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Abstract

Motivation: A unique challenge in predictive model building for omics data has been the small number of samples
(n) versus the large amount of features (p). This ‘n � p’ property brings difficulties for disease outcome classifica-
tion using deep learning techniques. Sparse learning by incorporating known functional relationships between the
biological units, such as the graph-embedded deep feedforward network (GEDFN) model, has been a solution to this
issue. However, such methods require an existing feature graph, and potential mis-specification of the feature graph
can be harmful on classification and feature selection.

Results: To address this limitation and develop a robust classification model without relying on external knowledge,
we propose a forest graph-embedded deep feedforward network (forgeNet) model, to integrate the GEDFN architec-
ture with a forest feature graph extractor, so that the feature graph can be learned in a supervised manner and spe-
cifically constructed for a given prediction task. To validate the method’s capability, we experimented the forgeNet
model with both synthetic and real datasets. The resulting high classification accuracy suggests that the method is a
valuable addition to sparse deep learning models for omics data.

Availability and implementation: The method is available at https://github.com/yunchuankong/forgeNet.

Contact: tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the study of bioinformatics, one important problem is the predic-
tion of clinical outcomes using profiling datasets with a large
amount of variables such as gene expression data, proteomics data
and metabolomics data. In such datasets, major challenges lie in the
relatively small number of samples compared to the large number of
predictors (genes/proteins/metabolites), namely the ‘n� p’ issue. In
addition, the complex unknown correlation structure among predic-
tors results in more difficulty in prediction and feature selection. To
tackle this challenging situation, machine learning approaches have
been introduced for the prediction task (Cai et al., 2015; Chen et al.,
2014; Kursa, 2014; Liang et al., 2013; Vanitha et al., 2015). While
the primary interest of these studies is to achieve high prediction ac-
curacy, contributions have also been made for feature selection or
learning effective feature representations (Cai et al., 2015; Kursa,
2014). Based on the biological property of profiling data, i.e. func-
tionally associated biological units tend to be statistically dependent
and contribute to a biological outcome in a synergistic manner, a
branch of classification research has been focused on integrating
prior knowledge on the relationships between features into

predictive models, to improve both classification performance and
learning the structure of feature space. A critical data source to
achieve this goal is the biological networks constructed from exist-
ing biological knowledge, such as signal transduction network or
protein–protein interaction network (Chowdhury and Sarkar, 2015;
Szklarczyk and Jensen, 2015). A biological network is a graph-
structured dataset with biological units as the graph vertices and
their functional relations as graph edges. In terms of classification
tasks, each vertex in the biological network corresponds to a pre-
dictor, and it is expected that the biological network can provide
useful information for a learning process. Motivated by this idea,
certain classification methods have been developed where biological
networks are integrated as additional information for the prediction
and feature selection procedure. For example, support vector
machines and traditional linear models such as logistic regression
classifier can be modified by adding penalty terms to the objective
function, where the penalty is defined according to pairwise distan-
ces between biological units in a network (Kim et al., 2013; Lavi
et al., 2012; Zhao et al., 2014; Zhu et al., 2009). Dutkowski and
Ideker (2011) develop a random forest (RF)-based method, called
Network-Guide Forest, where the feature subsampling in building
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decision trees is guided by graph search on the given biological net-
work. Also, a recent study (Kong and Yu, 2018) brings biological
networks to deep learning, where applications on profiling data
were restricted primarily due to the n� p issue (Min et al., 2016).
In Kong and Yu (2018), a deep learning model graph-embedded
deep feedforward network (GEDFN) is proposed with the biological
network embedded as a hidden layer in deep neural networks to
achieve an informative sparse structure. In GEDFN, the graph-
embedded layer helps achieve two effects. One is model sparsity,
and the other is the informative flow of information for prediction
and feature evaluation. These two effects allow GEDFN to outper-
form other methods in profiling data classification given an appro-
priately specified feature graph.

Authors of these methods have demonstrated that combining
biological networks with profiling data results in better classifica-
tion performance and more interpretable feature selection.
However, these methods bear a common limitation, which is the po-
tential mis-specification of the required biological network. In prac-
tice, profiling data are used for various clinical outcomes, and the
mechanistic relationships between biological units and different clin-
ical outcomes can be quite different. Hence, there does not exist a
single known network that uniformly fits all classification problems.
Thus, biological networks used in graph-embedded methods can
only be ‘useful’ but not ‘true’. Consequently, how to decide if a
known biological network is useful in predicting a certain clinical
outcome with a certain gene expression dataset remains an unsolved
problem, causing difficulties in applying graph-embedded methods
in practice. Kong and Yu (2018) discuss the feature graph mis-
specification issue of the GEDFN model and shows that the method
is robust with mis-specified biological networks. Nevertheless, it is
unrealistic to guarantee that the robustness applies in a broad sense,
as feature graph structures can be extremely diverse such that simu-
lation would not be able to cover all scenarios.

To address these issues, in this paper, we aim at developing a
method that does not rely on a given feature network, yet can still
benefit from the idea of building a model with sparse and inform-
ative flow of information. Instead of using known feature graphs,
we try to construct a feature graph within the feature space. We pro-
pose a supervised feature graph construction framework using tree-
based ensemble models, as literature shows that tree-based ensemble
methods such as the RF (Breiman, 2001) and the Gradient Boosting
Machine (GBM) (Friedman, 2002) are excellent tools for feature se-
lection (Tang and Foong, 2014; Vens and Costa, 2011). These tree-
based methods also provide relational information between features
in terms compensating each other in the classification task. We de-
velop the forest graph-embedded deep feedforward network
(forgeNet) model, with a built-in tree-based ensemble classifier as a
feature graph extractor on top of a modified GEDFN model. The
feature extractor selects features that span a reduced feature space,
and constructs a graph between the selected features based on their
directional relations in the decision tree ensemble.

The application of tree-based ensemble methods as feature graph
extractor is mainly based on two considerations: (i) the extractor
selects effective features in a supervised manner. Thus, the target
outcome directly participates the feature graph construction.
Compared to unsupervised feature construction such as using mar-
ginal or conditional correlation graphs, the resulting graph from
trees is more informative and relevant to the specific classification
task; (ii) the feature extraction procedure helps reduce the dimension
of the original feature space, alleviating the n� p problem for the
downstream neural network model.

2 Materials and methods

2.1 Review of GEDFNs
We first briefly review the GEDFN model as our new method uti-
lizes a similar neural network architecture. Recall a deep feed-
forward network with l hidden layers:

PrðyjX;WÞ ¼ softmaxðZoutWout þ boutÞ
Zout ¼ rðZlWl þ blÞ

. . .

Zkþ1 ¼ rðZkWk þ bkÞ
. . .

Z1 ¼ rðXWin þ binÞ;

where X 2 Rn�p is the feature matrix with n samples and p features,
y 2 Rn is the outcome containing classification labels, W denotes all
parameters, Zk (k ¼ 1; . . . ; l � 1; out) are hidden layers with corre-
sponding weights Wk and bias bk. The dimensions of Z and W de-
pend on the number of hidden neurons hk (k ¼ 1; . . . ; l; in) of each
hidden layer, as well as the input dimension p and the number of
classes hout. We mainly focus on binary classification problems
hence the elements of y simply take binary values and hout � 2. The
function rð�Þ is the nonlinear activation such as sigmoid, hyperbolic
tangent or rectifiers. The softmaxð�Þ function converts values of the
output layer into probability prediction.

The graph-embedded feedforward net is a variant of the regular
feedforward net with modified first hidden layer:

Z1 ¼ rðXðWin � AÞ þ binÞ; (1)

where A is the adjacency matrix of a feature graph and � is the
Hadamard (element-wise) product. As in regular deep neural net-
works, the parameters to be estimated are all the weights and biases.
The model is trained using a stochastic gradient decent-based algo-
rithm by minimizing the cross-entropy loss function (Goodfellow
et al., 2016).

2.2 The forgeNet model
Our newly proposed forgeNet model consists of two components—
the extractor component and the neural network component. The
extractor component uses a forest model to select useful features
from raw inputs with the supervision of training labels, as well as
constructs a directed feature graph according to the splitting order
in the individual decision trees. The neural network component
feeds the generated feature graph and the raw inputs to GEDFN,
and serves as the learner to predict outcomes. In forgeNet, a forest is
defined as any ensemble of decision trees but not limited to RFs. In
fact, any tree-based ensemble approach is applicable within the
forgeNet framework. Besides RF and GBM mentioned in Section 1,
their variants with similar outputs are also possible options, or the
forest can be simply built through bagging trees (Breiman, 1996).
However, since RF and GBM models are the most commonly used
tree ensembles, in this paper, we only employ these two methods for
a proof-of-concept purpose.

In forgeNet, a forest F is denoted as a collection of decision
trees:

FðHÞ ¼ fT mðHmÞg; m ¼ 1; . . . ;M;

where M is the total number of trees in the forest, H ¼
fH1; . . . ;HMg represents the parameters, which include splitting
variables and splitting values. In the feature graph extraction stage,
F is fitted by training data Xtrain and training label ytrain, where
Xtrain 2 Rntrain�p and ytrain 2 Rntrain . After fitting the forest, we obtain
M decision trees, each of which contains a subset of features and
their directed connections according to the tree splitting. At the
same time, a binary tree can be viewed as a special case of a graph
with directed edges. Hence, we can construct a set of graphs:

G ¼ fGmðVm;EmÞg; m ¼ 1; . . . ;M;

where Vm and Em are collections of vertices and edges in Gm, re-
spectively. Next, by merging all graphs in G, the aggregated feature
graph

GðV;EÞ ¼ [
M

m¼1
GmðVm;EmÞ

is obtained, where V ¼ [M
m¼1Vm and E ¼ [M

m¼1Em.
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In the form of its adjacency matrix, G is the feature graph to be
embedded into the second stage of the forgeNet. Note that regard-
less which tree-based ensemble methods we use, it is likely that not
all predictors in the original feature space can enter the forest model.
A feature is included in G if and only if it is used at least once by the
forest to split samples. As a result, the original feature space is
reduced after the feature extraction. Denoting the number of vertices
of G as jVj, we have jVj < p, and the input data matrix for the se-

cond stage is thus ~Xtrain 2 Rn�jVj. The columns in ~Xtrain corresponds
to selected features in the original data Xtrain 2 Rn�p, and the order
of columns does not matter.

The resulting feature graph G of feature extraction is a directed
network, which differs from the one used in the original GEDFN. In
Kong and Yu (2018), the adjacency matrix A in Equation (1) repre-
sents an undirected feature graph. In the case of forgeNet, the adja-
cency matrix is naturally generalized to the directed version, and
replacing A in Equation (1) with an asymmetric adjacency does not
affect the model construction and training. A visualization of the en-
tire forgeNet architecture is seen in Figure 1.

After fitting forgeNet with the training data, only the reduced in-
put ~Xtest and the testing label ytest are required for testing the predic-
tion results, as ~Xtest can be directly fed into the downstream neural
nets together with the feature graph constructed from the forest.

2.3 Evaluation of feature importance
The selection of predictors that significantly contribute to the pre-
diction is another major aspect of the analysis of profiling data, as
they can reveal underlying biological mechanisms. Thus in forgeNet,
we introduce a feature importance evaluation mechanism, which is
closely related to the Graph Connection Weights (GCW) method
proposed in Kong and Yu (2018) for the original GEDFN model.
However, since the feature graph used in forgeNet has a different
property from that in GEDFN where the feature graph is given, cer-
tain modifications of GCW are needed.

The main idea of GCW is that, the contribution of a specific pre-
dictor is directly reflected by the magnitude of all the weights that
are directly associated with the corresponding hidden neuron in the
graph-embedded layer (the first hidden layer). In forgeNet, since the
connection between the input layer and the first hidden layer is no
longer symmetric due to the directed feature graph structure, to
evaluate the importance of a given feature, we examine both hidden
neurons in the first hidden layer and the nodes in the input layer.
The importance score is thereby calculated as the summation of

absolute values of the weights that are directly associated with the
feature node itself and its corresponding hidden neuron in the
graph-embedded layer:

sj ¼
Xp

u¼1

jwðinÞju IðAju ¼ 1Þj þ
Xp

v¼1

jwðinÞvj IðAvj ¼ 1Þj

þ
Xh1

m¼1

jwð1Þjm j; j ¼ 1; . . . ;p;

where sj is the importance score for feature j, wðinÞ denotes weights
between the input and first hidden layers and wð1Þ denotes weights
between the first hidden layer and the second hidden layer. The
score consists of three parts: the first two terms summarize the im-
portance of a feature according to the directed edge connection in
the feature graph G; the third term summarizes the contribution of
the feature according to the connection with the second hidden layer
Z2. Note that the input data X are required to be Z-score trans-
formed (the original value minus the mean across all samples and
then divided by the SD), ensuring all variables are of the same scale
so that the magnitude of weights is comparable. Once the forgeNet
is trained, the importance scores for all the variables can be calcu-
lated using trained weights.

2.4 Implementation
We employ the Scikit-learn (Pedregosa et al., 2011) package for the
implementation of RF, the Xgboost package (Chen and Guestrin,
2016) for GBM, and the Tensorflow library (Abadi et al., 2016) for
deep neural networks. For the choice of activation functions of neur-
al nets, the rectified linear unit (ReLU) (Nair and Hinton, 2010) is
employed. This nonlinear activation has an advantage over the sig-
moid function and the hyperbolic tangent function as it avoids the
vanishing gradient problem (Hochreiter et al., 2001) during model
training. The entire neural net part of forgeNets is trained using the
Adam optimizer (Kingma and Ba, 2014), which is the state-of-the-
art version of the popular stochastic gradient descent algorithm.
Also, we use the mini-batch training strategy by which the optimizer
loops over randomly divided small proportions of the training sam-
ples in each iteration. Details about the Adam optimizer and the
mini-batch strategy applications in deep learning can be found in
Goodfellow et al. (2016) and Kingma and Ba (2014).

The performance of a deep neural network model is associated
with many hyper-parameters, including the number of hidden

Fig. 1. Illustration of the forgeNet model. Notations are consistent with those in the text
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layers, the number of hidden neurons in each layer, the dropout pro-
portion of training, the learning rate and the batch size. As the
hyper-parameters are not of primary interest in our research, in the
simulation and real data experiments, we simply tune hyper-
parameters using grid search in a feasible parameter space. An ex-
ample of hyper-parameter tuning can be found in Supplementary
File S1. Also, since our experiments contain a number of datasets, it
is not plausible to fine tune models for each dataset. Instead, we
tune hyper-parameters using some preliminary synthetic datasets,
and apply the set of parameters to all experimental data. For simula-
tion experiments, the number of trees of our forgeNets is 1000 and
the number of hidden layers of the neural net is three with p (graph-
embedded layer), 64 and 16 hidden neurons, respectively. For real
data analyses, the number of trees in the forest part is adjusted
according to the size of the corresponding feature space, and the
neural net structure is the same as it is in simulation.

3 Simulation experiments

The goal of the simulation experiments is to mimic disease outcome
classification using profiling data with n� p. Effective features are
sparse and potentially correlated through an underlying unknown
structure. Several benchmark methods are experimented in addition
to the new forgeNet model for comparison purpose. Through simu-
lation, we intend to investigate whether the forgeNet model is able
to outperform other classifiers without knowing the underlying
structure of features.

3.1 Synthetic data generation
We follow a similar procedure described in Kong and Yu (2018).
For a given number of features p, the preferential attachment algo-
rithm (BA model) (Barabási and Albert, 1999) is employed to gener-
ate a scale-free network as the underlying true feature graph.
Defining the distance between two features in the network as the
shortest path between them, we calculate the p�p matrix D record-
ing pairwise distances among features. Next, the distance matrix is
transformed into a covariance matrix R by letting

Rij ¼ 0:6Dij ; i; j ¼ 1; . . . ; p:

After obtaining the covariance matrix between features, we gen-
erate n multivariate Normal samples as the data matrix X ¼
ðx1; . . . ; xnÞT i.e.

xi � Nð0;RÞ; i ¼ 1; . . . n;

where n� p for imitating gene expression data. To add negative
correlations as well, we randomly flipped the signs of 1% of the X
columns (genes). Supplementary Figure S1 shows empirical pairwise
feature correlation distributions for the simulated data. The plots
confirm that there are significant proportions of negative correla-
tions. To generate outcome variables, we first select a subset of fea-
tures to be ‘true’ predictors. Among vertices with relatively high
degrees (‘hub nodes’) in the feature graph, part of them are random-
ly selected as ‘cores’, and a proportion of the neighboring vertices of
cores are also selected. Denoting the number of true predictors as
p0, we uniformly sample a set of parameters b ¼ ðb1; . . . ; bp0

ÞT and
an intercept b0 from a small range, say ð�0:15; 0:15Þ. Finally, the
outcome variable y is generated through a procedure similar to the
generalized linear model framework

yi ¼ Ifgðb0 þ ðxi
ðtrueÞÞTbÞ > tg; i ¼ 1; . . . n;

where x
ðtrueÞ
i 2 Rp0 is the subvector of xi and t is a threshold. For the

transformation function gð�Þ, we consider a weighted sum of hyper-
bolic tangent and quadratic function

gðxÞ ¼ 0:7/ðtan hðxÞÞ þ 0:3/ðx2Þ:

The reason of using this gð�Þ function is that the transformation
is nonmonotone, which brings in more challenges for classification.
The function /ð�Þ is the min–max transformation scaling the input

to ½0;1	, i.e. the original value minus the sample minimum and then
divided by the difference between the sample maximum and the
sample minimum.

Following the above data generation scheme, we simulate a set
of synthetic datasets with P¼5000 features and n¼400 samples.
Since in profiling data, the true signals for a certain prediction task
are sparse (p0 � p), We choose p0 ¼ 15; 30; 45; 60 and 75 as the
numbers of true predictors, corresponding to 1–5 cores selected
among all hub nodes in the feature graph.

3.2 Evaluation of simulation experiments
We compare our method with several benchmark models. First,
since the true feature graphs are known for simulation data, we are
able to test the original GEDFN model with correctly specified fea-
ture graphs. At the same time, we also experiment GEDFN with
mis-specified feature graphs by randomly generating Erdös–Rényi
random graphs (Erdös and Rényi, 1959), which have a different
graph topology structure from the true scale-free networks. Also,
since forgeNet inherently fits a tree-based ensemble classifier, it is
natural to compare the performance of a forgeNet with its forest
part alone. We choose two representative tree methods RF and
GBM for the experiments, and correspondingly test two versions of
forgeNets—forgeNet-RF and forgeNet-GBM. Finally, the logistic re-
gression classifier with lasso (LRL) (Tibshirani, 1996) is also added
as a representative of linear machines.

For each of the data generation settings, 50 independent datasets
are generated. For each dataset, we randomly split samples into
training and testing sets at a ratio of 4:1. All models are fitted using
the training dataset and then used to predict the testing dataset. To
evaluate classification results, areas under receiver operating charac-
teristic curves (ROC-AUCs) are calculated using the predicted class
probabilities and the labels of the testing set. The final testing result
for a simulation case is then given by the average testing ROC-AUC
across the 50 datasets.

As for feature selection, all the methods except LRL provide rela-
tive feature importance scores; LRL does not rank features but dir-
ectly gave the selected feature subset. Knowing the true predictors
for simulated data, we could use the binary true predictor labels to
evaluate the accuracy of feature selection. However, in preliminary
numerical experiments, it is observed that though we fix the number
of true features in each case, neighboring features of true predictors
in the feature graph are also informative for classification even if
they are not in the true feature set. This is because these neighboring
features have a relatively high correlation with selected true predic-
tors (0.6 according to Section 3.1). Therefore, when evaluating the
results of feature selection, it is more appropriate to investigate a set
of ‘relevant’ features including those neighboring features, rather
than the ‘true’ feature set only. The average numbers of relevant fea-
tures are 208.8, 460.4, 615.4, 717.8 and 864.7, respectively, corre-
sponding to the five cases of true features p0 ¼ 15; 30; 45; 60 and
75.

Since the relevant feature sets are still small compared to the en-
tire feature space (P¼5000), the AUC of the precision–recall curve
is a more appropriate metric here. We thus compare feature selec-
tion results using binary labels of relevant features for all methods
providing feature scores. As for LRL, for each dataset, we compare
recall values of our methods and LRL given the precision value of
LRL. That is, the precision of LRL helps locate points on the preci-
sion–recall curves of forgeNets, and corresponding recall values are
used for comparison.

3.3 Simulation results
Figure 2a shows the results of classification accuracy comparison.
With the increasing number of true predictors, all of the methods
performed better as there were more signals in the entire feature
space. From the figure, the two versions of forgeNets, forgeNet-RF
and forgeNet-GBM, significantly improved the classification per-
formance of their forest counterparts, i.e. RF and GBM. Also, the
forgeNet-RF was the only method that achieved similar classifica-
tion accuracy as GEDFN which benefited from the use of true
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feature graphs. When GEDFN was given mis-specified feature
graphs (GEDFN_mis), its classification ability was weakened with
AUC values even worse than LRL. In summary, in terms of predic-
tion, forgeNets beat all classic machine learning methods compared
here (RF, GBM, LRL), achieved very similar accuracy compared to
GEDFN using true feature graphs, and significantly outperformed
GEDFN once its feature graphs were mis-specified.

Feature selection results can be seen in Figure 2b and c.
Comparing the precision–recall AUCs from Figure 2b, it can be
observed that GEDFN using true feature graph was the best method
for feature importance ranking, yet again the outstanding perform-
ance was ruined by mis-specified feature graphs. The results of
forgeNets were significantly better than GEDFN_mis, and were con-
sistent with their forest counterparts. As the training of neural net-
works in forgeNets largely relied on feature graphs given by forests,
it is not surprising to see that forgeNets could achieve similar feature
selection results as their forest counterparts. In Figure 2c, both
forgeNet-RF and forgeNet-GBM were able to achieve higher recall
values than LRL. In summary, in terms of feature selection,
forgeNets outperformed the traditional lasso method and had con-
sistent performance with their forest counterparts. Although not as
good as GEDFN with true feature graphs, forgeNets produced sig-
nificantly better feature selection than GEDFN using mis-specified
feature graphs. Finally, we observe that the choice of the forest in
forgeNets mattered, and among the two versions in our experi-
ments, forgeNet-RF was a more powerful model.

The simulation study proved the forgeNet a powerful classifier,
with reasonably good feature selection ability. Through the experi-
ment results, one can easily conclude the novelty of forgeNets is
that, by borrowing the neural net architecture of the original
GEDFN, forgeNets utilize feature information more effectively in
classification tasks compared to regular tree-based ensemble
methods.

ForgeNets involve stochastic model fitting. There can be con-
cerns about forgeNet’s stability and scalability. The former refers to
the sensitivity regarding different initial values in training the deep
neural network. To test the reproducibility of the forgeNet model,
we examined the classification accuracy of 10 repeated forgeNet
runs for fixed synthetic datasets. The results for both forgeNet-RF
and forgeNet-GBM are shown in Supplementary Table S1. Despite
a little variability in cases where the numbers of true features are
small, forgeNets exhibited robustness with respect to initial values
in general. The second aspect is forgeNet’s capability of tackling
large-scale datasets (i.e. larger samples and/or extremely large fea-
ture spaces) without inducing impractical cost in time and memory,
compared to traditional classification methods. To answer this ques-
tion, we designed additional experiments for forgeNet-RF and
forgeNet-GBM to analyze their computational cost and compared

the cost with their tree-ensemble counterparts, respectively. The
analysis is reported in Supplementary Tables S3–S6, where we con-
cluded that the extra computation time and memory usage induced
by forgeNets stayed in a limited scale, indicating the usability of the
method for large-scale data.

3.4 Analysis of estimated feature graphs
ForgeNets use feature graphs constructed by tree-ensemble meth-
ods. It is of interest to investigate the feature graphs constructed
by the tree-based feature extractors. The comparison between the
estimated feature graphs and the true simulated feature graphs
were based on two aspects, vertices and edges. For each synthetic
dataset, we selected the subnetwork, denoted as H, containing all
relevant features defined in Section 3.2 and their neighbors (i.e.
second neighbors of true features) in the true feature graph. To
compare vertices, we calculated the proportion of features in the
estimated feature graph that fell in H. Table 1 [row ‘RF (vertex)’
and row ‘GBM (vertex)’] shows the averaged vertex proportions
for different simulation cases. As for edges, it is noted that the
feature graph construction by tree-based methods is not for recov-
ering the original correlation feature graph. Instead, two adjacent
features in a tree are more likely to be complementary to each
other regarding a given classification task. Consequently, the esti-
mated feature graphs were expected to be more similar to the
complement graph of H, denoted as Hc, rather than H itself. In
graph theory, the complement graph Hc of H is a graph with the
same vertices such that two vertices of Hc are connected if and
only if they are not connected in H (Bondy et al., 1976). The
averaged proportions of the estimated feature graph edges that fell
in the edge set of Hc can be also found in Table 1 [row ‘RF
(edge)’ and row ‘GBM (edge)’].

The analysis of estimated feature graphs indicates that forgeNet
selects relevant features but views the feature interactions from a dif-
ferent perspective. On the one hand, forgeNet’s tree-based feature
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Fig. 2. Comparison of classification and feature selection for the simulation study. (a) AUC of ROC for classification; (b) AUC of precision–recall for feature selection; and (c)

recall plots given fixed precision from LRL. Error bars represent the estimated mean quantities plus/minus the estimated standard errors

Table 1. Analysis of feature graphs constructed by RF and GBM

No. of true features 15 30 45 60 75

RF (vertex) 0.429 0.585 0.663 0.723 0.768

RF (edge) 0.284 0.447 0.546 0.625 0.692

GBM (vertex) 0.437 0.582 0.660 0.718 0.764

GBM (edge) 0.226 0.376 0.467 0.548 0.609

Note: Proportions are averaged across the 50 datasets in each simulation

case.
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extractor identifies relevant features for classification that are con-
sistent with those in the original correlation feature graph. On the
other hand, the feature extractor constructs feature graphs based on
a complementary relationship among features instead of direct cor-
relation. This again aligns with the concept of the supervised feature
extractor, as the estimated feature graph is not necessarily recover-
ing the correlation graph, as long as it contains useful information
of feature interactions in predicting a certain classification outcome.

4 Real data applications

4.1 Breast invasive carcinoma RNAseq data
We applied forgeNets to the Cancer Genome Atlas (TCGA) breast
cancer (BRCA) RNA-seq dataset (Koboldt et al., 2012). The dataset
consists of a gene expression matrix with 20 155 genes and 1097
cancer patients, as well as the clinical data including survival infor-

mation. The classification task is to predict the 3-year survival out-
come. We excluded patients with missing or censored survival time
for which the 3-year survival outcome could not be decided. Also,
genes with more than 10% of zero values were screened out. As a re-
sult, the final dataset contains a total of P¼16 027 genes and
n¼506 patients, with 86% positive cases. For each gene, its expres-
sion value was Z-score transformed.

Using the BRCA data, we again tested two versions of forgeNets
together with RF, GBM and LRL. The classification was conducted
using a 5-fold stratified cross-validation process, and the final pre-
diction AUC for each method is computed by averaging the five val-
idation results.

Table 2 summarizes the classification results. From the table,
forgeNets again outperformed their forest counterpart models and
LRL. Therefore, this real data application also led to a similar con-
clusion as in Section 3 that forgeNets brought in significant im-
provement for classification.

Feature selection was also conducted for BRCA data. We
obtained ranked gene importance lists by averaging importance
scores across the five cross-validation results from all methods ex-
cept LRL. For LRL, the intersection (456 genes) of the five selected
feature sets is used as the final selected features. We chose top 500
ranked genes for each ranked list so that the numbers are of a similar
magnitude as the genes selected by LRL. Functional analysis of all
final gene lists was conducted by the Gene Ontology (GO) enrich-
ment test using GOstats package (Falcon and Gentleman, 2007).
We limited the analysis to GO biological processes containing 10–
500 genes, and a P-value cutoff of 0.005. After manual removal of
highly overlapping GO terms, the top 3 GO terms that contained
the most number of selected genes are found in Table 3.

The top GO term selected by forgeNet-RF was regulation of pro-
tein stability. It has been found that estrogen receptor (ER) alpha
has increased abundance and activity in breast cancer. One of the
mechanisms facilitating this change is the protection of ER from
degradation by the ubiquitin–proteasome system (Tecalco-Cruz and
Ramı́rez-Jarquı́n, 2017). Another critical protein, HER2 (human
epidermal growth factor receptor 2), has also been found to have
increased stability and activity in some breast cancer tissues through
the formation of Her2-Heat-shock protein 27 (HSP27) complex
(Kang et al., 2008). The protein stability mechanism has not been
previously linked to the survival outcome of breast cancer. The se-
cond GO term found by forgeNet-RF, RNA phosphodiester bond
hydrolysis, endonucleolytic, is part of rNRA and tRNA processing.
It plays a critical role in the protein synthesis of the cancer cells. The
third term, toxin transport, is specific to breast cancer. It is sug-
gested that increased toxin presence in the mammary tissue is a pre-
disposing factor to breast cancer (McManaman and Neville, 2003;
Quezada and Vafai, 2014).

The forgeNet-GBM and GBM results both point to fatty acid
metabolism, which is known to be dysregulated in breast cancer
(Monaco, 2017). The GBM selected the ER signaling pathway,
which is critically important in breast cancer development. The LRL
selected GO terms include positive regulation of secretion, which
includes lactation, in addition to a number of metabolic processes.

In this real data analysis, we were also interested in examining
the feature graphs constructed by the two tree-based ensemble meth-
ods. We compared the estimated feature graphs with the real gene
network employed in the original GEDFN paper (Kong and Yu,
2018) from the HINT database (Das and Yu, 2012). Among the
16 027 genes, 7816 of them were involved in the HINT network,

Table 2. Classification results for BRCA data

Methods forgeNet-RF RF forgeNet-GBM GBM LRL

Average ROC-AUC 0.742 0.672 0.716 0.691 0.689

SD 0.066 0.048 0.100 0.022 0.084

Table 3. Top 3 GO biological processes for each method, after manual removal of redundant GO terms

ID Term P-value Count Size

forgeNet-RF

GO:0031647 Regulation of protein stability 0.00123 17 229

GO:0090502 RNA phosphodiester bond hydrolysis, endonucleolytic 0.00369 7 62

GO:1901998 Toxin transport 0.00499 5 35

RF

GO:2000679 Positive regulation of transcription regulatory region DNA binding 0.00255 4 19

GO:0010172 Embryonic body morphogenesis 0.00313 3 10

GO:0090042 Tubulin deacetylation 0.0042 3 11

forgeNet-GBM

GO:0001676 Long-chain fatty acid metabolic process 0.00138 9 84

GO:0032890 Regulation of organic acid transport 0.00155 6 40

GO:0046470 Phosphatidylcholine metabolic process 0.00449 7 65

GBM

GO:0006633 Fatty acid biosynthetic process 0.000454 12 121

GO:0030520 Intracellular ER signaling pathway 0.000643 7 47

GO:0010763 Positive regulation of fibroblast migration 0.00322 3 10

LRL

GO:0051047 Positive regulation of secretion 0.000609 20 317

GO:0006090 Pyruvate metabolic process 0.000911 9 90

GO:0019359 Nicotinamide nucleotide biosynthetic process 0.00204 8 82
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and there was no connectivity (edge) information for the remaining
8211 genes. The estimated feature graphs by forgeNet-RF had an
average (The average was taken over the graphs constructed from
different folds of samples.)1 of 8997.8 vertices, and 44.2% of them
overlapped with the HINT gene network. The estimated feature
graphs by forgeNet-GBM had an average of 428 vertices, and
52.6% of them fell in the HINT network. The difference of vertex
numbers of the two tree-based methods was caused by their own
tree construction mechanisms, and the percentages were roughly
proportional to the genes covered by the HINT network.

Unlike the analysis in Section 3.4, comparison between the esti-
mated feature graphs and the HINT network regarding edges was
not feasible, as the underlying true predictive feature subgraph struc-
ture was unknown. We observed few overlapping edges between the
estimated feature graphs and the HINT network, for both forgeNet-
RF and forgeNet-GBM. This is expected. As seen in the simulation
study, the estimated edges by RF and GBM tend to be the compli-
mentary edges in the subnetwork involving true predictors. In add-
ition, the true biological network is much more complex than a
simple correlation network.

It can be noted that, in the case of real data applications, both
GEDFN and forgeNet can be regarded as a way of feature prescre-
ening. GEDFN utilizes external knowledge (e.g. the HINT network
data), which cannot utilize features not presenting in the known fea-
ture graph. In contrast, forgeNet examines initial input with a larger
feature space and screens features in a supervised manner, following
the philosophy that the forest feature extractor should be able to de-
cide the usefulness of a feature. Depending on the real dataset and
the classification outcome of interest, the two ways of prescreening
can agree or differ with each other, and there is no way to guarantee
which mechanism dominates the other.

4.2 Breast invasive carcinoma microRNA data
We further applied forgeNets to the BRCA microRNA dataset
(Koboldt et al., 2012). There was no readily available feature graph
for the microRNA data. The dataset consists of 2588 microRNAs
and 848 BRCA patients. Again, we examined the classification task
for predicting the 3-year survival outcome. Similar to Section 4.1,
we excluded patients with missing or censored survival time for
which the 3-year survival outcome could not be determined.
MicroRNAs with more than 50% of missing values were also
screened out. As a result, the final dataset contained a total of
P¼310 microRNAs and n¼424 patients, with 85% positive cases.
Although this was not strictly an ‘n� p’ dataset, the number of fea-
tures was on the same scale as the sample size. Therefore, it was still
a problem that challenges traditional classification methods. We
applied the K-Nearest Neighbor imputation (Troyanskaya et al.,
2001) for the remaining missing values, and each microRNA was Z-
score transformed.

Following the same 5-fold stratified cross-validation procedure
as in Section 4.1, we obtained the classification results of the
microRNA data, shown in Table 4. The microRNA data were more
challenging than the gene expression data, as the ROC-AUCs for all
methods were lower. Nevertheless, the forgeNets were again able to
outperform their tree-based counterparts, as well as the LRL.

We analyzed the functions of the selected microRNAs using
DIANA mirPath V.3 using a microT score threshold of 0.95
(Vlachos et al., 2012). The top 5 KEGG pathways for each method
are shown in Table 5. As the LRL selected 29 microRNAs, we used
the top 30 microRNAs for each of the other methods. All five meth-
ods selected ‘Hippo signaling pathway’ among the top pathways.
The dysregulation of the pathway is associated with the metastasis
and resistance to chemotherapy in breast cancer (Wei et al., 2018;
Wu et al., 2020).

Among the top 5 pathways selected by forgeNet-RF, three were
signaling pathways, which was the most among all methods. The
Rap1 signaling pathway is well -known for regulating breast cancer

cell migration through modulating matrix metalloproteinases
(McSherry et al., 2011). AMP-activated protein kinase (AMPK) sig-
naling responds to a number of endocrine signals, and regulates en-
ergy, growth and motility of cells (Zhao et al., 2017). Its role in
breast cancer progression and therapy has been well documented
(Cao et al., 2019; Zou et al., 2017). The AMPK pathway was
selected by both forgeNet-RF and forgeNet-GBM as the top 5.

Besides signaling pathways, forgeNet-RF also selected the glyco-
saminoglycan–keratan sulfate (KS) pathway and the glycosphingoli-
pid pathway. KS is the newest glycosaminoglycan, and its roles in
cancer have not been clearly elucidated (Caterson and Melrose,
2018). Recently it’s been found that increased KS epitope is associ-
ated with worse survival in pancreatic cancer (Leiphrakpam et al.,
2019). Glycolipids are essential in maintaining plasma membrane
stability. Aberrant glycosphingolipid metabolism plays critical roles
in cancer progression and metastasis (Zhuo et al., 2018).

Comparatively, among the top five pathways selected by LRL,
two were neurological pathways that bear no clear relation to breast

Table 4. Classification results for BRCA microRNA data

Methods forgeNet-RF RF forgeNet-GBM GBM LRL

Average ROC-AUC 0.637 0.528 0.617 0.560 0.571

SD 0.066 0.123 0.052 0.042 0.061

Table 5. Top 5 pathways selected by each method using mirPath

V.3

Methods No. of sig-

nificant

pathways

(P< 0.01)

Top 5 pathways P-value

forgeNet-

RF

12 Hippo signaling pathway 6.63E�06

Glycosaminoglycan biosyn-

thesis—KS

0.000752

Rap1 signaling pathway 0.000882

AMPK signaling pathway 0.000928

Glycosphingolipid biosyn-

thesis—lacto and neolacto

series

0.00119

RF 3 Prion diseases 2.67E�20

Hippo signaling pathway 4.69E�10

Thyroid hormone synthesis 0.00651

Adrenergic signaling in

cardiomyocytes

0.0165

Long-term potentiation 0.0165

forgeNet-

GBM

6 Pathways in cancer 0.000248

Transcriptional misregulation

in cancer

0.000248

Hippo signaling pathway 0.000417

AMPK signaling pathway 0.000950

Maturity onset diabetes of the

young

0.00127

GBM 15 Prion diseases 3.75E�20

Hippo signaling pathway 3.87E�16

Signaling pathways regulating 5.31E�06

pluripotency of stem cells

Proteoglycans in cancer 0.000532

Colorectal cancer 0.000794

LRL 8 GABAergic synapse 2.19E�05

ECM–receptor interaction 2.19E�05

Hippo signaling pathway 2.19E�05

Morphine addiction 8.90E�05

Proteoglycans in cancer 0.000251

1 The average was taken over the graphs constructed from different

folds of samples.
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cancer—GABAergic synapse, and morphine addiction. The extracel-
lular matrix (ECM)–receptor interaction pathway is important in
cancer progression (Walker et al., 2018), and proteoglycans are im-

portant for cell surface adhesion and cancer invasion (Nikitovic
et al., 2018). Overall, forgeNet-RF achieved better performance in

classification, as well as selected more interpretable features.

4.3 Healthy human metabolomics dataset
Another real dataset, we experimented, was the untargeted metabo-
lomics dataset measured by high-resolution liquid chromatography–

mass spectrometry from the Emory/Georgia Tech Center for Health

Discovery and Well Being. The cohort was made up of healthy
adults. The data were processed using apLCMS with hybrid mode
(Yu et al., 2009, 2013). We limited the analysis to the baseline meas-
urements of the subjects with available clinical data. The metabolic
feature matrix contained 8807 features and 382 subjects, as well as
clinical and demographic information. The classification task was to
predict obesity as indicated by the body mass index (BMI).
Metabolites with more than 10% of zero values were screened out.
Other general confounders, including age, gender (male/female) and
ethnicity (three races), were included as predictors. As a result, the
final dataset contained a total of P¼4997 predictors, including
4993 metabolic features and 4 confounding variables. The obesity
outcome was defined as BMI >30, and 25.6% of the subjects were
positive cases. For each continuous predictor, its value was Z-score
transformed.

The 5-fold stratified cross-validation classification results of the
metabolomics data are shown in Table 6. Although the data were
again challenging and no method performed very well, the
forgeNets were better classifiers compared to other benchmarks.
Using the top 10% of the metabolic features selected by each
method, we conducted pathway analysis using Mummichog (Li
et al., 2013). As shown in Table 7, RF selected the largest number of
significant metabolic pathways, followed by forgeNet-RF. This is
consistent with the simulation results. The top pathways selected by
RF were all focused on amino acids metabolism. The top pathways
selected by forgeNet-RF included amino acids metabolism, mem-
brane lipid metabolism and reduction–oxidation pathways, most of
which were also in the list of the RF results. LRL selected a slightly
smaller number of pathways than forgeNet-RF. Its top pathways
were diverse with some pathways with no apparent relation to BMI,
such as the prostaglandin and arachidonic metabolism pathways.
The pathways selected by GBM were more focused on glycolipid
metabolism, and those selected by forgeNet-GBM were diverse,
some of which do not have a clear link to BMI. Overall, RF and
forgeNet-RF showed the most interpretable pathway analysis
results. Combined with its better predictive power, forgeNet-RF was
again the preferred method among all those being compared.

5 Conclusion

We presented forgeNet that uses tree-based ensemble methods to ex-
tract feature connectivity information, and uses GEDFN for graph-
based predictive model building. The new method was able to achieve
sparse connection for neural nets without seeking external informa-
tion, i.e. known feature graphs. It works well in the ‘n� p’ situation.
Simulation experiments showed forgeNets’ relatively higher classifica-
tion accuracy compared to existing methods; the TCGA BRCA RNA-
seq dataset, the TCGA BRCA microRNA dataset and a metabolomics
dataset demonstrated the utility of forgeNets in both classification
and the selection of biologically interpretable predictors.
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