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Abstract

Summary: Single-cell data are being generated at an accelerating pace. How best to project data across single-cell
atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo
classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data
from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves
cell-type labels when mapping across diverse platforms.

Availability and implementation: https://github.com/diazlab/ELSA

Contact: aaron.diaz@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Results

There are multiple efforts ongoing to assemble atlases of cells
derived from complex tissues via single-cell RNA-sequencing
(scRNA-seq). As these projects scale from thousands to millions of
cells, extending cell-type annotations to newly generated data
becomes challenging. How best to project single-cell data from one
reference atlas to another, or onto bulk-sequencing databases
remains an open problem.

We developed an ensemble classifier of scRNA-seq, single-nuclei
RNA-sequencing (snRNA-seq) and bulk-extraction RNA-sequenc-
ing (RNA-seq) data: ensemble learning for classifying single-cell
data and projection across reference Atlases (ELSA; https://github.
com/diazlab/ELSA). We trained ELSA on public atlases and tested it
on published single-cell data, novel scRNA-seq and snRNA-seq of
human glioma tissues (four patients, >11K cells, Supplementary
Tables S1 and S2).

ELSA first identifies optimal gene sets for cross-platform analy-
ses using a random-forest approach (Fig. 1A). Training and classifi-
cation are then performed using a boosted learner, incorporating
random under-sampling to accommodate class imbalances
(Supplementary Methods). The resulting classifier can then be used
to project single-cell data between reference atlases or to update an
existing atlas with newly acquired data (Fig. 1B).

Multinomial regression has also been used for classification of
single-cell data (Pliner et al., 2019). However, we find that re-
gression models, support-vector machines, and other status-quo
approaches have low sensitivity for this purpose, as assessed via
10-fold cross-validation (Fig. 1C). This is especially the case

when regression is applied to datasets with imbalanced class
labels and/or rare cell types (Fig. 1D). ELSA’s boosting approach
builds an ensemble learner by averaging a sequence of weak
learners, each emphasizing training instances that were mis-
classified by previous models. Moreover, random under-sampling
of the training data is used to achieve a balanced class distribu-
tion. Thereby, rare cell types are classified more accurately. In
our tests, we found that under-sampling was critical to achieve
optimal performance. Boosting alone, and even boosting with
over-sampling did not achieve the same performance as ELSA
(Fig. 1C and D), with the most pronounced differences in per-
formance observed in rare cell types (e.g. CD34þ stem cells;
Supplementary Fig. S1A and B).

Kiselev et al. (2018) showed that single-cell data can be projected
across experiments, using similarity metrics to compare cells to each
other or to a cell-cluster centroid. However, their approach does not
explicitly accommodate differences in platform used for data acqui-
sition. To tackle this problem, ELSA uses a random-forest method
to optimize gene selection for downstream comparisons. We found
that this approach for feature selection improved both the sensitivity
and specificity of most methods (Fig. 1E and F). To illustrate our ap-
proach, we trained ELSA using thusly optimized gene sets and pro-
jected single-cell data from Smart-seq2 to Drop-seq platforms
(Supplementary Fig. S1C–E) and from snRNA-seq to scRNA-seq
(Supplementary Fig. S1F). Our results show with greater sensitivity
than competing approaches (Supplementary Fig. S1G).

To further test ELSA using heterogeneous tissues, we performed
scRNA-seq of four human glioma specimens and combined this
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with data from four published cases from the same pipeline (Wang
et al., 2019). We then mapped those cells to cell types found in the
non-malignant brain. The resulting classification maps immune and
stromal cells accurately and associates neoplastic glioblastoma cells
with their non-malignant glial counterparts (Supplementary Fig.
S2).

Recent advances underscore the importance of feature selection
for comparing single-cell data across platforms (Kiselev et al.,
2018, 2019) and feature extraction for cell-type identification
(Risso et al., 2018). Random-forest classifiers implicitly rank of
features by importance, which can be assessed from the misclassi-
fication error incurred when a feature’s values are permuted.
Thus, random forests provide a principled approach to feature
selection.

Under-sampling corrects for the class imbalances that occur
in most single-cell datasets from complex tissue. This enables
the accurate classification of rare cell types. We conclude
from our cross-validation analysis that ensemble methods such
as ours are less prone to overfitting than status quo
approaches.

Ensemble methods like these are not without their limitations.
Ensemble methods are often more difficult to interpret than regres-
sion models. Variable importance analysis can provide insight. But,

if an ensemble method outperforms a linear regression model then it
is likely exploiting some non-linear interaction effect that variable
importance analysis won’t account for.

Garnett (Pliner et al., 2019) defines a hierarchical markup lan-
guage for annotating cell type based on marker gene expression.

This functionality is beyond the scope of ELSA. However, Garnett
has a modular structure for marker gene analysis and training data

selection, followed by ELSA for classification. ELSA also isn’t suit-
able for cell-type discovery, many codes exist for that purpose (e.g.
Butler et al., 2018).
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Fig. 1. (A) Summary diagram of ELSA’s methodology. (B) ELSA use cases. (C) A comparison of sensitivity and specificity between ELSA and competing algorithms on the

PBMC dataset, performed via 10-fold cross-validation. Adaboost þ/� refers to Adaboost with combined under and synthetic over sampling. Adaboostþ refers to Adaboost

with synthetic over-sampling. (D) Sensitivity and specificity as in (C) for rare cell types, defined as those representing <10% of the training data. (E) Increases in sensitivity and

specificity after pre-processing via ELSA’s feature selection method. (F) Sensitivity and specificity increase as in (E) for rare cell types
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