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Abstract

A rapidly growing number of studies on autism spectrum disorder (ASD) have used

resting-state fMRI to identify alterations of functional connectivity, with the hope of

identifying clinical biomarkers or underlying neural mechanisms. However, results have

been largely inconsistent across studies, and there remains a pressing need to deter-

mine the primary factors influencing replicability. Here, we used resting-state fMRI

data from the Autism Brain Imaging Data Exchange to investigate two potential fac-

tors: denoising strategy and data site (which differ in terms of sample, data acquisition,

etc.). We examined the similarity of both group-averaged functional connectomes and

group-level differences (ASD vs. control) across 33 denoising pipelines and four

independently-acquired datasets. The group-averaged connectomes were highly con-

sistent across pipelines (r = 0.92 ± 0.06) and sites (r = 0.88 ± 0.02). However, the group

differences, while still consistent within site across pipelines (r = 0.76 ± 0.12), were

highly inconsistent across sites regardless of choice of denoising strategies (r = 0.07

± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort

differences. Across-site similarity remained low even when considering the data at a

large-scale network level or when considering only the most significant edges. We fur-

ther show through an extensive literature survey that the parameters chosen in the

current study (i.e., sample size, age range, preprocessing methods) are quite representa-

tive of the published literature. These results highlight the importance of examining

replicability in future studies of ASD, and, more generally, call for extra caution when

interpreting alterations in functional connectivity across groups of individuals.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder

with heterogeneous etiology and phenotypic expression. Resting-

state functional Magnetic Resonance Imaging (rs-fMRI)—in which the

temporal coupling of spontaneous activity across the brain, or func-

tional connectivity (FC; Biswal, Yetkin, Haughton, & Hyde, 1995;

Greicius, Krasnow, Reiss, & Menon, 2003), is measured—has been

widely used to study differences in functional brain organization in

ASD, with hopes of revealing underlying neural mechanisms or
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identifying FC-based biomarkers (Abraham et al., 2017; Yahata et al.,

2016). However, findings of FC alterations in ASD have been highly

variable across studies (Hull et al., 2016). This variability of findings

may reflect the variability across numerous study-specific factors,

including strategies for denoising the data (i.e., preprocessing pipe-

lines) and a host of differences across sites. Yet, in order for rs-fMRI

to be useful for either identifying neural mechanisms or serving as

biomarkers, replicability of findings is fundamental.

One potential source of variability across rs-fMRI studies has

been the methods used for data preprocessing. The blood

oxygenation-level dependent (BOLD) signal, while sensitive to

changes related to brain activity, is also highly vulnerable to head

motion and physiological noise, which can spuriously influence mea-

sures of functional connectivity and ultimately affect conclusions from

functional connectivity studies (Dadi et al., 2019; Power et al., 2014;

Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Satterthwaite

et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012; Yan et al., 2013).

Ideally, effective data preprocessing methods would minimize the

influence of such nuisance signals and improve reproducibility. Best

practices for denoising methods are still evolving and a consensus has

yet to be reached, in part because our understanding of how such arti-

facts influence the BOLD signal remains incomplete (Birn, 2012;

Byrge & Kennedy, 2018; Power, Plitt, Laumann, & Martin, 2017).

These differences presumably contribute in part to inconsistencies

across studies—different strategies have been used both within and

across labs, adding additional uncontrolled and unaccounted for varia-

tion in the research literature. Even when researchers attempt to con-

duct post hoc analyses to try to understand how different

preprocessing steps could account for study-level differences in ASD,

the lack of a ground truth upon which to evaluate measurement accu-

racy limits our ability to interpret such differences (Müller

et al., 2011).

Most common denoising approaches rely on linear regression,

whereby various estimates of noise are regressed from the BOLD

data. The numerous variations of this strategy come from different

choices of which noise estimates to use as regressors. Those most

commonly used include measures of head displacement along six

translational and rotational dimensions, as well as time series from

white matter (WM) and cerebrospinal fluid (CSF). An especially con-

troversial nuisance regressor is the global fMRI signal; proponents of

global signal regression (GSR) argue for its efficacy in removing physi-

ological noise (Birn, 2012; Byrge & Kennedy, 2018; Power et al.,

2017), while the concerns include removal of real neural signals

(Scholvinck, Maier, Ye, Duyn, & Leopold, 2010) and distorting clinical

group comparison (Gotts et al., 2013; Yang et al., 2014). An additional

preprocessing step that can be used in parallel is volume censoring

(or “scrubbing”; Power et al., 2012), in which specific time points asso-

ciated with excessive amounts of framewise displacement (FD;

corresponding to moments of head movement) and/or changes in

global signal are excluded from analysis. A related choice is called

“spike regression,” which regresses from the data one or more nui-

sance regressors labeling time points contaminated with excessive

motion (Lemieux, Salek-Haddadi, Lund, Laufs, & Carmichael, 2007;

Satterthwaite et al., 2013).

Several recent studies have evaluated the performance of differ-

ent denoising strategies. Although no relationship between motion

and functional connectivity should remain following an optimal den-

oising procedure, these studies found that the strength of residual

relationships between FC and artifacts varied widely across

commonly-used pipelines (Byrge & Kennedy, 2018; Ciric et al., 2017;

Parkes, Fulcher, Yucel, & Fornito, 2018). Given that greater in-scanner

head movement is commonly observed in ASD and other clinical

populations, differences in preprocessing choices and particularly how

those choices deal with artifacts arising from head movement could

be a potential source of variable results across rs-fMRI studies. For

example, Gotts et al. (2013) compared the effects of pipelines with

and without GSR on group comparisons of functional connectivity

between ASD and controls. They found that group differences varied

across pipelines and demonstrated that GSR affected group compari-

son results. Jones et al. (2010) also found that the use of GSR

influenced findings of group differences in connectivity in ASD. Parker

and colleagues (2018) systematically evaluated the influence of

numerous denoising pipelines on group differences in functional con-

nectivity in schizophrenia. They found that significant group differ-

ences were only found in some pipelines (including GSR and

aCompCor) and that the overlap between functional connections

(i.e., edges) identified in different pipelines was generally low. These

findings demonstrate clearly that the choice of denoising pipeline can

affect the results of clinical comparisons, including both the presence

or absence of group differences and their specific details (e.g., specific

edges affected).

Further complicating the picture is that site effects, or variation

across different scanning sites, have been reported in several studies

of both task-based and resting-state fMRI (Brown et al., 2011;

Dansereau et al., 2017; Noble et al., 2017; Turner et al., 2013; Yama-

shita et al., 2019; Yan, Craddock, Zuo, Zang, & Milham, 2013; Yu

et al., 2018). Different sites present many potential sources of varia-

tion, including differences in participant (i.e., cohort) characteristics,

image acquisition parameters, scanners, scan procedures, and more.

Such uncontrolled variation could undermine the generalizability of

results and efforts to uncover underlying mechanisms and clinically

useful biomarkers. Clinical and etiological heterogeneity within the

ASD population could also exacerbate these difficulties. Nair et al.

(2018) compared a local measure of functional connectivity (ReHo,

regional homogeneity) between ASD and controls from different sam-

ples. They found few consistent results across samples, even when

using the same analysis pipeline and examining only data collected

with eyes open. They suggested that extra caution should be paid to

between-site variability when using multisite data. King et al. (2019)

examined many FC-related measures on group differences between

ASD and the control. They found none of the measures could wholly

reproduce the group differences across sites. However, a recent study

reported reproducible ASD-associated alterations of functional con-

nectivity across four large ASD cohorts (Holiga et al., 2019).
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The Autism Brain Imaging Data Exchange, or ABIDE, provides the

ideal data in which to test the influence of some of these factors. ABIDE

is a data sharing initiative wherein researchers across laboratories shared

resting-state data from TD and ASD participants for the flexible use by

other researchers, “allow[ing] for replication, secondary analyses and dis-

covery efforts” (Di Martino et al., 2014). This flexibility has allowed a pro-

liferation of research on functional connectivity in ASD, and the data has

been used in various ways, including considering each site separately

(Hahamy, Behrmann, & Malach, 2015; Pua, Malpas, Bowden, & Seal,

2018) or using multisite aggregation (Abraham et al., 2017; Floris, Lai,

Nath, Milham, & Di Martino, 2018; King et al., 2019). Both of these

approaches are widely employed, and while greater statistical power can

be achieved from aggregation, examining multiple individual sites can be

used to evaluate replicability. Here, we used four of the largest ABIDE

datasets to answer four questions: (a) what are the relationships between

different denoising pipelines? (b) how similar are ASD-control group dif-

ferences in FC across these different denoising pipelines? (c) can ASD-

control group differences be replicated across independent sites? and

(d) and can any particular pipeline improve replication across sites?

2 | METHODS

2.1 | Literature survey

A literature survey was conducted to summarize the usage of denoising

methods and sample characteristics (i.e., ages, sample size) from recent

resting-state fcMRI studies of ASD. We searched the PubMed database

using keywords consisted of “resting*,” “autism,” and “fMRI,” or combining

“resting*,” “autism,” and “connectivity,” published from the beginning of

2013 until June 2019 (inclusive of the time when ABIDE data has been

available). In total, 245 studies were identified. To be in line with our study

focusing on case–control comparison of resting-state functional

connectivity, 118 studies were excluded for the following reasons: not

using fMRI, using animals, not analyzing static functional connectivity, no

group comparison, focusing on machine learning to classify, not including

primary data analysis (i.e., review) or not easily accessible.

2.2 | Participants

To enable an accurate evaluation of factors affecting replication of ASD-

related FC alterations obtained by typical study design, four indepen-

dent datasets (NYU, SDSU, UCLA, and UM) from ABIDE I and ABIDE II

were analyzed (Di Martino et al., 2014; Di Martino et al., 2017). We

chose these four sites in consideration of their large sample sizes as well

as maximally overlapping age ranges of participants across all four sites

(Table 1 and Figure S1). For example, although USM also has large sam-

ple size, the number of participants whose ages overlapped with other

sites is limited; therefore, we did not include this site in our analysis. To

reduce variability while maximizing sample size, we included participants

based on following criteria: (a) age ranging from 10 to 20 years old;

(b) IQ > 70; (c) mean FD no larger than 0.3 mm; (d) sufficient quality of

anatomical images, assessed by manual review. To further control poten-

tial head-motion differences between groups, we matched each single

ASD participant with a control participant with the smallest difference in

mean FD within each site, and removed any additional subjects not mat-

ched. ASD and typically developing (TD) control participants were not

significantly different on mean FD or mean translation or rotation move-

ment parameters for any site (Table 1).

2.3 | Image preprocessing

The rs-fMRI scanning parameters for each site are shown in Table 2. All

the images were preprocessed using MATLAB (R2018a), using the code

TABLE 2 rs-fMRI scanning
parameters

NYU SDSU UCLA UM

Scanner Siemens 3T Allegra GE 3T MR750 Siemens 3T TIM trio GE 3T Signa

TR/TE 2000/15 2000/30 3000/28 2000/30

FA 90 90 90 90

Resolution 3 × 3 × 4 3.4 × 3.4 × 3.4 3 × 3 × 4 3.4 × 3.4 × 3

Volumes 180 180 120 300

Matrix 64 × 80 × 33 64 × 64 × 42 64 × 64 × 34 64 × 64 × 40

Note: There are several parameters that are different across these sites. The current study was not meant

to control specifically for each of these (e.g., UCLA has a 3,000 ms TR vs. all other sites with 2,000 ms)

because such differences are also present in published studies where such factors are not controlled, but

where replication is still implicitly expected. These datasets are also sometimes aggregated together,

again implicitly assuming that such differences will not have major effects on case–control differences.
Note also that the UM site acquired more volumes per participant than the other sites; we chose not to

downsample this data for our main analysis because including more data from each individual participant

should yield a better estimate of an individual's functional connectivity; in other words, downsampling

would produce artificially noisier data, would not be representative of the actual data available and

analyzed in other published reports, and would bias our results away from finding evidence for across-

site replication. However, we did rerun the primary analyses using a downsampled version of the UM

data and findings remained the same.

HE ET AL. 1337



made available from a recent study (Parkes et al., 2018) that integrates

SPM 12, FSL (FMRIB's Software Library; Smith et al., 2004) and

Advanced Normalization Tools (ANTs; Avants, Epstein, Grossman, &

Gee, 2008). The T1 images were preprocessed using the following

steps: neck removal; segmentation of white matter (WM), cerebral

spinal fluid (CSF), and gray matter (GM); five times erosion of WM

mask and two times erosion of CSF mask; nonlinear registration of

T1 images to MNI space, and applying the transformation to WM,

CSF, and GM masks.

Preprocessing of functional images included several steps

shared across different denoising pipelines, including the following:

removing the first four volumes; slice-timing correction; head

motion correction by volume realignment; coregistration to the

native structural image using rigid-body registration, and then to the

MNI template using nonlinear transformations derived from T1 reg-

istration; removing linear trends; normalization of global mean

intensity to 1,000 units; conducting different denoising strategies

(detailed in the next section); bandpass filtering (0.008–0.08 Hz);

and spatial smoothing with a 6 mm full-width at half-maximum

filter.

2.4 | Denoising pipelines

We analyzed imaging data using several commonly-used denoising

methods, together with various combinations of different nuisance

regressors and volume censoring approaches, resulting in a total of

33 denoising pipelines (Table 3).

TABLE 3 Compositions of denoising pipelines

Denoising pipelines Head motion parameters Tissue-based regressors GSR Censoring

6H 6 – – –

12H 12 – – –

24H 24 – – –

6H + 2W 6 Mean WM/CSF – –

12H + 2W 12 Mean WM/CSF – –

24H + 2W 24 Mean WM/CSF – –

24H + 4W 24 4 mean WM/CSF – –

24H + 8W 24 8 mean WM/CSF – –

6H + aCC 6 aCompCor – –

12H + aCC 12 aCompCor – –

24H + aCC 24 aCompCor – –

6H + 2W + spike 6 Mean WM/CSF – Spike

6H + 2W + scrub 6 Mean WM/CSF – Scrub

12H + 2W + spike 12 Mean WM/CSF – Spike

12H + 2W + scrub 12 Mean WM/CSF – Scrub

24H + 2W + spike 24 Mean WM/CSF – Spike

24H + 2W + scrub 24 Mean WM/CSF – Scrub

6H + 2W + GSR 6 Mean WM/CSF 1 –

12H + 2W + GSR 12 Mean WM/CSF 1 –

24H + 2W + GSR 24 Mean WM/CSF 1 –

24H + 4W + GSR 24 4 mean WM/CSF 1 –

24H + 8W + 4GSR 24 8 mean WM/CSF 4 –

6H + aCC + GSR 6 aCompCor 1 –

12H + aCC + GSR 12 aCompCor 1 –

24H + aCC + GSR 24 aCompCor 1 –

6H + 2W + GSR + spike 6 Mean WM/CSF 1 Spike

6H + 2W + GSR + scrub 6 Mean WM/CSF 1 Scrub

12H + 2W + GSR + spike 12 Mean WM/CSF 1 Spike

12H + 2W + GSR + scrub 12 Mean WM/CSF 1 Scrub

24H + 2W + GSR + spike 24 Mean WM/CSF 1 Spike

24H + 2W + GSR + scrub 24 Mean WM/CSF 1 Scrub

ICA-AROMA+2W – Mean WM/CSF – –

ICA-AROMA+2W + GSR – Mean WM/CSF 1 –

1338 HE ET AL.



2.4.1 | Regression of head motion parameters

Head motion parameters are based on six time series reflecting in-scanner

head movements along three translational axes and three rotational axes.

We examined three variants: 6H (just these original 6 motion parameters),

12H (including the original 6H, plus the first derivative of each as com-

puted by backward difference), and 24H (including 12H, plus the squares

of each of the 12 parameters) (Satterthwaite et al., 2013).

2.4.2 | Regression of signals from white matter
and cerebrospinal fluid

We used two methods to estimate WM and CSF signals: (a) mean

WM/CSF, the average time series across voxels within WM and CSF

masks, with three variants: mean WM and CSF alone (2 W), or adding

their temporal derivatives (4 W), or adding squares of 4 W (8 W), and

(b) aCompCor, which applies principal component analysis to the time

series fromWM and CSF voxels separately, and uses the top five prin-

cipal components for each tissue compartment (Muschelli

et al., 2014).

2.4.3 | Regression of global mean signal

Global mean signal was calculated by averaging voxel-wise time series

across the whole brain (GSR) or extended with squares of it and their

temporal derivatives (4GSR).

2.4.4 | Volume censoring

Volume censoring involves censoring specific time points in BOLD

data that have excessive head motion, which was evaluated using

F IGURE 1 Schematic plot for postprocessing analysis. We used a total of 33 denoising pipelines, with different combinations of regression of
head motion parameters (6H/12H/24H), ICA-AROMA, signals of white matter/cerebral spinal fluid (WM/CSF), global mean signal (GSR), and
volume censoring (spike/scrubbing). Functional connectomes were separately constructed with 33 pipelines for each subject. We averaged
functional connectomes across each subject group as well as compared each cell in the connectome between two groups to derive group-
difference z-maps. Then we calculated the Spearman's correlation between group-averaged functional connectomes, as well as between z-maps
(a) across pipelines and (b) across datasets
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framewise displacement (FD). We adopted two different censoring

strategies: spike regression and scrubbing. To keep consistent with

previous work, we calculated FD differently for spike regression and

scrubbing and used different thresholds. For spike regression, FD was

calculated as the root mean square of framewise changes of six head

motion parameters (Jenkinson, Bannister, Brady, & Smith, 2002;

Satterthwaite et al., 2013). This FD trace was then used as an addi-

tional nuisance regressor in which volumes with FD above 0.25 mm

were marked as 1 and otherwise as 0, which was then regressed

(together with other regressors) from the BOLD time series. For

scrubbing, FD was calculated as the sum of absolute framewise

changes of six head motion parameters (Power et al., 2012). Volumes

with FD above 0.2 mm were excluded from analysis at the end of

preprocessing. We excluded subjects with less than 4 min of valid

BOLD data following spike regression or scrubbing.

2.4.5 | ICA-AROMA

ICA-AROMA uses independent component analysis (ICA) to decom-

pose the BOLD signal into spatial independent components and then

automatically identify motion-related components based on assessing

high-frequency content, correlation with head realignment parame-

ters, edge fraction and CSF fraction of each component (Pruim et al.,

2015). ICA-AROMA is performed for each participant separately and

the number of motion-related components can vary for different

participants. Spatial smoothing was performed before noise regression

when using ICA-AROMA.

2.5 | Functional connectome construction

We used a parcellation template containing 200 cortical ROIs to con-

struct the functional connectome for each subject (Schaefer et al.,

2018). Specifically, after preprocessing we weight-averaged the time

series of all voxels within each ROI based on their gray matter probabil-

ity. Then we computed the Pearson's correlation between time series

of each pair of 200 ROIs to construct a 200 by 200 functional connec-

tivity matrix of each pipeline for each subject, and Fisher-z transformed

correlation coefficients for the purpose of normalization. The group-

averaged functional connectome was obtained by averaging functional

connectomes across participants of each group for further analysis.

2.6 | Group differences between ASD and controls

We compared the ASD to the control group on each edge in the func-

tional connectome matrix for each site, using the nonparametric

Wilcoxon rank sum tests to reduce the influence of extreme data. Age

and mean FD were first regressed out as covariates. A 200 × 200 sta-

tistic z-value map (z-map) representing group differences for all edges

was obtained for each pipeline in each site.

F IGURE 2 Usage proportion of
different denoising preprocessing
strategies in previous resting-state
fMRI case–control studies on
functional connectivity in ASD
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2.7 | Assessing replicability of whole functional
connectomes

A schematic is shown in Figure 1 to illustrate our approach. We first aver-

aged functional connectomes across participants with ASD and across typi-

cal controls, separately for each pipeline and for each site. Next, to assess

the similarity of functional connectomes across denoising methods, we cal-

culated the Spearman's correlation of group-averaged functional con-

nectomes between each pair of pipelines to derive a similarity matrix,

separately within each site. To better visualize the distance between pipe-

lines, we used multidimensional scaling (MDS) to transform each pipeline-

similarity matrix into a representation in two-dimensional space. Each point

corresponds to a different pipeline and the distance between points

corresponds to their degree of dissimilarity. We used Procrustes analysis

(without scaling) to best align the plots across sites, using NYU as the

reference plot.

To assess the across-site similarity of functional connectomes, we

calculated the Spearman's correlation between each pair of four sites

under each pipeline.

2.8 | Assessing replicability of group differences
between ASD and controls

To evaluate the similarity of ASD-control group differences across

denoising methods or sites, we calculated the Spearman's correlation

F IGURE 3 Consistency of group-averaged functional connectome across pipelines and sites. (a) Spearman's correlation coefficients of group-
averaged functional connectomes across pipelines. There is high similarity across pipelines, though pipelines with different GSR status were less
similar, as is seen in quadrant structure. Note that the labels for the different preprocessing strategies in this and all subsequent figures are

provided in the same order. (b) A different visualization of relative distance among different pipelines based on multidimensional scaling. Each
data point represents a pipeline (note that not all points are visible because there is a high degree of overlap between some of them). It directly
shows the major factor differentiating pipelines is based on the usage of GSR. The triangle shape corresponds to the basic pipelines (which only
regress out 6H/12H/24H), the circle shape corresponds to the pipelines adding WM/CSF regression, the diamond shape corresponds to pipelines
using aCompCor, the square shape corresponds to volume censoring (scrubbing and spiking) and the asterisk corresponds to ICA-AROMA.
(c) Spearman's correlation coefficients between group-averaged connectomes were consistently high across sites for all pipelines
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between whole brain group difference (z-map) matrices across pipe-

lines within each site, as well as across sites.

In addition to comparing whole brain z-map matrices, we fur-

ther focused on those edges showing the greatest difference

between the ASD and control groups for across sites comparisons.

First, we sort all edges based on their z values for each pipeline in

each site, and obtained top 500 (positive, ASD > control) and bot-

tom 500 (negative, ASD < control) edges (approximately 5% of

total edges) for each map. Then we calculated how many those

edges overlapped between each two maps (pipeline/site) sepa-

rately for positive and negative z values. Permutation tests were

used to examine whether the numbers of overlapping edges were

above chance. First, we shuffled the diagnostic labels

(ASD/control) of all the subjects within each site, keeping original

sample sizes for each group. Then we compared these two new

groups to derive a null z-map for each pipeline within each site,

and then calculated the overlapping edges between sites using the

same method as above. This procedure was repeated 1,000 times

for each pipeline to generate a null distribution of chance levels of

overlapping edges across sites. So as to not be overly conservative,

results are not corrected across the 33 pipelines examined, but are

corrected for the six pairwise site comparisons (e.g., FDR correc-

tion, q ≤ 0.05; Benjamini & Hochberg, 1995).

We also examined the similarity of group differences between

sites at a large-scale network level using a commonly used

17-network template (Schaefer et al., 2018; Yeo et al., 2011). The net-

works examined include: Visual A and B, Somatomotor A and B, Dor-

sal Attention A and B, Salience/Ventral-Attention A and B, Limbic A

and B, Control A, B and C, Default Mode A, B and C, and Temporal

Parietal networks. Network connectivity was derived by assigning

each node to a particular network, and then averaging correlation

values (edges) within and across networks to derive a 17 × 17 con-

nectivity matrix. Using the same statistical method to compare each

cell between the ASD and control groups, we obtained a z-map for

F IGURE 4 Consistency of group differences in functional connectivity across pipelines and across sites. (a) Spearman's correlation
coefficients between group-difference z-maps across pipelines, and (b) MDS showing relative distance between pipelines, indicate that GSR and
ICA-AROMA were different from other strategies. (c) Spearman's correlation coefficients between group-difference z-maps were consistently low
across sites for all pipelines

1342 HE ET AL.



each pipeline in each site and calculated Spearman's correlation across

sites under each pipeline as described above.

3 | RESULTS

3.1 | Literature survey

We sought to provide descriptive information regarding common

preprocessing approaches of case–control studies of ASD, with the

intent of contextualizing the parameters of the current study relative

to the published literature. Figure 2 demonstrates the highly varied

preprocessing methodologies applied in previous studies. Regression

of head motion parameters is an extremely common step but varies in

terms of its precise implementation (approximately equally split across

6, 12, or 24 parameters). Regression of average CSF and white matter

signals is used more often than aCompCor (~55% vs. ~28%). Just over

half of studies used scrubbing (~49%) or spike regression (~8%) to

remove the effects of motion-outlier volumes. Less than one third of

studies used GSR (28%). ICA-AROMA is a recently developed method,

and as such has only been used by a few studies to date (~4%).

3.2 | Group-averaged functional connectomes
were consistent across pipelines and across sites

We first assessed the similarity of group-averaged functional con-

nectomes of ASD group across denoising pipelines separately within

each data site. Generally, functional connectomes were highly similar

across pipelines and this similarity pattern is consistent across sites

(Figure 3a; NYU, r = 0.92 ± 0.06; SDSU, r = 0.92 ± 0.06; UCLA,

r = 0.92 ± 0.06; UM, r = 0.90 ± 0.08). Results were similar for the con-

trol group (NYU, r = 0.91 ± 0.07; SDSU, r = 0.93 ± 0.06; UCLA,

r = 0.93 ± 0.05; UM, r = 0.90 ± 0.08). As is apparent from the quad-

rant structure of Figure 3, GSR was a major influence on similarity of

average functional connectomes across pipelines, such that similarity

was extremely high with the same GSR status but reduced when pipe-

lines differed in their use of GSR. We used multidimensional scaling to

represent this graphically (Figure 3b), which demonstrates that the

use of GSR is a primary dimension upon which results are either simi-

lar or different from one another.

We examined the replicability of functional connectomes across

sites under each pipeline. Figure 3c shows that the group-averaged

connectome of ASD is also similar across data sites within each pipe-

line (for all pipelines, r = 0.88 ± 0.02). Pipelines with GSR had

increased between-site similarity compared to pipelines without GSR

(rank sum, z = 3.88, p = .001). Note that the first three minimally-

preprocessed pipelines were excluded for this analysis because these

tended to be quite different from all other approaches (as seen in

Figure 3b).

In summary, group-averaged functional connectomes were similar

across pipelines and could be replicated across sites—thus, even using

different scanners and scanning protocols did not affect replicability

of the group-averaged functional connectome.

3.3 | Group differences were consistent across
pipelines but not across sites

Next, we assessed similarity of ASD-control comparisons of functional

connectomes across pipelines, within each site. The results were con-

sistent across pipelines within each site for all four sites (NYU,

r = 0.78 ± 0.10; SDSU, r = 0.78 ± 0.10; UCLA, r = 0.75 ± 0.10; UM,

r = 0.71 ± 0.14). As in Figure 3, Figure 4a,b shows that GSR was also a

dominant factor in similarity of group differences across pipelines—

highly similar results with concordant use or nonuse of GSR

(i.e., either both present or absent), but reduced similarity when pipe-

lines were discordant in their use of GSR (concordant: r = 0.84 ± 0.09;

discordant: r = 0.70 ± 0.07, averaged across four sites), suggesting

that the same data analyzed with or without GSR may yield different

results. In addition, pipelines with ICA-AROMA were generally differ-

ent from others (Figure 4a,b).

The pattern of group differences was not replicable across sites,

regardless of which pipeline was used. The correlations of group-

difference z-maps between sites were consistently low (r = 0.07

± 0.04, Figure 4c). Pipelines without GSR resulted in slightly higher

between-site similarity (mean with GSR: r = 0.061; mean without

GSR: r = 0.074; z = 2.22, p = .03). To further highlight the relative con-

tributions of site and preprocessing effects, we conducted an addi-

tional MDS analysis that combined data across all sites and all

pipelines (Figure 5). Figure 5 demonstrates that ASD-control

connectome differences are not similar across sites and that the rela-

tive effects of preprocessing are miniscule in comparison.

F IGURE 5 MDS visualization showing relative similarity of group
differences across pipelines and sites. Note that the differences
across sites are much larger than differences across pipelines
(cf. Figure 4b)
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F IGURE 6 Legend on next page.
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Even the most different edges between groups within each site

rarely overlapped with another site (ASD > control, n = 19.08 ± 11.05;

ASD < control, n = 16.66 ± 7.62). Permutation tests indicated that the

total number of edges overlapping between two sites was not reliably

higher than chance for most pairwise comparisons, with the exception

of many pipelines from SDSU-UCLA (ps ≤ .05, FDR corrected for six

comparisons; note that this analysis did not correct for number of

pipelines tested; see Figure 6a). Figure 6b shows the overlap of the

500 most different positive (ASD > control) and negative (control >

ASD) edges across the four sites from several representative pipelines.

A very small number of edges overlapped between three sites, but

these edges varied across pipelines, and no edges overlapped across

more than three out of the four sites, in any pipeline.

In addition to the fine ROI edge-level resolution, we also examined

the consistency of group differences at a larger-scale network level. The

pairwise correlation analysis showed the ASD-control group differences

at the 17-network level were still inconsistent across data sites (mean

r = 0.05 ± 0.27). Figure 7 shows that most of the correlation coefficients

between z-maps of each pair of sites were not significant after multiple

comparison correction for six pairwise comparisons (no correction for

the 33 pipelines to avoid being overly conservative). The between-site

similarity varied across pipelines, without significant differences

between pipelines with GSR and without GSR (z = 0.88; p = .38).

4 | DISCUSSION

This study examined whether replicable group-level differences

between ASD and control groups can be obtained across

independently acquired datasets, and how such replicability may vary

as a function of preprocessing pipeline. Although basic connectome

architecture was highly similar across acquisition sites, regardless of

preprocessing pipeline, evidence for replicable group-level ASD-

control differences was largely absent. While concerning, it is not alto-

gether surprising as this result is largely consistent with the varied and

often conflicting published literature in ASD when taken as a whole—

for example, even the basic directionality of effects is still debated

(i.e., systematic overconnectivity, underconnectivity, both, or neither).

Here, we show that the lack of replicable ASD-control differences

cannot be attributed to the choice of denoising strategy. First, within

each site, the pattern of group differences remained largely similar

regardless of which denoising strategy was used, as long as the use of

GSR was held constant (Figure 3; discussed further below). Second,

no particular denoising strategy led to consistently greater across-site

replication—that is, the degree of replication did not improve in any

meaningful way with any particular approach (e.g., GSR vs. not).

Importantly, this lack of replication was specific to group-level differ-

ences and did not extend to basic connectome architecture—when

comparing average connectomes across sites, we found a very high

degree of similarity, again regardless of denoising procedure. Based

on these results, we conclude that while preprocessing may still con-

tribute in part to the lack of replication seen across studies (as it cer-

tainly adds variability, and especially with or without GSR), these

differences may not be the major factor accounting for such inconsis-

tencies and suggest that other site-level factors play a more

significant role.

If differences in denoising strategies cannot adequately explain

the lack of across-site replication, an important question is: what

F IGURE 6 Edge-level overlap between sites. This analysis includes only those edges showing the greatest difference between the ASD and

control groups (500 ASD > Control and 500 Control > ASD for each site). (a) The total number of edges that overlapped between sites for each
pairwise comparison, represented by a colored dot. The gray distribution is the combined null distribution derived from permutation testing. Dots
outlined in black are those identified as significantly higher than chance (q < 0.05, FDR corrected for the six pairwise comparisons within each
pipeline). (b) The circular plots show overlapping edges for ten different representative pipelines. Line color indicates the number of overlapping
sites: gray = 1; yellow = 2; red = 3. Note no edge appeared in all sites (four times) across any of the 33 pipelines. VIS: visual network; SOM:
somatomotor network; DAN: dorsal attention network; VAN: ventral attention network; LIM: limbic network; CON: control network; DMN:
default mode network

F IGURE 7 Inconsistency of group differences at the network level across data sites. Note that here, compared to Figure 4c, the results are
more variable. *p ≤ .05, FDR corrected for six pairwise comparisons. Note also that even where significant correlation were identified (e.g., 6H
+ aCC + GSR), the directionality of the correlation coefficients were inconsistent across pairwise site comparisons (i.e., within columns)
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other factors may account for it? There are at least five broad possibil-

ities: (a) specific scanner/acquisition/procedural differences;

(b) subject-level (cohort) differences; (c) differences in postprocessing

analysis—for example, the scale or level of analysis (region-of-interest,

whole connectome, or network levels); (d) heterogeneity of ASD;

(e) small, hard to detect, or even nonexistent differences at the ROI-

level of functional connectivity in ASD. We unpack these possibilities

in the following paragraphs, with each having specific implications for

design and analysis of future studies.

On the data collection side, it is possible that several uncontrolled

factors (including some that remain uncontrolled in the present study)

contribute to this lack of replication. These factors include scanner

and acquisition parameter differences (e.g., pulse sequence, voxel size,

phase encoding directions, scanner manufacturer, etc.; Yamashita

et al., 2019), as well as experimental procedural differences (e.g., eyes

open or closed, experiences immediately preceding the functional

scan; Nair et al., 2018). Fortunately, these factors, while they do con-

tribute to across-site variance, tend to be small in terms of effect size

(Brown et al., 2011; Dansereau et al., 2017; Noble et al., 2017) or

result in localized differences (Nair et al., 2018), consistent with our

finding that group-averaged connectomes were highly reliable across

sites. To further increase chances of replication, either a priori coordi-

nation and standardization of procedures (Glover et al., 2012) or the

implementation of postprocessing methods designed to increase mul-

tisite data harmonization would both be possibilities (Yamashita et al.,

2019; Yu et al., 2018).

Another factor related to data collection that potentially underlies

our inability to replicate across sites could be subject-level

(i.e., cohort) differences or biases (Yamashita et al., 2019). A non-

exhaustive list of these factors includes ASD severity, cognitive level,

comorbidities, treatment history and current treatment status

(e.g., medication), basic demographic factors including age, sex, race,

ethnicity, education, socioeconomic status, and so on. These cohort

differences emerge both from practical constraints (e.g., regional

biases in terms of participant demographics in different locations) and

from the various choices made regarding the recruitment process

(e.g., the types of recruitment channels such as clinics

vs. communities, and any specific inclusionary and exclusionary

criteria). There are several options to remedy these issues. One could

apply tightly specified and standardized criteria to match participants

across a host of these factors, but in doing so the generalizability of

the findings to the broader ASD condition is reduced. A more practical

consideration is that attempting to better match sites on some of

these factors would result in smaller sample sizes—for example, in our

study, we excluded 184 participants (nearly 31%) from just these four

sites in order to better closely match sites on just one of these factors

(age). It is also not necessarily always the case that applying more

restrictive criteria is always better than including more participants

(Abraham et al., 2017). Another way to proceed is to identify the criti-

cal factors or grouping of factors that explain significant variance in

the data (Smith et al., 2015), and statistically control for those. Other

proposals have suggested increasing sampling diversity by collecting

relatively small numbers of participants at many different sites, rather

than many participants at one site (Dansereau et al., 2017; Yamashita

et al., 2019). One recent study (Holiga et al., 2019) that reported repli-

cable findings using the ABIDE dataset combined data across multiple

sites as opposed to treating each ABIDE site separately as in the pre-

sent work—however, effect sizes were smaller in these aggregated

samples than in data acquired at a single site. Regardless of the

approach one uses, accounting for these subject-level differences is

likely an important consideration, as recent works have highlighted

that subject-level factors explain more variance than site-level factors

(Brown et al., 2011; Dansereau et al., 2017; Gountouna et al., 2010;

Noble et al., 2017).

On the analysis side, it is important to note that our findings of a

lack of replication are specific to our particular analyses using both

whole connectome ROIs-level and a large-scale network-level organi-

zation, and do not rule out the possible existence of any other replica-

ble group-level effects in ASD. It is very possible that replicable

results could be found when considering the very same data at a dif-

ferent scale or resolution, or with that data analyzed in a different

way. For example, King and colleagues (King et al., 2018) found repli-

cable atypical temporal dynamics in rs-fMRI timecourse. Holiga et al.

(2019) recently found replicable results regarding functional connec-

tivity in ASD across four very large datasets that also included ABIDE

data. However, another recent study by King et al. (2019) assessed a

number of different measures of functional connectivity in ASD and

found weak evidence of generalizability across sites. Other studies

have used machine learning approaches to generalize to indepen-

dently acquired datasets (e.g., Abraham et al., 2017; Yahata et al.,

2016). In one of these (Abraham et al., 2017), prediction accuracy was

affected by parcellation method, suggesting that replicability may be

sensitive to these sorts of analysis choices (e.g., spatial normalization,

parcellation; Dadi et al., 2019). Additionally, different scales of con-

nectivity analysis exhibit different sensitivities and vulnerabilities to

site effects (Noble et al., 2017), demonstrating a complex and inter-

twined relationship between many of the factors discussed above.

We should mention, however, that although there are different ways

of dividing and grouping the data, these approaches mostly still funda-

mentally rest on the ability to accurately and reliably measure edge-

level differences in ASD (e.g., Yahata et al., 2016; see fig. 16a in King

et al., 2019). For example, more complex statistical constructs that

can be used to compare brain organization between groups

(e.g., graph theoretic network measures; He et al., 2018; Rubinov &

Sporns, 2010) fundamentally must build upon reliable and replicable

measurement of connectomes. Thus, lack of replication as described

in the present work should be of concern to researchers.

Another important factor that may underlie the lack of replication

seen here is individual heterogeneity that is characteristic of ASD

(as well as many other psychiatric conditions). Heterogeneity in ASD

is a well-established phenomenon, and exists at all levels of investiga-

tion ranging from genes to brains to behavior (Tordjman et al., 2018).

Indeed, several fMRI studies have found heterogeneous patterns of

functional activity and connectivity within individuals with ASD

(Byrge, Dubois, Tyszka, Adolphs, & Kennedy, 2015; Dickie et al.,

2018; Hahamy et al., 2015; Nunes, Peatfield, Vakorin, & Doesburg,
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2019). Using case–control comparisons and searching for common

alterations exhibited across the group can easily obscure nonshared,

heterogeneous patterns of differences across individuals. In other

words, it is possible that certain types of statistics, which largely rest

on the assumption of group-level similarity, are inappropriate and may

mask important differences that can be better resolved by applying

individually-sensitive analytic approaches (Byrge et al., 2015; Dubois &

Adolphs, 2016; Marquand et al., 2019; Marquand, Rezek, Buitelaar, &

Beckmann, 2016).

The final possibility that ought to be considered is that functional

connectivity differences in ASD are very small and difficult or impossi-

ble to detect with current technology. While various functional con-

nectivity differences in ASD have been reported in previous studies,

the overall lack of consensus is concerning. This issue has recently

caught the attention of more researchers, and two additional recent

studies also found nonreplicated group differences between sites

(King et al., 2019; Nair et al., 2018). Importantly, a growing number of

studies that now examine and demonstrate out-of-sample replication

provide hope that such replicable signals may in fact exist (Holiga

et al., 2019; Yahata et al., 2016). But, because of the above factors

and in addition to a host of others (e.g., motion), small differences may

be easily obscured (Tyszka, Kennedy, Paul, & Adolphs, 2014). How to

reliably detect these differences using current neuroimaging method-

ologies and analytic approaches remains an open question for

future work.

What does this all mean? The pessimistic view would be that

researchers should give up on searching for common group-level

effects in ASD. However, we believe that this conclusion would be

very premature for a number of reasons. (a) Our results are specific to

our chosen analytic method, and may not generalize to the

unbounded number of ways one could analyze such data. (b) As

described above, it is possible that effects are heterogeneous across

participants, so group-level analysis starting with the assumption of

homogeneous groups may be both largely underpowered and not able

to fully account for the group-level variance. (c) It is possible that

improvements in detecting signal in the face of the large amounts of

measurement noise that plague resting-state analyses will eventually

unmask important group-level differences. In this case, if it is a detec-

tion problem, continued advances in acquisition and analysis method-

ology may get us closer to detecting reliable differences in ASD.

(d) Additional experimental procedures can be employed to ensure

more reliable estimates of an individual's connectome. For example,

collecting more data from each individual participant can reduce mea-

surement noise and ensure greater confidence in the results via

within-sample replication (Anderson, King, & Anderson, 2019; Byrge &

Kennedy, 2019; Finn et al., 2015; King et al., 2019; Nee, 2019), prior

to attempting across-site replication.

While our results suggest that lack of replication cannot be solely

attributed to differences in denoising procedures (since using the

same preprocessing procedures did not increase across-site replica-

tion), this does not mean that they are entirely inconsequential. Here,

we show that, while there are essentially an unconstrained number of

choices for preprocessing, some of these choices have a more

significant impact on the results than others (though not necessarily in

a consistent way). Figure 3 demonstrates that one of the most signifi-

cant factors is whether or not GSR is included as a preprocessing

step. Its inclusion resulted in slightly more similar group-averaged

connectomes across sites—however, whether more similar group-

averaged connectomes is a good thing or not remains unclear. The

positive interpretation of this finding is that GSR helps to eliminate

measurement noise (Byrge & Kennedy, 2018; Ciric et al., 2017; Parkes

et al., 2018; Power et al., 2014; Power et al., 2017), resulting in more

similar connectomes, whereas the less positive interpretation is that

GSR eliminates individual variation that might be of interest or dis-

torts group-level differences (Gotts et al., 2013; Scholvinck et al.,

2010; Uddin, 2017; Yang et al., 2014). Our results cannot disambigu-

ate these possibilities from one another. Furthermore, in terms of

group differences, we found that the effects of GSR on across-site

replicability were not consistent, and instead depended on which spe-

cific sites were compared to one another (see Figure 4, middle panel,

and Figure 7). For some site comparisons, use of GSR increased simi-

larity between them, whereas for others it decreased it, and yet others

where similarity was unaffected, suggesting a complex interaction

between the use of GSR and site-level factors.

In addition to the possible factors already discussed above that

may limit the detection of reliable group effects, some additional limi-

tations of this study are worth mentioning. One criticism is that corre-

lations between whole connectome group difference z-maps are

perhaps a relatively insensitive way to examine this data. For instance,

a localized difference in a small number of edges or nodes would eas-

ily be obscured in the present whole-brain analyses. However, we did

also examine only the edges that differed most between groups, and

also examined data aggregated at the network level—both yielded

poor replicability of results. Another limitation of the present study is

the relatively small sample sizes. This was a consequence of both

carefully matching groups by age and also applying strict quality con-

trol (i.e., movement thresholds, anatomical image quality require-

ments). However, we note that our sample size was sufficiently

powered to detect medium-large to large effects within each site, and

we avoided using significance thresholding (e.g., α = .05) to reduce the

impact of differences in statistical power across sites [see also

Figure S2, which shows the effect size (Cohen's d) of the 1,000 edges

most different between groups]. As shown in the literature survey

(Figure S1), although there may be a recent growing trend to use

larger datasets (primarily aggregated from ABIDE), many studies still

use single site data with limited sample size. Indeed, the median sam-

ple sizes in these published studies (ASD: n = 35; TD: n = 38) are

approximately equal to or smaller than the four sample sizes used in

the present work—studies that form the basis of our understanding of

functional connectivity abnormalities in ASD. Another limitation is

that the present study included participants ranging in age from

10 to 20 years old, corresponding to a broad neurodevelopmental

period spanning childhood through adolescence and into young adult-

hood. This age range is not uncommon among previous studies, as

showed in the literature survey (Figure S1). It is possible that more

consistent effects would be identified if the age was constrained even
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further—however, further restricting the range would have reduced

the number of sites and subjects that we could have included.

In sum, the present study demonstrated that the choice of

denoising pipeline is not the main factor underlying the lack of rep-

lication of group differences in ASD. Instead, the most parsimoni-

ous explanation is that group-level differences are small or

nonexistent, and/or swamped by site and sample effects. How-

ever, we remain optimistic that continued developments toward

improving methodology and approaches will help to eventually

reveal reliable patterns of functional connectivity alterations in

ASD. These results highlight the need to continue examining reli-

ability of findings going forward, and demonstrate that approaches

that improve sensitivity to detect disorder-related alterations are

still greatly needed.
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