Skip to main content
. 2020 Feb 26;36(11):3537–3548. doi: 10.1093/bioinformatics/btaa126

Table 1.

Neural network hyperparameters

CV means
Retrain
Label R 2 epoch R 2 epoch Hidden layers optimizer activation dropout

Transcriptome 0.45 467 0.61 486 4000/2000/1000 Adadelta tanh 0.0

AE
Label AUC epoch AUC epoch Hidden layers optimizer activation dropout Layer Frozen
Enhancing 0.72 38 1.00 14 4000/2000/1000 Adadelta tanh 0.6 3 0
nCET 0.83 38 1.00 11 4000/2000/1000 Adadelta tanh 0.0 1 1
Necrosis 0.75 44 1.00 11 4000/2000/1000 Adadelta tanh 0.0 1 1
Edema 0.78 109 1.00 16 4000/2000/1000 Adadelta tanh 0.0 1 1
Infiltrative 0.78 70 1.00 12 4000/2000/1000 Adadelta tanh 0.0 2 1
Focal 0.85 44 1.00 12 4000/2000/1000 Adadelta tanh 0.6 3 0
Subtype 0.99 14 0.998 66 3000/1500/750 Nadam sigmoid 0.4

Note: Layer refers to the depth of hidden layers in the radiogenomic model that used pretrained weights from the autoencoder (AE; e.g. two AE layers indicate the first two hidden layers used pretrained weights). Retrain refers to models trained on the full dataset.