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Abstract

Motivation: Cancer heterogeneity is observed at multiple biological levels. To improve our understanding of these
differences and their relevance in medicine, approaches to link organ- and tissue-level information from diagnostic
images and cellular-level information from genomics are needed. However, these ‘radiogenomic’ studies often use
linear or shallow models, depend on feature selection, or consider one gene at a time to map images to genes.
Moreover, no study has systematically attempted to understand the molecular basis of imaging traits based on the
interpretation of what the neural network has learned. These studies are thus limited in their ability to understand
the transcriptomic drivers of imaging traits, which could provide additional context for determining clinical
outcomes.

Results: We present a neural network-based approach that takes high-dimensional gene expression data as input
and performs non-linear mapping to an imaging trait. To interpret the models, we propose gene masking and gene
saliency to extract learned relationships from radiogenomic neural networks. In glioblastoma patients, our models
outperformed comparable classifiers (>0.10 AUC) and our interpretation methods were validated using a similar
model to identify known relationships between genes and molecular subtypes. We found that tumor imaging traits
had specific transcription patterns, e.g. edema and genes related to cellular invasion, and 10 radiogenomic traits
were significantly predictive of survival. We demonstrate that neural networks can model transcriptomic heterogen-
eity to reflect differences in imaging and can be used to derive radiogenomic traits with clinical value.

Availability and implementation: https://github.com/novasmedley/deepRadiogenomics.

Contact: whsu@mednet.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Radiogenomic mapping is the integration of traits observed on med-
ical images and traits found at the molecular level, such as gene ex-
pression profiling (Diehn et al., 2008; Segal et al., 2007). As such,
the study of radiogenomics plays a role in precision medicine, where
associations can describe prognosis or therapy response (Chang
et al., 2018; Naeini et al., 2013; Pope et al., 2008). Common
approaches to radiogenomic mapping include dimensionality reduc-
tion and pairwise comparisons (Aerts et al., 2014; Diehn et al.,
2008; Gevaert et al., 2014; Grossmann et al., 2017; Gutman et al.,
2013; Jamshidi et al., 2014; Zinn et al., 2011) or predictive models,
such as decision trees (Gevaert et al., 2017; Hu et al., 2017;
Kickingereder et al., 2016 Segal et al., 2007; Zhang et al., 2017) or
linear regression (Gevaert et al., 2012; Grossmann et al., 2017; Guo
et al., 2015; Yamashita et al., 2016; Zhu et al., 2015). Markedly,
these approaches often require feature selection; assume linearity;

and/or depend on pairwise associations, limiting their capacity to
represent complex biological relationships.

Neural networks, with their ability to automatically learn non-
linear, hierarchical representations of large input spaces
(Goodfellow et al., 2016; Lecun et al., 2015), are alternate
approaches for radiogenomics (Chang et al., 2018; Chen et al.,
2016; Ha et al., 2019; Korfiatis et al., 2017; Li et al., 2018). The
models can combine low-level features into a structure of complex
features to create a new, abstracted and transformed representation
better suited for learning than the original input (Bengio, 2009).
Current applications of neural networks have focused on diagnostic
images as inputs to predict a single gene status and have excluded
gene interactions (Chang et al., 2018; Ha et al., 2019; Korfiatis
et al., 2017). Instead, the non-linear transformations could be
applied to molecular data and identify new and/or confirm prior
radiogenomic associations. Toward understanding the biological
basis of imaging traits, we thus present an approach using the
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representational power of neural networks to model tumor tran-
scriptomes and non-linearly map genes to tumor imaging traits. No
a priori selection is used on the transcriptome.

A limitation of neural networks is that they are considered ‘black
boxes’, which makes it difficult to interpret the learned relation-
ships. The interpretability of neural networks should be examined in
order to take advantage of their learning capabilities. To the best of
our knowledge, no prior studies have interpreted neural networks to
ascertain what radiogenomic associations are learned. Therefore, we
provide approaches, called gene masking and gene saliency, for
understanding radiogenomic neural networks. The approaches were
based on visualization techniques, input masking and saliency maps
(Simonyan et al., 2014; Zeiler and Fergus, 2014), that probe the
trained neural networks to extract predictive relationships between
gene expressions and imaging traits. Here, our model interpretation
methods can identify cohort-level relationships, which we refer to as
radiogenomic associations, and patient-level relationships, which we
refer to as radiogenomic traits. We validated the extracted associa-
tions and traits generated by a network in a classification task with
known relationships, such as gene expressions (model input) and
molecular subtypes (model output; Verhaak et al., 2010).

As a use case, we study radiogenomic associations related to
human-understandable imaging traits in magnetic resonance imag-
ing (MRI) scans from patients with glioblastoma (GBM). GBM is a
grade IV malignant brain tumor with poor prognosis, and for which
imaging is heavily used in diagnosis, prognosis and treatment assess-
ment. MRI traits, such as tumor enhancement, non-contrast en-
hancement, edema and necrosis (Fig. 1), describe some of the visual,
phenotypic variations between patients as they are treated (Pope
et al., 2005). We present here the extracted relationships found by
the radiogenomic neural networks using our approach, compare
against previous work to show both new and consistent findings,
and establish the radiogenomic relationships’ clinical value in esti-
mating patient survival over clinical or imaging traits alone.

2 Materials and methods

2.1 Gene expression
Transcriptomes were available for 528 GBM patients as part of The
Cancer Genome Atlas (TCGA) (Supplementary Table S1). Samples
were untreated primary tumors and had �80% cancer and �50%
necrotic cells (McLendon et al., 2008). Samples were previously
analyzed by the Broad Institute on Affymetrix arrays, quantile nor-
malized and background corrected. Level 3 data were downloaded

from the Genomic Data Commons at https://gdc.cancer.gov/. Each
profile had 12 042 genes.

2.2 Magnetic resonance imaging
Medical images for 262 GBM patients were downloaded from The
Cancer Imaging Archive (TCIA) (Scarpace et al., 2016). Patients
were matched with shared barcodes used by TCGA and TCIA. A
board-certified neuroradiologist (S.E.-S., 26 years of experience)
evaluated images using the Osirix medical image viewer. An elec-
tronic form was used to record MRI traits according to the Visually
Accessible Rembrandt Images (VASARI) feature guide at https://
wiki.cancerimagingarchive.net/display/Public/
VASARIþResearchþProject. A total of 175 patients had pre-
operative (pre-op) MRIs and transcriptomes (Supplementary Table
S1). Six MRI traits were annotated from the pre-op studies. The
number of traits estimated for each patient was dependent on the
availability of MR sequences. For example, enhancement could be
estimated from patients who only had T1-weighted images with and
without contrast and no FLAIR or T2-weighted images. Traits were
binarized given the small sample sizes (Supplementary Table S2).

2.3 Radiogenomic modeling
To map relationships between gene expression profiles and MRI
traits, feed-forward neural networks (Goodfellow et al., 2016) were
used (Fig. 2a and b). Each MRI trait was a binary classification task,
where the positive class was the least frequent label (Supplementary
Table S2). Models were provided all 12 042 gene expressions as
input vectors to classify each imaging trait, resulting in one model
per trait. During training, early stopping with a patience of 200
epochs was used while monitoring the area under the curve (AUC)
of the receiver operating characteristic curve. To help learning in
the radiogenomic model, an autoencoder was used as many more
patients had transcriptomic data. The radiogenomic neural net-
works were pre-trained using weights transferred from a deep tran-
scriptomic autoencoder trained on a separate subset of 353 patients.
The transcriptome dataset was the subset of TCGA–GBM patients
who only had transcriptomes and no no pre-op MRI data.

The transcriptomic autoencoder takes a gene expression profile
as input, compresses the information through three encoding layers,
and then decodes the information to reconstruct the transcriptome.
Early stopping was used in training and monitored the mean coeffi-
cient of determination (R2) of each gene. The trained autoencoder
weights, along with the gene pre-processing parameters, were used
as non-random weight initialization (weights can be fine-tuned dur-
ing training) and/or frozen weights (weights cannot be fine-tuned
during training) in the radiogenomic models.

Performance was estimated with 10-fold cross-validation.
Each gene expression was mean subtracted and divided by its SD, a

Fig. 1. Examples of phenotypic differences observed in GBM patients. Shown are

single, axial images of pre-op MRI scans from the TCGA–GBM cohort. Four MRI

sequences were used to annotate tumor (white arrows) imaging traits: T1W,

T1WþGd and T2W and FLAIR images. MRI traits included enhancing (enhan.),

nCET, necrosis (necro.), edema, infiltrative (infil.) and focal, where class labels were

indicated by black (proportions < 1=3, expansive, or focal) or gray (proportions

� 1=3, infiltrative, or non-focal) blocks

(a)

(b)

(c)

(d)

Fig. 2. Illustration showing(a) the radiogenomic neural network’s architecture, (b)

transfer learning using a deep transcriptomic autoencoder, and interpretation meth-

ods using (c) gene masking and (d) gene saliency. Pretrained weights learned in the

autoencoder were transferred to a radiogenomic model, where weights were frozen

(non-trainable, long red arrows) and/or fine-tuned (trainable, dashed red arrow)

during radiogenomic training. (Color version of this figure is available at

Bioinformatics online.)
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process performed at each fold split. Hyperparameters were optimized
via grid search. In supervised models, sample weighting and stratified
fold splitting were included. The overall methods for radiogenomic
model training are illustrated in Figure 3a. The autoencoder achieved
a mean validation of 0.45R2 in cross-validation and 0.61R2 in
retraining (Supplementary Fig. S2). Radiogenomic models were then
constructed to have the same encoding architecture, activation func-
tion, and optimizer as the best performing autoencoder. All neural
networks were trained on NVIDIA Tesla K80 and V100 GPUs
through Amazon Web Services using Python 3.6, Keras 2.2.4
(Chollet et al., 2015), and TensorFlow 1.12.0 on a Ubuntu 16.04
machine. Other classifiers (Supplementary Table S3) were imple-
mented via XgBoost 0.80 (Chen and Guestrin, 2016) and sklearn
0.20.0 (Pedregosa et al., 2011).

2.4 Bootstrapping
The best performing models of each model type (Supplementary
Tables S3) were evaluated on bootstrapped datasets to measure
classification performance variability within and between model
types. For each bootstrap, a radiogenomic dataset was split for
10-fold cross-validation using a different seed. In each split, training,
and validation samples were separately resampled with replacement
to obtain bootstrapped sets. Sets were resampled if not all classes
were observed. Each model was trained on the same bootstrapped
dataset using the aforementioned model training methods. This
process was repeated 100 times for each MRI trait.

2.5 Molecular subtype modeling
To validate the use of neural networks to model transcriptomes, a
model was trained on a classification task where the relationship be-
tween model input and output were known. Previously, an 840 gene
expression signature was used to define four molecular subtypes in
GBM: classical, mesenchymal, neural, and proneural (Verhaak et al.,
2010). A neural network was trained to predict the four subtypes
from entire gene expression profiles consisting of 12 042 genes. Given
there was no ground truth for radiogenomic relationships, the afore-
mentioned model was used to test if (i) neural networks can
effectively prioritize among a high-dimensional input to uncover
known associations with the predicted label and (ii) if so, how can the
trained model be interpreted via the proposed methods to validate if
the model learned the correct associations. Of the 528 patients, 171
had subtype labels (Supplementary Tables S1 and S2). The four sub-
types were modeled as a multi-class classification task via one-hot-
encoding. Gene expressions pre-processing and model training
were performed in the same manner as the radiogenomic models,
mainly, 10-fold cross-validation and hyperparameter grid search
(Supplementary Table S4). Gene masking and gene saliency were
applied on the fully trained subtype neural network to demonstrate

the usability of our model interpretation methods to identify which
genes in the transcriptome were useful for classification.

2.6 Gene masking
Masking is a type of sensitivity analysis where the value(s) of one or
more components of the input is retained while all others are
replaced with zeros. The goal is to determine the impact that the
kept input components have on the end classification; this procedure
was previously described in Zeiler and Fergus (2014). Here, we de-
fine ‘gene masking’ to extract radiogenomic associations from a
trained neural network (Fig. 2c). For each individual, the gene ex-
pression values of a particular gene set were kept while all other
expressions were replaced with zeros. The masked profiles were
pushed through a fully trained neural network and the output, a
class probability based on using genes from the gene set, was
recorded. After repeating this process for each patient, classification
performance was calculated. Each gene set was evaluated by AUC
and average precision (AP) to measure the strength of a radioge-
nomic association. As such, gene masking reported a set of genes’
abilities to predict an MRI trait in the entire cohort.

In single gene masking, each gene was masked one at a time
and additionally used in gene set enrichment analysis (GSEA;
Subramanian et al., 2005; ranked by AP or AUC). In gene set mask-
ing, predefined gene sets (<500 genes, see Section 2.8) from the
Molecular Signatures Database (MSigDB, v6.2; Liberzon et al.,
2011), molecular subtypes (Verhaak et al., 2010) and brain cell types
and phenotypes (Darmanis et al., 2015; Patel et al., 2014; Zhang
et al., 2016) taken from (Puchalski et al., 2018) were masked.
MSigDB was also queried for gene sets that include the 22 genes char-
acterized as potential contributors of GBM tumorigenesis (McLendon
et al., 2008; Parsons et al., 2008; Supplementary Material). The top
performing genes or gene sets for each MRI trait were visualized
by clustering classification scores via pheatmap in R.

2.7 Gene saliency
Class saliency is a visualization technique used to compute the
gradient of an output class prediction with respect to an input via
backpropagation (Simonyan et al., 2014). Thus, class saliency iden-
tifies the relevant input components whose values would affect the
positive class probability in a trained neural network. Here, we de-
fine ‘gene saliency’ as the genes whose change in expression would
increase the model’s belief of the positive class label (Fig. 2d). In
each model, salient genes are derived for each patient, ranked and
used in GSEA to determine if a gene set is relevant to predicting his/
her MRI trait. Subsequently, positive enrichment between a single
patient’s salient genes and a gene set is defined as a ‘radiogenomic
trait’. For example, the edema model was probed to identify a single
patient’s salient genes. The most salient genes were the genes that
increased the probability of edema being � 1=3. If GSEA found the
salient genes were enriched by a gene set, then the prediction of
the patient’s edema was related to the gene set (i.e. the patient has
the radiogenomic trait between the gene set and � 1=3 edema). If a
patient is not enriched, then the patient does not have the radioge-
nomic trait. Saliency was implemented using keras-vis 0.4.1
(Kotikalapudi et al., 2017). The input range was determined by the
gene expression range in the dataset and the parameter backprop_
modifier was set to ’guided.’ All other parameters were set
to default. In the subtype neural network, gene saliency was
repeated for each class as one-versus-others. Figure 3b depicts gene
masking and gene saliency.

2.8 Gene set enrichment analysis
Pre-ranked GSEA was performed using fgsea (Sergushichev, 2016)
using the recommended maximum size of 500 genes in a gene set, a
minimum size of 15, and 10 000 permutations. Genes were ranked
via single gene masking classification scores or gene saliency values
for a patient. Enrichments were significant at an adjusted P-value
of <0.05. Correlation between a gene expression and an imaging
trait was used for comparison. Clustering of enrichment scores was
performed as aforementioned.

(a)

(b)

Fig. 3. An overview of the study’s approaches to radiogenomic neural network (a)

training and (b) interpretation, gene masking and gene saliency, to extract radioge-

nomic associations and radiogenomic traits
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2.9 Survival
Clinical data from TCGA were used to define patient outcomes.
Overall survival (OS) and time-to-death events were in the patient
file. Progression-free survival (PFS) outcomes were defined by the
follow-up file, where all event types with days-to-event data were
considered, but only the earliest event was used (Supplementary
Material). Variables considered for survival analyses were all binary
and consisted of each patient’s MRI traits (Supplementary Table
S2); radiogenomic traits (result of gene saliency analysis); and cova-
riates including gender, race (binned as white and non-white) and
age at initial diagnosis (binned via the median value in all 528
patients).

Survival analyses were done in R using survival and surv-
miner. Kaplan–Meier estimates were used to compare imaging
traits versus radiogenomic traits and obtained via survfit,
ggsurvplot and survdiff, where the log-rank test was used to
test for significant differences between groups. Cox proportional
hazards models were used to estimate univariate and adjusted haz-
ard ratios (HRs) via coxph. Radiogenomic traits enriched in at least
five patients were kept. Cox models used backward feature selection
via step and were forced to keep all patient covariates, while free
to choose any imaging or radiogenomic trait. For any comparison,
patients with missing information were removed.

3 Results

3.1 Neural networks achieve best performance in

classifying MRI traits
Using the transcriptome as input, neural networks were better at
estimating MRI traits than all other classifiers (Fig. 4a), including
gradient-boosted trees, random forest, support vector machines, and
logistic regression. In predicting proportions of non-contrast
enhancing tumor (nCET), necrosis and edema, the first hidden layer
used frozen pre-trained weights and only the last two hidden layers
were used for fine-tuning (Table 1). Bootstrapping showed neural
networks had higher performances, where 95% CIs in Figure 4b
indicate neural networks outperformed other models by more than
0.10 AUC (Supplementary Table S5 and Figs S3–S5).

3.2 Neural networks correctly learned known

associations between gene expressions and molecular

subtypes
To verify the relationships learned in the neural network’s layers, a
molecular subtype model was trained. The model achieved a micro-
averaged AUC of 0.994 in 171 patients (Supplementary Table S6).
Gene masking with subtypes gene sets showed the neural network

was able to predict subtype classes with high certainty (Fig. 5). For
example, when the model was given the expressions of the 216 mes-
enchymal genes, subtype probabilities approached 1 or 0 and often

corresponded to the correct subtype (0.90 AUC and 0.89 AP).
Performance improved when the model was given all 840 subtype

genes (0.99 AUC and 0.98 AP). Conversely, given the expressions of
200 random, non-subtype genes, the model was less certain (i.e.,
probabilities away from 1 or 0), and the fully trained performance

of 1.0 AP dropped to 0.68 AP (Supplementary Table S7).
The majority of the top 20 predictive genes in each subtype class

belonged to the original subtype class definition (Fig. 6a). For ex-
ample, 18 of the top 20 genes for predicting the proneural subtype

were a part of the proneural gene set and each had least 0.80 AP
and a 0.80 AUC. Of the top 500 genes ranked by AP, 270 genes
(54%) were subtype genes; this represented 32% of all subtype genes

(Fig. 6b). Unsurprisingly, subtype genes were predictive of more than
one subtype. GSEA also showed the most predictive single genes for
each subtype prediction were significantly (adjusted P-value < 0.05)

and positively enriched by the corresponding subtype gene set
(Fig. 6c). This observation was corroborated in GSEA using ranked

genes based on correlation (Fig. 6d) instead of gene masking.

3.3 Genes driving the prediction of MRI traits
3.3.1 Enhancing tumor

Tumor enhancement was measured on T1W with gadolinium con-
trast (T1WþGd) images. Low-grade or well-differentiated brain

tumors tend to generate blood vessels with intact blood–brain bar-
riers (BBB) and do not enhance. Poorly differentiated or more

(a)

(b)

Fig. 4. Radiogenomic models performances. (a) Observed 10-fold cross-validation

performances. (b) Performance differences between a neural network and another

model in 100 bootstrapped datasets. nn, neural network; gbt, gradient-boosted

trees; rf, random forest; svm, support vector machines; logit, logistic regression

Table 1. Neural network hyperparameters

CV means Retrain

Label R2 epoch R2 epoch Hidden layers optimizer activation dropout

Transcriptome 0.45 467 0.61 486 4000/2000/1000 Adadelta tanh 0.0

AE

Label AUC epoch AUC epoch Hidden layers optimizer activation dropout Layer Frozen

Enhancing 0.72 38 1.00 14 4000/2000/1000 Adadelta tanh 0.6 3 0

nCET 0.83 38 1.00 11 4000/2000/1000 Adadelta tanh 0.0 1 1

Necrosis 0.75 44 1.00 11 4000/2000/1000 Adadelta tanh 0.0 1 1

Edema 0.78 109 1.00 16 4000/2000/1000 Adadelta tanh 0.0 1 1

Infiltrative 0.78 70 1.00 12 4000/2000/1000 Adadelta tanh 0.0 2 1

Focal 0.85 44 1.00 12 4000/2000/1000 Adadelta tanh 0.6 3 0

Subtype 0.99 14 0.998 66 3000/1500/750 Nadam sigmoid 0.4 — —

Note: Layer refers to the depth of hidden layers in the radiogenomic model that used pretrained weights from the autoencoder (AE; e.g. two AE layers indicate

the first two hidden layers used pretrained weights). Retrain refers to models trained on the full dataset.
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aggressive tumors, like GBM, generate leaky blood vessels without
an intact BBB and enhance on T1WþGd images.

Enhancement was found to be associated with growth, immune
responses, hormones, the extracellular matrix (ECM), vasculature
and kinase activity in gene masking (Table 2). The ECM association
included gene expressions of ECM-related proteins (Naba et al.,
2012; Supplementary Fig. S18). Of the MSigDB hallmark gene sets
(Liberzon et al., 2015), apical junction (cellular components, such as
adherens and tight junctions), IL2/STAT5 signaling (immune re-
sponse activation), complement system, early and late responses to
estrogen (associated with ESR1 expression), and heme metabolism
(erythroid differentiation, STAT5 activation) were most predictive
of enhancement (Fig. 7a). Gene Ontology (GO) gene sets related
to GBM abnormalities support the association of growth, immune
system and hormones with enhancement.

In single gene masking, enhancement was best predicted by
SNTB1 (0.67 AUC and 0.58 AP) and B4GALT6 (0.64 AUC and
0.60 AP; Supplementary Fig. S10). SNTB1, a cytoskeletal protein,
was down-regulated in a GBM cells study (Mongiardi et al., 2016)
and a potential binder to PTPRZ, a protein contributing to glioma
cell growth (Bourgonje et al., 2014).

In previous GBM radiogenomic studies, enhancement was asso-
ciated with hypoxia, ECM, angiogenesis in 22 patients (Diehn et al.,
2008); Biocarta pathways and genes, C1orf172, CAMSAP2,
KCNK3 and LTBP1 in 23 patients (Jamshidi et al., 2014); and
EGFR copy number amplification in 75 patients (Gutman et al.,
2013). Gene sets involving the ECM, EGFR, C1orf172, KCNK3
and LTBP1 were confirmed to have performances greater than 0.70
in both AUC and AP (Supplementary Fig. S12a) in gene masking.

3.3.2 Edema

Tumor edema was identified as abnormal hyperintensity on fluid-
attenuated inversion recovery (FLAIR) or T2-weighted (T2W)
images. Edema often co-occurs with enhancement, implying a
more aggressive tumor and does not typically occur in low-grade
brain tumors. Edema also results from leaky capillaries and
usually surrounds the tumor, spreading within the white matter.
Edema suggests an inflammatory and/or immune response to a ma-
lignant tumor, which is essentially a foreign body when highly
dedifferentiated.

Edema was associated with epithelial mesenchymal transition
(EMT, metastasis and invasion), cell differentiation and growth
(Table 2). p53 pathway (cell cycle, death), myogenesis, apical junc-
tion, heme metabolism and glycolysis (cell metabolism) were the top
hallmark gene sets (Fig. 7a). GO terms relating to cell differenti-
ation, death and adhesion with � 0.80 AP (Supplementary Fig.
S11b). Similar to the enhancement model, vasculature, immune sys-
tem and EGFR-related processes (albeit through different GO
terms) were a part of the most predictive gene sets.

Growth and metastasis were also found to be predictive of
edema in single gene masking. RAI2, ANXA2 and POSTN, all
related to cell growth, were the top three most predictive genes with
0.68–0.70 AUC and 0.60–0.64 AP. The top three ranked by AP
were MTSS1, LAMA5 and KLHDC3, with 0.65–0.66 AP and 0.63–
0.67 AUC (Supplementary Fig. S10). Both MTSSI and LAMA5 were
associated with metastasis (Agarwala et al., 2018).

GSEA showed significant enrichment in EMT, angiogenesis, an-
drogen response (hormone), hedgehog signaling (including MTSSI)
and xenobiotic metabolism (drug metabolism; Fig. 7b). The appear-
ance of drug metabolism could be due to the use of symptomatic
relief drugs prior to surgery, such as corticosteroids for patients with
neurologic symptoms caused by edema (Omuro and DeAngelis,
2013; Pitter et al., 2016).

Previously, POSTN was associated with edema in 78 GBM
patients; the authors suggested POSTN was regulated by miR-219
and contributed to cell migration or invasion (Zinn et al., 2011).

(a)

(b)

Fig. 5. Gene masking of the subtype neural network: (a) estimated subtype probabil-

ities, where each row was a patient and grouped by their true subtype and (b) classi-

fication performance measured by AP in gene set masking, where each row was a

gene set and each column was the subtype prediction (see also Supplementary Figs

S6–S8). The random gene set excluded ones in a subtype set. For visualization pur-

poses, rows were sorted by the mesenchymal probabilities. CL, classical; MES, mes-

enchymal; NL, neural; PN, proneural; all, all 840 subtype genes; coverage, percent

of gene set that exist in gene expression profiles

Fig. 6. Single gene masking in the subtype model: (a) the top 20 genes used to predict

each subtype; (b) the percent of subtype genes covered in the top N genes; and (c)

GSEA with genes ranked by AP, where positive enrichment indicated the subtype

gene set was correlated with high AP and vice versa. (d) An alternative GSEA was

performed by ranking genes based on their correlation with a subtype, where posi-

tive enrichment indicated the subtype gene set was correlated with a subtype and

vice versa. na, not a part of the subtype genes; unnamed, a part of the subtype genes,

but not tied to a single subtype
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Table 2. Summary of transcriptomic drivers of MRI traits in GBM patients

Transcriptomic drivers

Theme Gene set (collection,a queryb) AUC AP See also

Enhancing

Growth/death Growth (G, PTEN) 0.86 0.84

Sensory organ development (G, EGFR, KCNK3) 0.85 0.84 Gutman et al. (2013);

Jamshidi et al. (2014)

Immune system IL2/STAT5 signaling (H) 0.77 0.76

Complement system (H) 0.79 0.75

Activation of immune response (G, PTEN) 0.90 0.89

Leukocyte and lymphocyte activation (G, PIK3R1) 0.85c 0.84c

Immune effector process (G, PIK3CA) 0.87 0.84

Hormones Early and late responses to estrogen (H) 0.79c 0.73c

Response to steroid hormone (G, RBI) 0.88 0.88

Reg. of hormone levels (G, PARK2) 0.87 0.84

ECM Related to ECM proteins (C, ECM) 0.81c 0.75c Diehn et al. (2008)

Apical junction (H) 0.80 0.75

Vasculature Heme metabolism (H) 0.77 0.65

Vasculature and heart development (G, LTBP1) 0.80c 0.79c Gutman et al. (2013)

Kinase activity Multiple (G, EGFR, LTBP1, KCNK3) 0.87c 0.85c Gutman et al. (2013);

Jamshidi et al. (2014)

Edema

EMT EMT (H) 0.80 0.80

Positive reg. of locomotion (G, EGFR, POSTN) 0.80 0.81 Zinn et al. (2011)

Taxis (G, CXCL12, KIF5C) 0.80 0.80 Zinn et al. (2011)

Apical junction (H) 0.77 0.74

Related to cell adhesion (G, CDKN2A, CTNNA2) 0.79c 0.80c Zinn et al. (2011)

Growth/death p53 pathway (H) 0.77 0.77

Autophagy (G, CDKN2A) 0.75 0.76

Myogenesis (H) 0.75 0.76

Urogenital system development (G, PTEN) 0.81 0.81

Muscle structure development (G, COL6A3) 0.80 0.80 Zinn et al. (2011)

Response to growth factor (G, EGFR, POSTN) 0.76 0.81 Zinn et al. (2011)

Vasculature Heme metabolism (H) 0.77 0.73

Differentiation Central nervous sys. neuron differentiation (G, PTEN) 0.79 0.81

Cell differentiation (G, MET) 0.79 0.81

Stem cell differentiation (G, CDK6) 0.80 0.80

Immune system Reg. of cell activation (G, CDKN2A) 0.83 0.82

Neg. reg. of immune system (G, CDKN2A, CXCL12) 0.82 0.81 Zinn et al. (2011)

Immune effector process (G, PIK3CA) 0.80 0.81

Other Glycolysis (H) 0.76 0.70

nCET

Cell cycle Mitotic spindle (H) 0.78 0.70

DNA repair (H) 0.77 0.66

G2M checkpoint (H) 0.72 0.63

Reg. of mitotic cell cycle (G, TP53) 0.78 0.71

Growth/death p53 pathway (H) 0.76 0.65

Urogenital and vasculature development (G, PTEN) 0.81c 0.74c

Neg. reg. of cell cycle (G, TP53) 0.80 0.74

Reproductive system development (G, EGFR) 0.80 0.72

UV UV response down (H) 0.78 0.59

Response to radiation (G, TP53) 0.83 0.73

Other Glycerphospholip metabolism process (G, EGFR) 0.75 0.74

Small molecule catabolic process (G, PTEN) 0.78 0.73

Necrosis

Vasculature Heme metabolism (H) 0.72 0.61

Growth/death Apoptosis (H) 0.71 0.58

Apoptotic signaling pathway (G, IL4, TP53) 0.72 0.63 Gevaert et al. (2014)

Related to TP53 0.76c 0.66c

Gland development (G, EGFR) 0.76 0.65

Immune system IL6/JAK/STAT3 signaling (H) 0.67 0.56

Leukocyte cell adhesion (G, IL4, ITGA5) 0.76 0.59 Gevaert et al. (2014);

Jamshidi et al. (2014)

Reg. of leukocyte proliferation (G, CDKN2A) 0.77 0.61 Gutman et al. (2013)

(continued)
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GO gene sets related to the study’s top five upregulated genes and
microRNAs were found to be predictive of edema (Supplementary
Fig. S13). Table 2 shows an overlap of gene set patterns between the
study’s findings and gene masking of the edema model. In particular,
gene sets associated POSTN, cell taxis and cell adhesion added to
the association between edema and EMT.

3.3.3 Non-contrast enhancing tumor

nCET was best identified with T1W with/without contrast, FLAIR
and T2W images. nCET is typically lower-grade tumor (better cellular
differentiation, more closely resembling normal brain tissue), generat-
ing vessels with an intact BBB and absent of contrast enhancement.
Although the abnormality on images is a mass-like neoplastic tissue, it
is not rapidly dividing or aggressively dedifferentiating.

Cell cycle, growth and radiation response were themes among
the most predictive gene sets for nCET. Mitotic spindle, ultraviolet
(UV) response down (genes down-regulated in response to UV radi-
ation), DNA repair and p53 pathway were predictive of nCET
(Fig. 7a). Of the gene sets related to GBM genomic alterations, the

nCET model had a mix of ones found in the enhancing and edema
model (Supplementary Fig. S11c), and supported transcription pat-
terns found in hallmark gene sets in Table 2.

SGPL1 (0.73 AUC and 0.56 AP) and DDR1 (0.66 AUC and
0.61 AP) were the top performing genes in single gene masking of
the nCET model (Supplementary Fig. S10), where hypoxia, TNFA
signaling via NFKB and oxidative phosphorylation were significant-
ly enriched (Fig. 7b). The latter two gene sets were also identified in
gene set masking (Supplementary Fig. S9).

3.3.4 Necrosis

Tumor necrosis was evaluated as the area of fluid signal intensity on
T1WþGd images. As tumors proliferate, they create new blood sup-
ply (angiogenesis) and/or expand to recruit blood from adjacent tis-
sue. Subsequently, necrosis occurs, typically within the central
portions of an aggressive tumor as the outer rim of enhancing sur-
viving cells can be observed on MR images.

Vasculature, apoptosis, immune system and homeostasis were
associated with necrosis (Table 2). Predictive GO terms for necrosis

Table 2. (continued)

Transcriptomic drivers

Theme Gene set (collection,a queryb) AUC AP See also

Others Xenobiotic metabolism (H) 0.76 0.65

Related to PTEN 0.76c 0.65c

Reg. of homeostatic process (G, NF1) 0.78 0.65

Glycolysis (H) 0.76 0.56

Focal

Growth/death Reg. of anatomical structure size (G, PTEN) 0.96 0.88

Response to growth factor (G, EGFR) 0.92 0.83

Transport Secretion by cell (G, NF1) 0.95 0.88

Neg. reg. of transport (G, PTEN) 0.96 0.87

Reg. of cytoplasmic transport (G, TP53) 0.95 0.85

Monovalent inorganic cation transport (G, PARK2) 0.95 0.81

Response to Steroid hormone, lipid and organic cyclic compound (G, RB1) 0.95c 0.84c

Vasculature Vasculature development (G, PTEN) 0.93 0.84

Muscle and circulatory system process (G, PIK3CA) 0.94c 0.83c

Oxygen Hypoxia (H) 0.85 0.61

Others Genes down-regulated by KRAS (H) 0.88 0.64

Protein heterodimerization activity (G, TP53) 0.97 0.85

Neg. reg. of intracellular signaling transduction (G, PTEN) 0.96 0.84

Synaptic signaling (G, PTEN) 0.92 0.82

Infiltrative

Oxygen Reactive oxygen species pathway (H) 0.71 0.50

Response to oxygen levels (G, TP53) 0.67 0.60

Transport Neg. reg. of transport (G, PTEN, NFKBIA) 0.74 0.64 Colen et al. (2014)

Healing Wound healing (G, NF1) 0.80 0.64

Hemostasis (G, PIK3CA) 0.78 0.59

Growth/death Developmental growth (G, PTEN) 0.74 0.62

Spinal cord development (G, NF1) 0.66 0.60

Response to Response to drug (G, MDM2, MYC) 0.75 0.60

Response to inorganic substance (G, PTEN) 0.73 0.61 Colen et al. (2014)

Others DNA repair (H) 0.70 0.58

Ligase activity (G, MDM2) 0.75 0.64

Ubiquitin-like protein transferase activity (G, MDM2) 0.70 0.59

Ubiquitin-like protein ligase binding (G, NFKBIA) 0.67 0.57 Colen et al. (2014)

Related to protein and transcription factor complex (G, TP53) 0.75c 0.62c

WNT signaling pathway (G, PTEN, MYC) 0.73 0.62 Colen et al. (2014)

Note: The top five gene sets ranked by AUC or AP and compared against gene sets related to prior GBM work in gene abnormalities (McLendon et al., 2008;

Parsons et al., 2008) or radiogenomics.
aMSigDB: H, hallmark; G, Gene Ontology; C, canonical.
bGene sets queried in MSigDB using keyword(s) reported in Colen et al. (2014), Diehn et al. (2008), Gevaert et al. (2014), Gutman et al. (2013), Jamshidi et al.

(2014) and Zinn et al. (2011).
cAveraged.

neg., negative; reg., regulation; sys., system.
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included several TP53- and PTEN-related processes. Gene masking
found some gene sets related to IL4, WWTR1, RUNX3, ITGA5
and CDKN2A [found in previous radiogenomic studies (Gevaert
et al., 2014; Gutman et al., 2013; Jamshidi et al., 2014)
Supplementary Fig. S14] support the association between necrosis
and apoptosis and the immune system. Earlier, drug metabolism
was predictive of edema, but was also predictive of necrosis. Besides
corticosteroids, antiepileptics can be prescribed patients who experi-
ence seizures from tumors (Omuro and DeAngelis, 2013).

In single gene masking, CACNB2 (0.67 AUC and 0.51 AP) and
PACSIN3 (0.64 AUC and 0.51 AP) were the most predictive for ne-
crosis (Supplementary Fig. S10) and the MYC targets hallmark was
significantly enriched (Fig. 7b).

3.3.5 Focal versus non-focal

Focal versus non-focal traits were determined via T1WþGd and
FLAIR or T2W images. Focal tumors appear in one region. Non-
focal tumors included those described as multifocal, multicentric or
with gliomatosis cerebri. A multifocal tumor is one with separate
enhancing regions that appear connected on FLAIR/T2W images
with contiguous hyperintensity spreading via white matter tracts.
A multicentric GBM has multiple enhancing or non-enhancing
tumors growing synchronously without contiguity on FLAIR/T2W.
Gliomatosis cerebri is a rare, diffusely infiltrating subtype and in-
volve at least three cerebral lobes.

Focal traits were associated with growth, transport, vasculature
and hypoxia (Table 2). Several of these involved PTEN and interest-
ingly, RB1 may be related to the use of corticosteroids. Secretion by
cell includes genes potentially overlapped by others, such as NF1,
EGF and VEGF.

In general, focal traits were better predicted by GO gene sets
related to GBM genes (Supplementary Fig. S11e) than hallmark
gene sets (Fig. 7) or single genes (Supplementary Fig. S10). These
highly predictive GO gene sets (�0.90 AUC and �0.80 AP) indi-
cated broad tumor characteristics, e.g. proliferation (growth,
response to growth factors, secretion of growth factors) resulting in
the need for angiogenesis (vasculature development), were used by
the focal model to determine focal versus non-focal tumors.

3.3.6 Expansive versus infiltrative

Expansive versus infiltrative was measured as the ratio of T1/FLAIR
abnormality. Expansive tumors have similar distribution on T1W as

on FLAIR or T2W; the closer the two, the better defined the tumor
margins and the better for surgical resection. Infiltrative tumors
have FLAIR/T2W abnormality that is large compared with T1W
abnormality, where the tumor is spreading through white matter
tracts to cause large edema relative to the core tumor mass.
Infiltrative traits indicate ill-defined tumor margins, less successful
surgical debulking and worse prognosis.

Infiltrative traits were best predicted by gene sets related to oxy-
gen, transport, healing and growth (Table 2). Gene masking showed
that GO gene sets were more predictive than hallmark gene sets
(Fig. 7). Of the top GO gene sets, would healing and hemostasis
were the most predictive and several included TP53, MDM2
and PTEN. Notably, MDM2 transcription is regulated by TP53.
Previous radiogenomic studies related to expansiveness or infiltra-
tive traits found associations with MYC, NFKBIA and immune cell
gene modules (Colen et al., 2014). The infiltrative model was
masked with related gene sets and was able to predict infiltrative
tumors with 0.50–0.70 AP (Supplementary Fig. S15). In single gene
masking, ZBTB48 (0.68 AUC and 0.53 AP) and PRTN3 (0.67 AUC
and 0.57 AP) as the best single gene predictors (Supplementary Figs
S16–S24).

For more gene masking (see Supplementary Figs S16–S24).

3.4 Radiogenomic traits: patient-specific associations
Gene masking was used to identify cohort-level radiogenomic asso-
ciations as genes were ranked by their overall classification perform-
ance among all tumors. In contrast, gene saliency was measured for
each patient and identified patient-level radiogenomic associations,
termed ‘radiogenomic traits’. For salient genes in the subtype model
(see Supplementary Fig. S25).

Classical subtype genes were salient in predicting larger propor-
tions of necrosis, where 77 patients were enriched with classical
genes in the necrosis model (Fig. 8). Similarly, neural and proneural
gene sets were associated with greater edema and nCET propor-
tions, respectively.

The nCET model showed more than 40 patients had salient
genes enriched by oligodendrocytes, mature astrocytes, and hypoxia
gene sets. Larger edema proportions were associated with neurons
and replicating fetal neurons genes. The anti-cell cycle genes [nega-
tively correlated with the cell cycles genes, some of which were a
part of the hypoxia gene set in Patel et al. (2014)] were associated
with prediction of the non-focal class (35 patients enriched).
Patients were not significantly enriched with cell type or phenotype
in the enhancing model, possibly reflecting more tumor heterogen-
eity in patients with more enhancing and aggressive tumor.

The hypoxia and nCET association (66 enriched patients) were
consistent with the aforementioned anti-cell and hypoxia findings
and with gene masking analysis, where vasculature development
was predictive of nCET at the cohort-level. The association between
hypoxia and greater proportions of nCET may be linked to lower-
grade cells in the beginning stages of aggressive tumor growth and
therefore responding to the beginning stages of hypoxic conditions
and driving angiogenesis. Xenobiotic metabolism was enriched in
15 patients for predicting larger nCET, suggesting larger tumor sizes
may be related to an increased dosage of drugs administered prior to
surgery (Pitter et al., 2016).

Interestingly, the edema model showed only two hallmarks
enriched by more than 10 patients. Although gene masking showed
the edema model had high overall performance with the EMT gene
set, other genes that are not associated with a predefined gene set
may have been more influential in predicting each individual
patient’s edema proportions. In fact, the EMT hallmark was more
associated with the radiogenomic model’s belief of an infiltrative
tumor in 27 patients. This subset of patients supports the hypothesis
that tumor cells with alterations in EMT-related genes are driving
the observation of higher edema proportions than tumor cell pro-
portions. Glycolysis and hypoxia hallmarks were also moderately
(<25 patients) associated with infiltrative tumors. TNFA signaling
via NFKB was associated with larger proportions of necrosis in 34
patients.

(a)

(b)

Fig. 7. Gene masking of the radiogenomic models with the MSigDB hallmark gene

sets. (a) Model performance in gene set masking. Shown are the top five gene sets

ranked by AP in each MRI trait (see also Supplementary Fig. S9). (b) Enrichment

among genes ranked by AP in single gene masking. Positive enrichment indicated

gene sets were predictive of an MRI trait and negative enrichment indicated the op-

posite. Shown are hallmarks with at least one significant enrichment
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Chromosomal aberrations have been reported in GBM (Ohgaki
and Kleihues, 2007; Verhaak et al., 2010). There were 86 and 82
patients who were enriched by the chr19p13 gene set in predicting
their necrosis and infiltrative traits, respectively. Genes in chr19q13,
chr1p35 and chr6q27 were also salient to infiltrative tumors.
chr3p21 and chr3p22 gene sets were also salient for greater nCET
proportions.

3.4.1 Radiogenomic traits with survival implications

Of the 175 patients with radiogenomic data, 127 had all six MRI
traits labeled and outcomes data. Given that only a subset of these
individuals had clinical, imaging, and transcriptomic data to per-
form a survival analysis, we tested whether this subset of patients
had any differences in outcomes compared with the transcriptome
cohort (n¼528). There were no OS or PFS differences between the
transcriptome cohort, the subset of patients with MRI traits and the
subset of patients with all six MRI traits (Supplementary Fig. S27).
In building the multivariable Cox models, 3 clinical traits, 6 MRI
traits, and 54 radiogenomic traits were considered (Supplementary
Fig. S29).

Figure 9 shows patients had significant differences when dicho-
tomized by their radiogenomic traits. Patients that had neural genes
as among the most salient genes for predicting larger nCET had bet-
ter PFS compared with those who did not. Likewise, patients had
significantly worse OS when chr3p21 genes were important in
predicting nCET proportion was � 1=3, and when chr19p13 or
chr1p35 genes were important in predicting infiltration. In contrast,
dichotomizing patients based solely on individual MRI traits had no
OS or PFS differences, except in the counterintuitive case of expan-
sive versus infiltrative (Supplementary Fig. S28). Infiltrative tumors
had a univariate HR of 0.92 when estimating PFS (Table 3).
However, after adjusting for patient covariates and radiogenomic
traits, infiltrative tumors had an adjusted HR of 1.61 and correctly
follow the intuition that infiltrative tumors would have a higher
probability of progression than expansive tumors.

Males and non-white races had better OS and PFS, while patients
diagnosed below the median age had better OS, but worse PFS. The
final Cox model consisted of six significant traits, five radiogenomic
traits and race when estimating OS (Table 3). The final PFS model
had five significant radiogenomic traits. In comparison, a Cox

model with clinical and imaging traits had no significant factors in
estimating OS or PFS. The survival analyses suggest that radioge-
nomic traits extracted from neural network models have prognostic
value.

4 Discussion

We demonstrate how deep neural networks can be used to discover
radiogenomic associations. First, we predict imaging traits using
gene expression profiles, showing that our neural network-based
approaches outperform other classifiers. Neural networks had better
performances due to a combination of factors: the use of non-linear
activation functions (versus linear relationships in logistic regres-
sion), multiple layers of transformation (versus a single, shallow
transformations of support vector machines), and ability to use all
gene expressions simultaneously (versus using a subset of genes at a
time in random forests and gradient-boosted trees). Although neural
networks have a large number of parameters to learn, we leverage
transfer learning to train radiogenomic neural networks using a
transcriptomic autoencoder modeled on a much larger cohort to ad-
dress the impedance of relatively small radiogenomic datasets.
Second, we present methods based on input masking and class

(a)

(b)

(c)

(d)

Fig. 8. Radiogenomic traits. In gene saliency, each patient’s genes were considered

enriched for a gene set at an adjusted P-value of <0.05. (a) Subtype (Verhaak et al.,

2010), (b) cell types or phenotypes (Darmanis et al., 2015; Patel et al., 2014; Zhang

et al., 2016) and MSigDB’s (c) hallmark and (d) chromosome gene sets with at least

ten enriched patients are shown. For more gene saliency results (see Supplementary

Fig. S26)
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Fig. 9. OS and PFS dichotomized by (left) imaging traits and (right) radiogenomic

traits. Patients split in (b) had a median PFS of 0.96 versus 0.52 years (161-day dif-

ference). Similarly, the median OS was (d) 1.19 versus 0.91 years (101-day differ-

ence), (f) 1.18 versus 1.14 years (15-day difference) and (g) 1.19 versus 0.85 years

(125-day difference). No differences were found in (a, c, e)
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saliency to facilitate interpretation of radiogenomic relationships, pro-
viding a way to understand the results of an otherwise ‘black box’
method, which is the main criticism against neural networks. Third,
using our model interpretation methods, we identify pertinent gene
expressions that may act as transcriptomic drivers for each imaging
trait. We put forth a set of potential imaging surrogates to provide a
clearer biological basis of commonly assessed imaging phenotypes in
GBM and relate them to trends in patients’ OS and PFS.

Gene masking identifies cohort-level radiogenomic associations,
where association strength was measured by the model’s classifica-
tion when only a gene subset was used. Radiogenomic associations
have common themes related to major GBM candidate driver genes
and terms, such as cell growth and vasculature. Each MRI trait also
show specificity toward components of these general themes, such
as different functionalities of EGFR or cell death by autophagy in
the edema model compared with apoptosis in the necrosis model.
We identify unique associations between imaging traits and different
themes: edema with cell invasion and differentiation; enhancement
with immune system processes and hormones; nCET with cell cycle
and UV response; necrosis with apoptosis; and focal with cell trans-
port and response to some compounds.

Prior radiogenomic studies have mainly reported cohort-level
associations. In reality, multiple gene expression profiles, when
influenced by different environmental factors, may lead to the same
observed imaging trait. Toward this end, gene saliency is used to
identify patient-level radiogenomic traits. In gene saliency, each pa-
tient has his/her own list of relevant genes for each imaging trait; it
is then determined if the patient’s salient genes are significantly asso-
ciated with a gene set. We describe subsets of patients with common
radiogenomic relationships that are not apparent in gene masking,

such as the association between infiltrative traits and EMT genes or
larger nCET proportions and drug metabolism. Some of these radio-
genomic traits are significant factors in predicting patient survival.

Furthermore, we validate our modeling approach by training a
neural network to predict molecular subtypes. We report an experi-
ment that evaluates the model’s ability to learn meaningful relation-
ships. Not only does the subtype model achieve near-perfect
classification, the model is able to select genes relevant to each subtype
among the input of 12 042 genes. In the radiogenomic models, we val-
idate our radiogenomic associations with prior GBM studies in radio-
genomics and genomics and found corresponding relationships. We
also identify new findings that have not been widely reported in radio-
genomics due to the ability of gene saliency to provide patient-specific
radiogenomic traits and the inclusion of the entire gene profile in our
models. These results support the neural network’s abilities to identify
associations with existing domain knowledge and to suggest potential
starting points for further investigation.

We recognize the limits of radiogenomic analysis, particularly in
terms of small sample size, limited tissue sampling of a heteroge-
neous tumor and limited follow-up information. Sample size is an
inherent challenge in radiogenomics. TCGA tends to have the most
radiogenomic data but lacks detailed clinical data. Although larger
cohorts do exist, tumors are across multiple grades (Aerts et al.,
2014) and do not use molecular profiling (Chang et al., 2018).
These limitations may be addressed as the cost of high-throughput
platforms decrease and multiple tumor regions are sampled
(Puchalski et al., 2018). With 528 gene expression profiles and a
radiogenomic subset of 175, we show that neural networks can
model transcriptomic heterogeneity to reflect phenotypic differences
in imaging. The VASARI feature set is also limited in that it provides

Table 3. Cox regression analysis of traits associated with OS and PFS

Univariate HR (95% CI) Adjusted HR (95% CI) P-value

OS (n ¼ 127, deaths ¼ 107)

Clinical

Gender is male 0.95 (0.64–1.41) 0.80 (0.53–1.20) 0.280

Race is white 1.69 (0.85–3.37) 2.30 (1.09–4.85) 0.029*

Diagnosis age is below median 0.82 (0.56–1.21) 0.79 (0.53–1.20) 0.273

Radiogenomic

Infiltrative þ chr1p35 2.06 (0.98–4.31) 2.06 (0.95–4.43) 0.066

Edema þ endothelial 2.07 (0.76–5.67) 4.36 (1.47–12.9) 0.008*

Necrosis þ GBM core astrocytes 0.46 (0.14–1.49) 0.11 (0.03–0.45) 0.002*

Necrosis þ EMT 1.40 (0.80–2.43) 3.45 (1.75–6.82) <0.001*

nCET þ myogenesis 2.85 (0.89–9.07) 10.7 (2.48–46.5) 0.002*

Necrosis þMYC targets (v2) 0.76 (0.31–1.87) 0.31 (0.10–0.98) 0.045*

Infiltrative þ mTORC1 signaling 1.87 (0.76–4.61) 2.38 (0.93–6.10) 0.071

PFS (n ¼ 127, progressions ¼ 88)

Clinical

Gender is male 1.03 (0.65–1.62) 0.80 (0.48–1.34) 0.394

Race is white 1.28 (0.62–2.65) 1.96 (0.89–4.30) 0.094

Diagnosis age is below median 0.98 (0.64–1.50) 1.25 (0.77–2.04) 0.373

Imaging

Tumor was infiltrative 0.92 (0.58–1.45) 1.61 (0.96–2.71) 0.072

Radiogenomic

Infiltrative þ chr1p35 2.06 (0.98–4.31) 4.20 (1.89–9.33) <0.001*

Infiltrative þ EMT 2.57 (1.23–5.39) 2.24 (1.27–3.96) 0.006*

Necrosis þMYC targets (v2) 0.21 (0.03–1.49) 0.06 (0.01–0.47) 0.008*

Edema þ fetal neurons replicating 1.48 (0.93–2.35) 2.50 (1.44–4.33) 0.001*

Infiltrative þ TGF-b signaling 1.51 (0.80–2.86) 1.91 (0.94–3.92) 0.076

Edema þ chr18p11 2.22 (0.80–6.15) 5.79 (1.87–18.0) 0.002*

Edema þ G2M checkpoint 0.75 (0.36–1.56) 0.46 (0.20–1.05) 0.066

nCET þ chr22q13 0.35 (0.09–1.42) 0.36 (0.08–1.60) 0.180

Infiltrative þ chr6q27 1.33 (0.76–2.33) 1.79 (0.98–3.30) 0.060

Necrosis þ p53 pathway 1.06 (0.39–2.91) 2.44 (0.81–7.39) 0.114

Note: Both OS and PFS adjusted models had P< 0.001 in the likelihood ratio test.

*P< 0.05.
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a gross categorization of imaging features and only one experienced
reader’s annotations of the imaging data is used. A more compre-
hensive analysis that includes quantitative (radiomic) traits may
be warranted. Finally, the radiogenomic associations and traits
are only hypothesized and not experimentally proven, though we
attempt to compare our discovered associations with those that have
been previously reported in literature. To validate the identified
associations, cell and animal studies would allow controlled experi-
ments between genes and imaging phenotypes (Zinn et al., 2018).

5 Conclusion

Using a neural network-based approach to radiogenomic mapping,
we highlight the representational and discriminative capacity of
neural networks to model the high-dimensional, non-linear and cor-
relative nature of gene expressions to predict typical GBM imaging
traits. We demonstrate the use of neural network interpretation
techniques based on input masking and class saliency to understand
what the model has learned and to extract relevant radiogenomic
relationships. The learned radiogenomic associations and traits may
point to potential transcriptomic drivers of imaging traits and could
further clarify the understanding of the relationship between two
complementary and often unintegrated datasets. We show that inte-
grated patient traits between imaging and gene expression are better
indicators of survival than imaging or clinical traits alone. As such,
prognostication and treatments may be further individualized,
where targeted pathways could be considered in the selection of an
appropriately tailored chemotherapeutic agent.
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