while  abdominal  fat  also
participates[88].

TNF-α has been found to suppress the apoptosis of primary cultured HSCs through
the increase of TIMP-1 mRNA expression[89], while simultaneously contributes to their
survival and proliferation[32]. TNF-α-/- mice showed attenuated liver fibrosis after bile
duct ligation. However, after administration of TNF-α, the expression of collagen a1
mRNA was reduced in rat HSCs. Consistently, TIMP-1 was increased in TNF-α+/+

mice in comparison to TNF-α-/- mice[90]. In models of hepatic cirrhosis, a continuous
activation of  HSCs was  observed (as  defined by α-SMA staining),  as  a  result  of
persistent TIMP-1 mRNA expression[33]. Along this line, TNFR1 seems to be involved
in HSC activation. HSCs derived from TNFR1- or TNFR1/TNFR2 double- knockout
mice, but not from TNFR2 knockout mice, showed reduced mRNA expression of
procollagen-a1 as compared to those derived from wild type mice[91]. Consistently,
TNFR1/TNFR2 double- knockout mice are characterized by improved steatosis and
fibrosis when exposed to a MCD diet, as compared to wild-type control mice[89].

IL-1α / IL-1β
Among the members of the IL-1 family, IL-1α and IL-1β are the most broadly studied
in NAFLD. They are predominantly secreted by hepatic macrophages and play a
major role in all stages of the disease including deterioration of insulin signaling,
hepatic lipid accumulation and induction of fibrosis[92].

Kamari et al[93] investigated the role of the proinflammatory cytokines IL-1α and IL-
1β in steatohepatitis. They reported that atherogenic diet-induced steatohepatitis in
wild-type mice  was associated with significant  increases  in  the mRNA levels  of
hepatic IL-1α and IL-1β, while, oppositely, mice deficient in either IL-1α or IL-1β
showed reduced transformation of steatosis to steatohepatitis and liver fibrosis in
spite  of  increased  cholesterol  levels[93].  Indeed,  IL-1β  is  thought  to  induce  lipid
accumulation in hepatocytes via IL-1 receptor (IL-1R). More precisely, under NAFLD
conditions, Kupffer cells highly secrete IL-1β which in turn mediates the development
of liver steatosis via NF-kB stimulation in hepatocytes that leads to suppression of
peroxisome proliferator-activated receptor alpha activity[94]. In addition, IL-1β seems
to contribute directly to the development of fibrosis. In rat HSCs, IL-1b was shown to
induce MMP-13 gene expression, by acting via the JNK and p38 MAPK pathways,
thus influencing the remodeling of ECM and promoting fibrosis[95]. Similarly, reduced
liver steatosis and fibrosis was observed in IL-1R-deficient mice when diet-induced
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models of NASH were used[96,97].
On  the  contrary,  the  IL-1R  antagonist  (IL-1Ra)  is  thought  to  have  an  anti-

inflammatory role in liver diseases[98] and mice deficient for IL-1Ra fed an atherogenic
diet showed severe steatosis and fibrosis in the liver compared to wild type mice fed
the same diet[99]. Nevertheless, in a study including 6447 men, the serum levels of IL-
1Ra correlated with NASH and serum ALT independently of obesity, consumption of
alcohol or insulin resistance[100].

IL-6
IL-6 is a pro-inflammatory cytokine with an obscure role in NASH. During obesity,
the protein levels of IL-6 in the adipose tissue correlate with the degree of insulin
resistance[101], while its mRNA levels correlate with those of CRP[102]. A study using
liver biopsies from patients with NAFLD showed elevated hepatic  IL-6 levels in
patients with NASH compared to those with only steatosis or normal liver biopsy,
which also correlated with the circulating levels of IL-6[103]. Similarly, in obese patients,
the blood levels of IL-6 seem to be higher in those with severe steatosis in comparison
with those with mild steatosis[104]. Of note, adipose tissue IL-6 expression correlates to
the  degree  of  NAFLD  progression  among  obese  individuals[105].  Another  study
investigating  the  influence  of  diet  and  aerobic  exercise  with  or  without  the
administration of vitamin E on cytokines showed increased TNF-α, IL-8 and IL-6
levels, both in plasma and in peripheral blood monocytes, in patients with NASH
compared to  controls.  However,  after  the  intervention,  only IL-6  in  plasma was
reduced[106].

Despite the clinical observations, mechanistic studies using animal models provide
controversial  evidence.  Already in  2002,  Wallenius  et  al[107]  showed that  genetic
ablation of IL-6 in mice is associated with the development of mature onset obesity
and insulin resistance. In mice fed a MCD diet, intraperitoneal administration of the
IL-6 receptor antibody MR16-1 was shown to block the IL-6/gp130 pathway resulting
in reduced hepatic injury, but at the same time increased lipid accumulation and
hepatic steatosis[108]. Oppositely, when IL-6 was administered into HFD-fed mice led
to upregulation of lipogenesis-related genes and deterioration of hepatic steatosis[109].
Interestingly, IL-6, in a Stat-3 dependent way, induces the expression of Indy, which is
a citrate transporter receptor that favors hepatic lipogenesis[110].

TGF-β
TGF-β is  major  mediator  of  HSC activation and hepatic  fibrosis  in  chronic  liver
diseases; nevertheless, it is involved in several cellular processes such as cell survival,
proliferation and angiogenesis[111]. TGF-β signaling is taking place in a SMAD- and
non-SMAD dependent  way.  The  former  is  thought  to  be  the  “canonical”-TGF-β
signaling pathway mediated by phosphorylation of the SMAD proteins, while the
latter  is  mediated  by  activation  of  other  pathways  such  as  the  MAPK  or  the
PI3K/AKT pathways[112].  TGF-β exists in three isoforms, namely TGF-β1, 2, and 3
which share some common but not equal functions, with TGF-β1 being the most
extensively studied in the field of hepatic fibrosis[111,112].  In the liver, Kupffer cells
constitute the main source of TGF-β, while during fibrosis it can also be produced by
stellate and endothelial cells[113].  In particular,  during obesity and NAFLD, leptin
deriving from the obese adipose tissue stimulates the production of TGF-β1 from
Kupffer cells[114].

The involvement of TGF-β1 in hepatic fibrosis has been under intense investigation
for more than two decades. Indeed, in 1992, Annoni et al[115] showed that liver biopsies
from patients  with  active  liver  disease  and fibrosis  displayed increased hepatic
expression of TGF-β1, which positively correlated to the mRNA levels of procollagen
α1. Similarly, multiple studies have demonstrated that the hepatic mRNA levels of
TGF-β are increased in patients with NASH and fibrosis[116,117]. Nevertheless, existing
data regarding the diagnostic value of circulating TGF-β1 levels in reflecting the
presence  of  fibrosis  and  the  progression  of  steatosis  into  NASH  are  contra-
dictory[118-121]. In line with the evidence obtained from human studies, CCl4-induced
hepatic fibrosis in mice is associated with increased expression of TGF-β1 in the livers
of these mice[122,123]. Along this line, TGF-β1 deficiency in mice leads to reduced hepatic
expression of collagen a1 and α-SMA upon CCl4 administration, consistent with
reduced fibrosis, while adenovirus-mediated TGF-β1-overexpression induced their
expression[124]. During obesity and metabolic dysregulation, TGF-β exerts its action via
the TGF-β-SMAD pathway and genetic deletion of SMAD3 in mice is associated with
protection from insulin resistance and liver steatosis in HFD-induced obesity[125].
Noteworthy,  wild-type  mice  fed  a  CDAA  diet  showed  increased  activation  of
SMAD2/3, deteriorated liver steatosis, inflammation as well as hepatocyte death and
fibrosis compared to hepatocyte-specific TGF-β receptor type II-deficient mice[126,127].
Overall,  TGF-β  participates  both  in  lipid  accumulation  as  well  as  to  NASH
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progression during NAFLD.

PDGF
Platelet-derived growth factor (PDGF) is produced by hepatic macrophages, activated
HSCs as well as by platelets. It boosts HSC migration and proliferation and a loss of
vitamin A which is normally stored into quiescent HSCs[83,128].  PDGF is a dimeric
polypeptide that can consist of the same or different subunits. Four different types of
PDGF subunits have been identified namely PDGF-A, -B, -C and D, which can be
combined into five different PDGF polymers, namely PDGF-AA, -BB, -AB, -CC, and
–DD[128]. PDGF binds to PDGF receptors-a and –b, which are present on endothelial
cells, macrophages and fibroblasts including the HSCs, and affects cell proliferation,
cell migration, angiogenesis while it promotes alterations in membrane structure. In
HSCs, it also participates in the synthesis of ECM by inducing secretion of collagen
and  other  ECM  components [10 ,128].  PDGF  binding  to  its  receptors  activates
predominantly  the  Ras-MAPK  pathway  leading  to  the  aforementioned  cellular
reactions and molecular changes[128,129].

Several studies have highlighted the role of the PDGF family of ligands in liver
fibrosis, including their action during metabolic dysregulation and NAFLD. Of note,
PDGF-B and PDGF-D are major  stimuli  of  HSCs’  proliferation and activation in
contrast to PDGF-A and PDGF-C that do not equally provoke a fibrogenic response
by the HSCs in vitro[130]. Nevertheless, hepatic overexpression not only of PDGF-B, but
also of PDGF-A or PDGF-C in mice was able to induce fibrosis in the liver[131-133].
Consistently, antivirus-mediated suppression of PDGF-B production attenuated liver
fibrosis in a short-term BDL model in rats[134]. Similarly, fibrosis was improved after
vaccination with PDGF-B kinoid immunogens in mice that were subjected to CCl4-
induced fibrosis[135]. In the context of NASH, increased expression of PDGF-AA in the
liver is associated with elevated risk for the development of insulin resistance and
steatohepatitis in humans[136], while PDGF-C seems to be an instigator of steatosis into
NASH progression both in humans and rodents[132,137].

GUT MICROBIOME AND NAFLD
The gut flora is one of the main regulating factors for the development of NAFLD.
Under normal conditions, the gut microbiota has beneficial effects to host health such
as contribution to digestion as well as to immune defense by maintaining the integrity
of gastrointestinal barrier and by participating in immunomodulation[138,139]. Although
to a limited extent, bacterial products present in the gastrointestinal system are able to
reach the liver via the portal vein. When the intestinal barrier, that normally plays a
protective role against a plethora of pathogens, is disrupted and gut permeability is
increased, bacterial translocation is possible[140].  Indeed, a meta-analysis based on
human studies showed that patients with NAFLD and NASH had increased intestinal
permeability compared to control  subjects[141],  while  other studies have reported
correlations between microbiota composition and NAFLD development[142,143].  For
instance, in a study by Le Roy et al[142] C57BL/6J wild-type mice were fed a high-fat
diet for 16 weeks and then divided into two groups according to the development of
metabolic dysregulation and systemic inflammation. The first group that displayed
hyperglycemia and inflammation was defined as “responder” and the second one
displaying normal blood glucose as “non-responder”. When gut microbiota from
these two groups were transferred to germ-free mice, the “responder-receiver” group
displayed high blood glucose and insulin, along with liver steatosis, suggesting that
the  composition  of  the  microbiome may influence  glucose  homeostasis  and the
development  of  hepatic  steatosis.  Another  study by Boursier  et  al[143]  reported a
correlation between gut dysbiosis and the severity of NAFLD in humans. Briefly, in
stool  samples  derived  from  NAFLD  patients,  the  presence  of  Bacteroides  was
associated to that  of  NASH, while  Ruminococcus  abundance was correlated with
important fibrosis.

Among the microbial components participating in NAFLD pathogenesis are LPS,
peptidoglycan (PGN), flagellin, lipoteichoic acid, unmethylated CpG motifs, short-
chain fatty acids (SCFAs), and bacterial DNA, having either detrimental or beneficial
effect on liver steatosis[138,144]. LPS is a component of the outer membrane of Gram-
negative bacteria[145]  and its circulating levels have been reported to be increased
during NAFLD in animal as well as in human studies[144,146]. Indeed, as mentioned
above, LPS may promote the development of NAFLD via binding to TLR4 expressed
both by immune as well as parenchymal cells of the liver[147,148]. Interestingly, a 4-week
high fat diet in mice provokes elevation of plasma LPS and a shift to a more LPS-
containing  microbiome  in  the  gut[146].  Of  note,  the  same  study  showed  that  the
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presence of LPS-endotoxemia was of cardinal importance for the induction of hepatic
steatosis  and insulin resistance associated with the development of  a  low-grade
inflammatory state in the liver and the adipose tissue, which was characterized by
increased mRNA levels of TNF-α, IL-6 and PAI-1[146].  Besides, in vitro  and in vivo
evidence supports that a fatty acid rich microenvironment favors an augmented LPS
absorption by enterocytes, promoting thus postprandial endotoxemia[149].

PGN  is  a  cell  component  of  both  Gram-negative  and  Gram-positive  bacteria
providing rigidity of cell wall[145]. PGN can be recognized by NOD1, NOD2, and TLR2,
inducing the expression of pro-inflammatory cytokines in a NF-Kβ/MAPK pathway-
dependent way[145,150].  Along this line, a 4-week administration of PGN in normal
chow-fed mice induced elevation of circulating transaminases and insulin levels,
while it increased hepatic triglyceride deposition and the expression of lipogenesis-
related genes. Thus, intestinal microbiota-derived PGN is able to promote hepatic
lipogenesis and fibrosis via an NOD2-NFkΒ-PPΑRγ pathway-related mechanism[151].

SCFAs, including propionate, butyrate and acetate, are predominantly produced by
anaerobic microbiota of the colon upon fragmentation of dietary fiber[152,153]. In contrast
to LPS and PGN, the role of SCFAs in the development of NAFLD steatosis seems to
be  rather  protective  and  anti-inflammatory.  Indeed,  in  the  epithelium  of  the
gastrointestinal tract, SCFAs bind to the “metabolite-sensing” receptors GPR43 and
GPR109A, inducing the expression of IL-18, thus protecting gut barrier integrity[153].
Besides,  butyrate  was  found to  induce  colonic  Treg  cell  differentiation,  thereby
contributing to intestinal immune homeostasis[154].  In addition, SCFAs trigger the
secretion of Glucagon-Like Peptide-1 (GLP-1) by the intestinal enteroendocrine L-
cells, which in turn ameliorates NAFLD development and progression by provoking
fatty acid oxidation in the liver[155,156]. Interestingly, this phenomenon may function in a
positive  feedback mode since  sodium butyrate  was found to  induce the  hepatic
expression of GLP-1 receptor and attenuate NAFLD in mice subjected to a high fat
diet[157]. Similarly, in humans, propionate administration for 24 weeks triggered GLP-1
and peptide YY secretion,  leading to  attenuated hepatic  lipid accumulation and
improved insulin resistance[158].

CONCLUSION
A plethora of molecules and signaling pathways are involved in the inflammatory
process that accompanies the development of liver fibrosis during NAFLD (Figure 1
and Table 1). Signal transduction pathways downstream of TLRs and NLRs are of
considerable  interest  for  the  activation  and  perpetuation  of  the  innate  immune
response  implicated  in  the  development  of  liver  fibrosis  during  metabolic
dysregulation  and  liver  steatosis  and  understanding  of  the  mechanisms  and
molecules involved therein may lead to novel approaches against the progression of
steatosis into NASH or cirrhosis.

The current strategy for the treatment of fibrosis is based on the modification of
lifestyle factors, such as reduction of body weight in combination with exercise and
healthy  nutrition,  as  well  as  pharmaceutical  improvement  of  insulin  resistance.
Specifically, a 3%-5% reduction of body weight alleviates steatosis; a greater reduction
improves  histopathological  findings  of  NASH  and  fibrosis[5].  Metformin  is  not
officially prescribed for NASH; pioglitazone induces histological changes in patients
with or without diabetes mellitus, while there is no sufficient evidence for the use of
GLP-1 agonists[5].  Several  preclinical  studies,  predominantly in mouse models of
fibrosis  and  NASH,  provide  innovative  approaches  for  the  management  of
inflammatory process during NAFLD-related fibrosis. For instance, the suppression of
NLRP3 inflammasome by the pharmacological agent sulforaphane improved aspects
of high-fat diet induced NAFLD in mice[159]. Similarly, administration of the selective
NLRP3 inhibitor MCC950 in mice improved hepatic inflammation and fibrosis in two
different  models  of  NASH[75].  In  addition,  PDGF-B  inhibition  in  mice  led  to
attenuation of liver fibrosis[134,135], while strategies aiming the downregulation of PDGF
such as pioglitazone can be part of the therapeutic strategy in NAFLD[160].

Apart from the necessity for identifying novel therapies against NASH, there is a
need for the development of new, reliable, safe and less invasive diagnostic methods
sensitive enough to detect NAFLD even at its initial stage, where it is thought to be
reversible and benign. Currently a liver biopsy is considered the gold standard for the
diagnostic  confirmation  and  estimation  of  disease  severity,  as  well  as  for  the
discrimination between NAFLD and NASH. Less invasive methods include blood
tests of liver function, ultrasound, and proton magnetic resonance spectroscopy (H-
MRS)[161]. Only cytokeratin-18 released during cell apoptosis and cell death can be
used as a measure for histological changes, but it lacks specificity and sensitivity[161].

WJG https://www.wjgnet.com May 7, 2020 Volume 26 Issue 17

Katsarou A et al. Ιnflammation and liver fibrosis

2002



Table 1  Pathways and mediators of liver fibrosis during non-alcoholic fatty liver disease

Mediator Expression in the liver Function during NAFLD

TLR2 Kupffer cells, HSCs Promotion of fibrogenesis via activation of MAPK
and NF-κB signaling pathways

TLR4 Kupffer cells, HSCs Induction of inflammation and fibrosis in a NF-κB-
dependent way

ΤLR9 Kupffer cells, HSCs HSC differentiation, secretion of IL-1β from
Kupffer cells and MCP-1 from HSCs

NLRs Innate immune cells hepatocytes, endothelial cells
and HSCs

NAFLD and NASH development via
inflammasome activation and release of IL-1β and
IL-18

TNF-α Kupffer cells, hepatocytes Promotion of liver fibrosis by inducing the
survival and proliferation of HSCs

IL-1α/ IL-1β Kupffer cells Stimulation of hepatocyte lipid accumulation and
induction of fibrosis via MMP production and
suppression of PPARα in HSCs

IL-6 Immune cells, Kupffer cells Induction of hepatic lipogenesis in a Stat-3
dependent way

TGF-β Kupffer cells, endothelial cells, HSCs Induction of HSC activation and proliferation
mainly via TGF-β-SMAD pathway

PDGF Kupffer cells, activated HSCs, platelets Induction of HSC migration, activation and
proliferation via Ras-MAPK pathway

PPARα: Proliferator-activated receptor alpha activity; PDGF: Platelet-derived growth factor; NAFLD: Non-alcoholic fatty liver disease; HSCs: Hepatic
stellate cells; NASH: Non-alcoholic steatohepatitis.

Other  serum biomarkers  under  investigation  include  TGF-β  and  the  associated
markers  R58  and  L59/LAP-DPs;  these  are  produced  by  the  cleavage  of  Latency-
associated protein (LAP) which is the pro-peptide of TGF-β[162,163].

Overall, metabolic inflammation is thought to be the causal mechanistic link for the
progression of steatosis into NASH and scrutinization of the implicating factors may
pave the way for the development of new diagnostic tools and therapeutic strategies
for the prevention or treatment of the disease.
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Figure 1

Figure 1  Innate immune pathways and mediators involved in the development of liver fibrosis during non-alcoholic fatty liver disease. Activation of the
HSCs is the major event during the development of liver fibrosis. Various mediators released from parenchymal as well as non-parenchymal cells of the liver, as well
as from metabolic organs (adipose tissue, gut) can promote HSCs activation. TGF-β and PDGF, mainly produced by liver macrophages, have a central role in hepatic
fibrogenesis. HSCs start to produce TGF-β, PDGF and MCP-1 after their activation. Autocrine production of TGF-β and PDGF by activated HSCs induces their further
proliferation. Hepatic macrophages, lymphocytes and endothelial cells secrete IL-1α and IL-1β. These molecules participate in the initial extracellular matrix
degradation by induction of MMP2, MMP3 and MMP13 expression by HSCs, while are also implicated in HSC survival and proliferation. IL-1β, in particular, induces
the expression of TIMP-1, PAI-1 and collagen. In addition, pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α can induce lipid accumulation in hepatocytes and
in turn cause hepatocyte injury and inflammation. Apoptotic hepatocytes secrete reactive oxygen species, vascular endothelial growth factor and IGF1, which can
activate hepatic macrophages. Pyroptosis can also contribute to the development of fibrosis via activation of NLRs in HSCs. Of note, TLR2, TLR4 and TLR9,
expressed by liver macrophages and HSCs are the key Toll-like receptors in the pathophysiology of NASH and metabolism-related liver fibrosis by provoking the
expression of pro-inflammatory and pro-fibrotic cytokines by these cells.
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